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DEDICATION

This is the first draft of a future textbook in modern geometry at the advanced under-
graduate level. It was used as the course text for the course Foundations of Geometry
at USF in the Fall of 2023.

This very first edition is dedicated the students of that course: Alana, Daniel, Emelia,
Frances, Katie & Quinn.

Thank you for your patience as I wrote these notes live over the course of the semester,
and your enthusiasm which motivated me to continue writing each evening, even
when I began to realize I committed to a much bigger project than I should have for
the term.






Part 1.

THE GREEKS






1. EucLiD

Geometry began deep in antiquity, arising from our need to measure properties of
the physical world as we came out of the last ice age and began to collect ourselves
into cities. Much of the subject’s long prehistory is lost to the depths of preliterate
time, but signs of the ancients knowledge remain in their surviving artworks.

Figure 1.1.: An Archimedean spiral on Neolithic Pottery, Romania 7000BCE

With writing and the ensuing civilization growth, recognizably modern geometry
was practiced by bronze-age peoples the world over, with notable examples in Baby-
lon, Egypt and China.

Figure 1.2.: A collection of Babylonian homework exercises, written in Akkadian,
1700BCE



1. Euclid

Geometry at this stage in our history was more a compendium of true facts about
space, than it was a coherent theory of how space behaved. One could derive new
facts from known facts, or see that new observations were consistent with existing
knowledge, but early mathematicians had not yet found an order to this chaos.

1.1. EucLip's POSTULATES

By the time Euclid was born in the 300s BCE, Greek civilization was reaching the twi-
light of its golden age, and serious geometry had been practiced by its mathematician-
philosophers for centuries. While not much is known of Euclid’s personal life, his
fame survives into modernity as the author of the three book series The Elements, col-
lecting and systematizing much of the Greek’s knowledge of geometry. Much of its
content originates from earlier mathematicians, including Eudoxus, Hippocrates of
Chios, Thales and Theaetetus, while other theorems in The Elements are previously
mentioned by Plato and Aristotle.

But this is not to take anything away from Euclid’s incredible achievement: while the
theorems were not all original, it is his exposition that became a model for all mathe-
matics written over the following twenty centuries. Euclid took the mass of knowlege
humans had discovered, and built it into a logical, self-contained, and understandable
body of knowledge. He turned a collection of truths into a mathematical theory.

Euclid reduced the entirety of Greek geometry to the logical consequences of just five
statements. Five! Everything that had ever been measured about the nature of space
sprung forth from pure logic and five basic truths. These truths, which Euclid called
his A&woparto (Axiomata), we usually call Euclid’s Postulates in English.

Definition 1.1 (Afiopata tov EvkAeidn: Euclid’s Postulates).

« H xartaokeun prog evbeiog ypappng amd éva onpeio o omotodrmote &Alo

« Mo memepaopévn evbeio propet va emextabel ameploplota

« Evog kOkdog opileton amd éva kévtpo ko pia adotacn(oktiver)

« Oleg oL 0pbég ywvieg eivan ioeg

« Eotw 8o evbeieg mov tépvovton pe o tpitn. Ot evbeieg avtég Oa éxouvv éva
onpeio TOUNG aTd TNV HEPLX TTOV OL ECWTEPLKEG YWVIEG TTOL GYXNHATICOVTOL e
Vv tpitn evbeia £xovv GBpotopa pkpodTeEPo otd dvo opbég ywvies.

In English:

« A straight line segment can be drawn joining any two points.

+ Any straight line segment can be extended indefinitely in a straight line.

« Given any straight line segment, a circle can be drawn having the segment as
radius and one endpoint as center.

« All right angles are congruent.



1.2. The Idea of Proof

« If two lines are drawn which intersect a third in such a way that the sum of
the inner angles on one side is less than two right angles, then the two lines
inevitably must intersect each other on that side if extended far enough.

These five statements were chosen to be as directly observable and intuitive as pos-
sible: and for the most part they do an excellent job at that. Drawing a line between
any two points? Sounds reasonable. Making a line longer? Also reasonable. Rotat-
ing any line segment around to make a circle? Alright. Any two right angles being
congruent? Of course.

But the fifth one, that one you have to read a couple times and draw a picture before
you’re convinced of its truth. We will have much more to say about this 5th postulate
in the next chapter.

1.2. THe Ipea ofF Proor

The real power of Euclid’s postulates comes from the ability to prove things from
them.

Definition 1.2 (Proof). A proof of a statement S is a sequence of logical claims, start-
ing from a collection of foundational statements (like a list of axioms and previously
proven statments) and ending with the statement S that you wanted to verify is true.

As a quick example, if we take as foundational the definition of even number being a
integer that is 2 times another integer and the rules of arithmetic, we can prove that
for any integer x, the integer x + x is even. Our proof goes as follows:

« We can use the fact that 1x = x to rewrite x + x as 1x + 1x.
« We can factor out the x to get 1x + 1x = (1 + 1)x

« We can use that 1 + 1 = 2 to get (1 + 1)x = 2x

« 2x is twice the integer x, so it is even.

« Thus, since x + x = 2x, we see x + x is even.

This proof is not particularly exciting, but it is clear and unambiguously true. Each bit
of the proof made just a small step at a time, and explained why each step held using
the foundational material. Anyone who understands the foundational material and
knows how to read would be convinced by this argument that x + x must be even.

Arguments in greek geometry are exactly of the same style, except we replace the
rules of arithmetic with the Postulates of Euclid, and definitions like “evenness” with
geometric definitions like “triangle”.



1. Euclid

Definition 1.3 (Triangle). A triangle is a figure in the plane composed of three points
p,q,r which do not all lie on a common line. The sides of the triangle are the line
segments pq, pr and qr. The angles of the triangle are defined by these sides at the
points p, q,r themselves.

Indeed, given just this definition and the five postulates of Euclid, we can follow him
in proving his first Proposition

Theorem 1.1 (Equilateral Triangles Exist: Elements Prop I). There exists a triangle
in the plane all of whose sides are the same length.

Proof.

« Choose two points p, q in the plane. Draw the line segment between them, of
length L. (Postulate 1)

« Now form the circle of radius L centered at p, and the circle of radius L centered
at g (Postulate 3)

« These two circles intersect in two points. Select one of the intersection points,
call it r.

« Use postulate 1 again to draw a line from p to r and from q to r. Together with
the original line, these form a triangle.

+ The line segment from p to r is length L, as is the length of the segment from ¢
to r as they are both radii of circles. But the distance from p to g was L too: so
this triangle has three sides of length L.

Remark 1.1. That the circles intersect seems intuitively obvious, but how would one
actually prove this? This is the beginning hints that defining things in terms of cal-
culus will prove useful. From our modern perspective, this seems to have something
to do with the continuity of the circle, and perhaps the intermediate value theorem.

A video demonstration of this proof is below:
https://youtu.be/zdofiH5HncU

Propositions, themselves being verified from the list of known facts, are then “le-
gal” to be used in the justification of future facts. Euclid is very intentional in his
development of the subject, and makes sure that every proposition only uses in its
justification facts that have been previously proven.


https://youtu.be/zdofiH5HncU

1.3. Absolute Geometry

1.3. AsoLuTE GEOMETRY

Euclid delays using Postulate 5 as long as possible, and proves the first 28 propositions
of Book I using only Postulates 1-4. (Indeed, in Proposition I we used only Postulates
1 and 3!) These days, we call such results theorems of absolute geometry.

Definition 1.4 (Absolute geometry). Absolute geometry is the set of theorems which
can be proven using only Euclid’s postulates 1 through 4.

Below we embark on a brief, and incomplete tour of Euclid’s work in absolute geom-
etry to get better acquainted with the Greek notion of geometric proof.

The early propositions focus mostly on increasing our toolkit: they prove that its
possible to do certain useful geometric constructions from the axioms, so that we can
in the future use these directly where convenient.

Proposition 1.1 (Copying a Line Segment: Elements Prop 2). Given a segment L and
a point p not on that line, its possible to draw a new line segment starting at p whose
length is the same as L.

The proof of this proposition uses only Proposition I together with the 5 postulates,
and so must be quite ingenious: there isn’t much to work with! Indeed, its best
understood through an animation, so there is a youtube video below.

https://youtu.be/aBCkBJoXMlo

Proposition 1.2 (Cutting a Line Segment to Size: Elements Prop 3). Given two line
segments of unequal lengths, its possible to cut the longer line segment so that the re-
maining piece has the same length as the shorter.

Proof. Start with a line segment AB, and another line segment CD, and without loss
of generality let’s say that CD is the longer segment.

D

c A.\.B

Figure 1.3.:.

« Use Proposition 2 to build a segment with the same length as AB but now start-
ing at the point C.


https://youtu.be/aBCkBJoXMlo

1. Euclid

D
?
°!\.\°B CT
E

« Now use Postulate 3 to spin this new line around to form a circle centered at C.

« This new line intersects CD in a new point, call it F.
« Now the line CF is a radius of the circle, and so has the same length as the
original copied segment: the length of AB.

Figure 1.4.:.

Exercise 1.1 (Constructing an Isoceles Triangle). Start with a line segment of length
a. Prove that you can construct a triangle with one side of length g, and two sides of
length 2a, using the postulates 1-5 and the propositons 1-3 given so far.

10



1.3. Absolute Geometry

2a 2a

a

Figure 1.5.: An isosceles triangle with two sides double the other.

Now that we can copy and cut line segments, Euclid is ready to prove his first theorem
about telling when two shapes are the same (or congruent). You may recall this as side-
angle-side congruence from elementary geometry: Euclid proves it by using what we
just proved to copy one triangle on top the other, to see they are equal.

Theorem 1.2 (Side-Angle-Side Congruence: Elements Prop 4). If two triangles share
a pair of sides with the same lengths, and those sides form an angle of equal measure on
each, then the two triangles are congruent.

R

Figure 1.6.: Side-Angle-Side Congruence: sides with the same length and angles with
the same measure are marked alike on the two triangles.

https://youtu.be/sk2dL_kitcE?si=IdB32dJQqdSneuuz

Euclid continues on this way for some time, proving more theorems theorems about
triangles, including side-side-side congruence.

Theorem 1.3 (Side-Side-Side Congruence: Elements Prop 8). If two triangles have
corresponding sides of the same three lengths, then the two triangles are congruent.

11


https://youtu.be/sk2dL_kitcE?si=IdB32dJQqdSneuuz

1. Euclid

Figure 1.7.: Side-Side-Side Congruence: sides with the same length are marked alike
on the two triangles.

As a quick application we use this to show that the angles of an equilateral triangle
are all equal to one another.

Proposition 1.3. The three angles of an equilateral triangle are equal.

Proof. Let ABC be an equilateral triangle. Then as all of its sides are the same length,
it is side-side-side congruent to any rotated copy of itself. Concretely, we see that
ABC is congruent to BCA.

B C
A=AC BA/\

Figure 1.8.: Equilateral triangles have three equal angles.

This sets up an equality between the angles:

A=B B=C C=A
Thus all the angles are equal to one another. O
These congruences are both theorems of absolute geometry, meaning that they are

true in any world where Postulates 1-4 hold. Being able to tell when two triangles
are the same gives Euclid a new power - to verify that one can cut an angle precisely

in half.

Proposition 1.4 (Bisecting an Angle: Elements Prop 9). If0 is any angle, it is possible
to draw a line dividing it into two angles each of measure 0/2.

12



1.3. Absolute Geometry

Before watching the video on this one (or looking back at your notes) try to draw the
diagram from the instructions!

Proof.

« Start with an arbitrary angle at a point A, and choose a point along D one of
the angle’s rays.

« Use the segment from A to D, with Postulate 3, to construct a circle centered
at A.

« This circle intersects the angles other ray at some third point, E

« Use Proposition 1 to construct an equilateral triangle on the segment DE, which
goes across the angle.

« Call the vertex of the equilateral triangle F. Now use Postulate 1 to draw a line
from the angle’s vertex A to F.

« This creates two triangles, using the new line AF, and then using one side of
the equilateral triangle, and one side ray of the original angle.

« These two triangles, AEF and ADF have all three pairs of sides the same length:
thus, by Side-Side-Side congruence, they are equal.

« This means their angles are also equal. So the two angles we have split the
original angle at A into are equal, and so each must be half the original angle’s
measure.

O

This proof is a bit involved too - so it may be helpful to watch a video for future
reference!

https://youtu.be/HUv0I96vH34

Applying this to a straight angle allows one to bisect this into two equal angles. Since
half a straight angle is a right angle, a corollary of this propositon is that it is possible
to construct a right angle along any line segment.

Proposition 1.5 (Constructing Right Angle: Elements Prop 11). Given a line segment
L and any point p along that line segment, it is possible to construct a perpendicular line
T to L passing through p.

At this point, we now (finally!) know that right angles must exist! Of course we had
an axiom about right angles, but it did not tell us that there were any: it just said IF
you had two right angles, then they are congruent. But it never gave you a means of
making a right angle yourself! Now that we have one, we can do several interesting
constructions: for example, we can prove that right triangles exist:

Proposition 1.6. A right triangle exists can be created with any two leg lengths a, b.

13


https://youtu.be/HUv0I96vH34

1. Euclid

Proof. Begin with a line segment S; of length a, and another line of length b.

NN

o—®

N
a

Figure 1.9.: Lines of the lengths we want as legs of the right triangle.

« Using Proposition 1.5, construct a segment at a right angle to S; at one of its
endpoints, p.

« Use postulate 2 to extend this line segment indefinitely (in case the original
segment you constructed was shorter than b!)

N

Nagmg—
a

Figure 1.10.: Constructing a long perpendicular to one segment.

« Use Euclid’s Proposition 3 (Cutting a Line Segment to Size) to trim this new
segment until it is length b. Call the result S,.

« Now, use Postulate 1 to connect the endpoints of S;, S, by a straight line. To-
gether, these three line segments form a triangle, with one right angle at p, and
side lengths a, b as required.

O

Knowing that right triangles exist, its natural to ask next how we can tell when two
right triangles are congruent. But we already have that tool: we can use Euclid’s
proposition asserting Side-Angle-Side congruence to conclude right triangles are con-
gruent if and only if their legs are the same length.

14



1.3. Absolute Geometry

b % b

(a) Cutting to size (b) The final triangle

We've already learned quite a bit about triangles in absolute geometry, though we
haven’t quite exhausted the possible knowledge. Euclid goes on to prove a few more
propositions, before reaching the final general congruence test for triangles in the
26th:

Proposition 1.7 (Angle-Side-Angle Congruence: Elements Prop 26). Two triangles
are congruent if they have two equal pairs of angles, and an equal corresponding side.

Again, we give a quick application of this triangle congruence, and complete the con-
verse of Proposition 1.3.

Proposition 1.8 (Equilateral if Equiangular). Prove that a triangle with three equal
angles has three equal sides. This proves that a triangle is equilateral if and only if it is
equiangular.

Proof. Let ABC be an equiangular triangle, so the angle measures at A, B and C are
all equal.

Choose one of the angles - say B - and bisect it with a line. This line divides the
triangle into two smaller triangles, which we see are congruent (they share a side:
the new bisecting line, as well as two angles since they each have one of the original
angles, and one of the bisected halves). Thus, the remaining pairs of sides of this
triangle are also congruent, so BA equals BC.

B B B

A CcC A . C A H C
X

Figure 1.12.: Equilateral

15



1. Euclid

There was nothing special about the angle B, so we may also do the same construction
at another angle - say A. This again gives a pair of congruent triangles, from which
we can conclude that AB equals AC.

Stringing these equalities together, we see that AB = AC = BC so all three sides are
equal, and the triangle is equilateral. O

Exercise 1.2. Prove that inside of an equilateral triangle, you can inscribe an upside
down equilateral triangle of exactly half the side length, as in the figure below. In
your proof, feel free to use any of the Postulates, as well as any proposition stated
above this point.

Figure 1.13.: Nested equilateral triangles.

16



2. PARALLELS

The fifth postulate of Euclid is often called the parallel postulate, as it gives a condition
that can be checked for whether or not two lines are parallel.

Definition 2.1 (Parallel). Two lines are parallel if they do not intersect.

Why the parallel postulate was suspicious to take as an axiom to the ancients.
One reason often cited: its complexity! Its a long statement.

But better reason, it implies the EXISTENCE of something (an intersection) at an
arbitrary distance. The other postulates only assure the existence of things on scales
that arleady show up in problem (given a segment, it can be extended finitely. Given
a length, you can make a circle with it.)

2.0.1. EQuivALENTS TO PosTUuLATE S

Definition 2.2 (Equivalence to Parallel Postulate). A postulate P is equivalent to
the parallel postulate if - P can be proven from postulates 1-5 - The combination of
postulates 1-4 and P can prove Postulate 5.

One cleaner statement equivalent to Postulate 5 was already known to Proclus in
antiquity, but became widely recognized after John Playfair’s 1795 commentary on
the Elements:

Definition 2.3 (Playfair’s Axiom). In a plane, given a line and a point not on it, a
unique line parallel to the given line can be drawn through the point.

Remark 2.1. Often Playfair’s axiom is stated more generally, and only asserts that at
most one line parallel to a given line can be drawn. However, it is possible to prove
directly from Euclids Postulates 1-4 that parallel lines exist (Book I Proposition 31):
so our formulation is equivalent.

17



2. Parallels

This does away with much of the seeming complexity of the original postulate, re-
placing the condition of precise angle measures and intersections with the stipulation
that parallel lines are unique. However this does not help with the more substantive
point of unease, that Postulate 5 says something about what is going on arbitrarily far
away. After all, how do you check that a parallel line is unique other than to check
that all other lines make some intersection, even though many of those intersections
will be unobservably far away.

In 1733, a Jesuit Priest and geometer by the name of Giovanni Saccheri made a useful,
and prescient observation. He asked himself, what are all the logical possible state-
ments that could take the place of Euclid’s 5th postulate, or the (now-called) Playfair’s
Axiom? Well, if the axiom states that there exists a unique parallel through a given
point, the other logical choices are that there are none or there are many.

1

Figure 2.1.: The three possibilities of Giovanni Saccheri, image by Seren Peo Pedersen
(Wikicommons)

Saccheri attempted to draw a contradiction from the other cases with Euclid’s other
four postulates, and while his investigations did not quite succeed, they led in some
very interesting directions we will return to later on.

In the millennium and a half span from Proclus until the 1800s, many other founda-
tional theorems of Euclidean geometry were also shown to be equivalent to the 5th.
Among these are the following short list:

Theorem 2.1 (Some Equivalents to the Parallel Postulate). The following postulates
are equivalent to the parallel postulate:

« All triangles have angle sum .

« At least one rectangle exists.

o There exist triangles of arbitrarily large area

« Circumference/Radius is a constant for circles

« Area/Radius Squared is a constant for circles

« Equidistant curves to a line are lines

« There exists a pair of triangles which are similar, but not congruent
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2.1. Proofs: Triangles

« The pythagorean theorem is true
« Given any 3 non-collinear points, there is a circle passing through them.
« Any two parallel lines have a common perpendicular.

All of these properties are true of the world around us, and some of them (like the
statement that rectangles exist) are even finitely checkable: it seems inconceivable to
imagine a world where they were false! Yet, for over two millennia mathematicians
the world over tried - and failed - to prove any single one of these statements from
the first four postulates of Euclid alone.

The reason for this is grander than any of them could imagine, until Gauss,
Lobachevsky and Bolyai entered the scene in the early 1800s. No one could prove
any of these statements from the first four because they are not implied by the first
four! There are logically possible, consistent mathematical worlds which act very
similar to the geometry we find around us on earth, but for which the Pythagorean
theorem is false. We will encounter these worlds (hyperbolic geometries) in the
second half of this course.

2.1. Proors: TRIANGLES

To recover all of geometry in its full glory, he first invokes the 5th postulate in Propo-
sition 29, which is restated below.

Proposition 2.1 (Alternate Angles are Equal (Euclid Prop 29)). A straight line falling
on parallel straight lines makes the alternate angles equal to one another

Before we can prove this however, we need to talk a little bit about how the greeks
measured angles. Euclid has several criteria called common notions he uses to ax-
iomatize the means of measuring quantities such as angle, length, and area. For us
in this short introduction, we will summarize some of these in the following “angle
axioms”.

Definition 2.4 (Angle Axioms).

+ Any two congruent angles have the same measure.
« If an angle A is divided into two disjoint angles B and C, the measure of A is
the sum of the measures of B and C.

To get accustomed to these, we will first prove a practice result comparing angles,
which does not need the parallel postulate.

Proposition 2.2 (Opposite Angles are Equal). If two lines intersect at a point in E?,
the each of the two opposite pairs of angles have equal measure to one another.
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2. Parallels

Figure 2.2.: Opposite angles are equal in measure

Remark 2.2. Here we have used that any two angles which sum to a straight line
equal two right angles, as two right angles also form a straight line. Euclid proves
this separately as Proposition 13.

Proof. Let two lines cross at a point, determining the four angles labled «, $,y, § in the
diagram above. Any two angles which together from a straight line are congruent
to one another (a straight line is two right angles) and so we have the following
equalities

a+pf=Pf+y=y+5=58+a

Take the first equality, @ + f = 4+ y and subtract 8 from both sides: this gives & = y.
Similarly, subtracting y from the second equality f+y =y + § yields = 4. O

Next, we’ll prove our first lemma that does invoke the parallel postulate:

Proposition 2.3 (Corresponding Angles are Equal). If a line crosses a pair of parallel
lines, the angles it makes with each of the parallel lines are equal in measure.

Figure 2.3.: Corresponding angles are equal in measure

Proof. Let Ly and L, be two parallel lines, and T a third line crossing them trans-
versely. Let a, B,y be the three angles determined by these lines as labeled in the
corresponding diagram.
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2.1. Proofs: Triangles

Because T is a straight line, we know the sum y + f is two right angles. And, by
Postulate 5, we know that as L; and L, do not intersect, the sum of « and y must also
be two right angles. Thus

aty=y+p

Subtracting y from each side yields a = . O

Now we have enough information assembled to complete the task at hand.

Proving Euclid 29

T

Figure 2.4.: Alternating angles are equal in measure

Proof. Again let L; and L, be lines crossed by a transverse line T. Denote by «, § the
opposite interior angles labeled in the corresponding diagram. By Proposition 2.3, we
know that the angle corresponding to « is of equal measure. But this angle is opposite
to f5, so by Proposition 2.2, we know this angle also equals . Thus, a = S. O

We have barely begun our use of the parallel postulate (we so far have used it precisely
once, in a lemma about corresponding angles), but even just letting touch our theory
is enough to have profound consequenes.

Theorem 2.2 (Triangles have Angle-Sum 7). If T is any triangle in E? with angles
a, B,y then
a+p+y=m

Below I give a proof using not the Parallel Postulate directly, but using the equivalent
Playfair’s axiom, that parallel lines exist and are unique. Check Euclid Proposition 32
for the original proof.
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2. Parallels

Proof. Consider an arbitrary triangle A, and choose one side S of the triangle, and let
p denote the vertex of A opposite S.

S

Figure 2.5.: An arbitrary triangle.

By Playfair’s Axiom (Definition 2.3), there is a unique line through p which is parallel
to the line containing S. Draw this line, and extend all the sides of the triangles to
lines (Postulate 2).

Figure 2.6.: A parallel to one side.

Note that the opposite interior angles formed by two sides of the triangle with the
pair of parallel lines are equal (Proposition 2.1).

Figure 2.7.: Alternate angles to the bottom fill out a straight line.
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2.2. Quadrilaterals

Thus, the straight line at the top is the sum of all three angles of the triangle! In radians,
this sum is 7, so the sum of the three angles of A is equal to x. O

Exercise 2.1 (Polygon Angle Sum). A polygon is convex if all of its angles are less
than 180°, so that it has no “indents”. Equivalently, a convex polygon is one where any
line segment with endpoints on the boundary of the polygon lies inside the polygon.

Prove that the angle sum of convex quadrilaterals is a constant, for all quadrilater-
als. Prove the angle sum of convex pentagons is also a constant. What are these
constants?

What do you think the formula is for the sum of angles in a convex n-gon? (Optional:
If you have seen mathematial induction, prove your guess!)

Figure 2.8.: Convex vs Non-Convex Octagon.

2.2. QUADRILATERALS

Definition 2.5 (Quadrilaterals). A quadrilateral is a polygon with four straight line
sides. If all four angles are right angles, it is called a rectangle. A rectangle with all
sides the same length is a square. If opposing sides are segments of parallel lines, its
called a parallelogram.

Finally, we’ve uncovered enough to move beyond triangles a bit!

Theorem 2.3 (Rectangles Exist). There exists a quadrilateral in the plane, all of whose
angles are right angles.

Exercise 2.2. Prove Theorem 2.3 using Euclid’s Postulates (and also Playfair’s Axiom,
if you like it), and the propositions given so far in this section.

Hint - we know how to make right angles now, and parallel lines through points. Start
making some!
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2. Parallels

In fact (you may or may not have concluded this in your proof, depending on how
general you were), for any lengths a and b, one can construct a rectangle with these
as the side lengths. Now that we know rectangles exist, we can start asking questions
about them: what patterns can we find?

Proposition 2.4 (Rectangles have Congruent Opposite Sides). Let ABCD be a rectan-
gle. Then the opposite sides AB, CD have the same length, as do the other pair BC, DA.

Proof.

24

« Start with an arbitrary rectangle, and extend its sides into lines.

« Looking at one of the sides, it crosses the other pair in two right angles (by
definition: its a rectangle). Thus the angle sum is a straight line, and so this
other pair of sides is parallel, by the 5th postulate.

Figure 2.9.: A rectangles opposing sides are parallel.

« Draw a diagonal connecting an opposing pair of vertices of the rectangle.

« This diagonal divides the rectangle into two triangles, which both share a com-
mon side.

« But, since the this diagonal cuts across a pair of parallel lines, its alternate
angles are equal.

Figure 2.10.: A diagonal cuts the rectangle into two congruent triangles.



2.2. Quadrilaterals

« Thus, the two triangles that have been formed are congruent to one another,
by Angle-Side-Angle.

« But if the triangles are congruent, then they have the same side lengths.

« Thus, each pair of opposing sides of the rectangle must have the same length.

{
L

Figure 2.11.: Opposing sides of a rectangle are equal, since congruent triangles have
the same side lengths.

O

Running the same argument with the other diagonal also gives a pair of triangles
congruent to these, thus the diagonals of a rectangle must be equal in length to one
another. In fact, more is true: the point where the diagonals intersect one another
divides each of the diagonals in half - the Greeks would say their intersection bisects
both of the diagonals.

A good way to get a feel for Euclidean geometry is to try and play around with prop-
erties like this that you discover. So, rectangles diagonals bisect one another, but is
this all? Playing around a bit, its easy to see there should be more examples (draw
any two line segments that cut each other in half making some sort of x, then connect
up their vertices). But can we give any sort of order to this collection of shapes?

Exercise 2.3 (Bisecting Diagonals = Parallel Sides). If the diagonals of a convex
quadrilateral bisect one another, then that quadrilateral is a parallelogram.
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3. PYTHAGORAS

The pythagorean theorem needs no introduction, and is perhaps the most well known
formula in mathematics from antiquity (and perhaps, only rivaled by E = mc? in the
modern era).

Theorem 3.1. On a right triangle with legs of length a,b and hypotenuse of length c,
these lengths satisfy

a? +b? =c?

This theorem is fundamental to almost all real-world applications of geometry be-
cause it is the Greek foundation for the distance function it lets us measure distance
between two points in the plane if we only know their horizontal and vertical sepa-
rations.

Pythagoras’ Theorem was not first discoverd by Pythagoras - and its first origins are
lost to history though surviving tablets show that it was already in common use in
Babylon by 3700 years ago.

w37 Ll g
A”:Fﬂv‘/
O

Figure 3.1.: A babylonian tablet engraved with Pythagorean triples: three whole num-
bers for which the sum of the squares of the first two equals the square
of the third (3, 4, 5); (8, 15, 17); and (5, 12, 13) are visible here. These were
likely used to help determine land boundaries.
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3. Pythagoras

The same theorem was discovered by many mathematicians the world over, from
ancient india to china and the middle east. But it was the Greeks who, in building the
Elements, first realized its essential reliance on the theory of parallels.

While we are these days accustomed to algebraic expressions occurring in the midst
of geometric arguments (and so, think of the Pythagorean theorem primarily as an
equation) the origin of this equation deals fundamentally with the area of squares.
Indeed, Euclid’s original statement was:

In right-angled triangles the square on the side opposite the right angle equals the
sum of the squares on the sides containing the right angle.

Figure 3.2.: The pythagorean theorem, illustrated.

And so, before we can proceed, we need to study area.

3.1. AREAs

Just like measuring angles, Euclid needed some additional rules to specify how areas
are to be measured. Here I've summarized these in a modern phrasing for us to use.

Definition 3.1 (Area Axioms).
« The area of a square of side length x is x2.
« Any two congruent shapes have the same area.
« Ifa shape R is the disjoint union of two shapes S and T, the area of R is the sum
of the areas of S and T.
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3.1. Areas

Proposition 3.1 (Area of a Rectangle). The area of a rectangle is equal to the product
of its two side lengths.

Proof. Create a square of side lengths a + b, and divide it up into a square with side
lengths a, one with side lengths b and two rectangles with sides a, b, as shown in the
following picture.

Figure 3.3.: Computing the area of a rectangle given the area of squares

Let Ag denote the unknown area of the rectangle. Using the area axioms, we can
write the area of the large square as a sum of the areas of its components

(a+b)? =a®+b* +2A,

From here; its just algebra. Expanding the left hand side and cancelling like terms we
find

ARzab
O

Exercise 3.1. Starting with segments of lengths a,b and using the postulates and
what we have proven or stated in this text so far, construct the diagram used in the
proof of Proposition 3.1, and justify it has the properties claimed of it (made of two
squares and two rectangles of the correct dimensions).

We can now use this result to deduce the area of right triangles as well.

Proposition 3.2 (Area of a Right Triangle). The area of a right triangle is half the
product of its two legs.
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3. Pythagoras

Proof. In the proof of ?@prp-rect-opposite-sides (showing that the opposing sides
of a rectangle are the same length) we saw that the diagonal divides a rectangle into
two congruent triangles.

Call the area of the rectangle Ag and the area of each of these triangles A7, and Ar,.
Since the triangles are congruent their areas are equal (Area Axiom 2), and since they
together make up the entire rectangle, Ap = Ag, + Ar, (Area Axiom 3). Putting these
together

1
AR = ATl +AT2 = ZATl Eand ATl = EAR

Since we know Ay, is the product of its two side lengths, and these are the legs of
each triangle, we see that the area of the right triangle is half the product of its side
lengths, as claimed. U

And finally we can extend this back to general triangles, recovering the familiar for-
mula from high school geometry, that a triangle’s area is given by A = %bh

Proposition 3.3 (Area of a Triangle). The area of a triangle is half the product of its
base and its height.

Exercise 3.2. Prove Proposition 3.3.

Hint - consider two cases: does the top vertex of the triangle lie over the base, or does it
not? In both cases, try to use what we know about right triangles to help.

3.2. ProvING THE PYTHAGOREAN THEOREM

This theorem has been proved many times! Indeed, there is an entire textbook by
Elisha Scott Loomis devoted to distinct proofs of the Pythagorean theorem, collecting
367 in all, and this website gives 119 distinct proofs for you to peruse.

Euclid even proved this proposition in two distinct ways in The Elements, first in Book
L, Proposition 47 and much later, in Book 6, Proposition 31.
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3.2. Proving the Pythagorean Theorem

Figure 3.4.: The configuration used by Euclid to prove Pythagoras’ Theorem in Book
1, Proposition 47.

However, as with many things in mathematics - time brings new insights and clairty
even to the oldest of problems. The styles of proof that I personally find most elegant
are all rearrangement proofs: starting with one collection of shapes and moving the
pieces around in a way that forces the truth of the theorem.

A particularly ingenious rearrangement proof was devised in the mid 800s CE by
Thabit ibn Qurra (full name XXX KXXXX KXXX XX MXX XX KXXXK KKK | (KXKXX a
polymath from Baghdad who made contributions to mathematics, astronomy and
medicine.
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3. Pythagoras

We start with two squares with sides a and b, respectively, placed side by side. The total area of the two squares is
a2+b2.

o

C

b a

The construction did not start with a triangle but now we draw two of them, both with sides a and b and hypotenuse
c. Note that the segment common to the two squares has been removed. At this point we therefore have two triangles

and a strange looking shape.
‘
)
Cc
Cc
b a

As a last step, we rotate the triangles 90°, each around its top vertex. The right one is rotated clockwise whereas the
Proof left triangle is rotated counterclockwise. Obviously the resulting shape is a square with the side c and area c2.

O

o
o

b a

Exercise 3.3. Justify that the resulting final shape here (in the proof by Qurra above)
is indeed a square.

My favorite proof of the pythagorean theorem needs no words to be convincing: it’s
core idea is contained in the following diagram.

Proof. The blue areas in these two pictures are the same, as all we have done is slide
around the triangles.
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3.2. Proving the Pythagorean Theorem

Figure 3.5.: A re-arrangement proof

Of course, to make this rigorous we have to explain why the re-arrangement really
is the same square. O

Variants of this proof were discovered by the 12th century Hindu mathematician
Bhaskara (Bhaskara IT), and even much earlier, appearing in the Chinese astronomical
text Zhoubi Suanjing (XXX from the second century BCE (and, claiming to record
works from the 11th century BCE).
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Exercise 3.4. Explain how the diagram from the Zhoubi Suanjing shows that a? +
b? = ¢? using the formulas we’ve derived for the areas of squares and right triangles,
and some algebra.



3. Pythagoras

3.3. THE [RRATIONALITY OF \/E

Traditionally the realization that irrational numbers must exist is attributed to
Pythagoras (or his followers, the Pythagoreans). While the usual story is likely
apocryphal (where the Pythagoreans kept as a strict secret the existence of irrational
numbers, and murdered Hippasus for divulging it), their discovery nonetheless
revealed a tension between two pillars of Greek mathematics

« Lengths constructed in Euclidean geometry are ‘real’
« Any two lengths can be measured by a common ratio.

The first of these is merely stating that the Axioms of euclidean geometry are con-
structive - a proof in Euclidean geometry is a step-by-step recipe to really construct
some line segment, polygon, or circle. So if the axioms say you can make something,
you really can make it!

Exercise 3.5. Use the constructions of the previous section together with the
Pythagorean theorem to prove /2 exists.

The second was born out by centuries of experience, in both mathematics and music
all known quantities came in common ratios. Notes could be measured relative to
each other, as could lengths. Ratios ruled the cosmos (today, we would say the Greeks
believed in the number line Q of rational numbers).

Many proofs of the irrationality of v/2 have been devised during the 2500 years since
its discovery, with perhaps the most famous still being that recorded by Euclid, often
phrased algebraically as proof by contradiction using fractions in lowest terms. But
there are also purely geometric proofs of this fact. Below is a relatively modern one,
devised by Stanley Tennenbaum around 1950.

Theorem 3.2. The Square Root of 2 is not a rational number.

Assume that v/2 = m/n is the ratio of two whole numbers, so 2 = m2/n2, or 2n% = m2.

Geometrically, this means there is a square with integer side lengths (m), whose area
is exactly twice the area of another integer-side-length square (n).
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3.3. The Irrationality of \/2

Figure 3.6.: A square with integer side lengths (blue) whose area is twice that of an-
other integer square (yellow).

Now take the two smaller squares and position them inside the larger. They don’t fit
disjointly (remember, the sum of their areas is the entire square! So if they leave any
of the square unfilled they must overlap somewhere else to make up for it).

Figure 3.7.: Placing two of the smaller inside the larger must cause an overlap.

Actually, this picture determines three new squares, along the diagonal - two unfilled
and one “double covered” by the overlapping yellow ones.

Figure 3.8.: This determines three new squares down the diagonal.
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3. Pythagoras

What do we know about these three squares? Well, they all have integer side lengths,
as they are differences of integer side length squares (thus, they’re smaller) than the
side lengths of our original squares. But what can we say about their areas?

The two original yellow square’s areas exactly sum to the blue squares area: this
means the amount they miss (the two smaller blue squares) equals exactly the amount
of overlap (the red square). So these new squares have the property that twice the
area of the smaller add up to the area of the larger! This is just the start of what could
easily become an infinite process: we now have a procedure that takes any integer
square solution and produces a new solution with smaller squares. We could repeat
this process again and again, getting ever smaller squares.

S ..
adl e

Figure 3.9.: From this, we can do an infinite regress.

But this clearly cannot be! It is impossible to make a list of ever decreasing positive
integers, as there is a smallest positive integer: one! Assuming there was any rational
solution to ¥2 = m/n gave us an infinite procedure to make smaller and smaller
integer solutions forever, which cannot happen. Thus there cannot be any solutions
at all!

And, the square root of 2 must be irrational.

Exercise 3.6 (The Square Root of 3). Construct a similar argument showing that it is
impossible to find two integer side-length equilateral triangles where one has three
times the area of the other.
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3.3. The Irrationality of /2
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4. AARCHIMEDES

In all six books and 465 propositions of The Elements, Euclid never attempts to mea-
sure the length of a single curve, nor the area of a non-polygonal figure. Pristine,
Greek, axiomatic geometry was about lines, and figures made out of them.

Curves were a different sort of object, a different category or type of thing in the
mind of some of the ancients. Much as we would never try to measure the length of
a gallon, they would never try to measure the length of a curve.

But to Archimedes, it was not a matter of kind, but of technology. Curves could be
measured, if only the correct tools for the job could be developed.

4.1. MEeASUREMENT OF THE CIRCLE

In 250BCE Archimedes wrote a mathematical text entitled KdxAov pétpnoig, or “Mea-
surement of the Circle”. While likely much of the text has been lost to time, an im-
portant theorem remains

Theorem 4.1 (Area of the Circle: Archimedes). The area of any circle is equal to the
area of a right triangle with one side equal to the circle’s radius, and the other side to
the circle’s circumference.

This is the first time in greek mathematics that a curved object has been equated to
a straight one. The idea of archimedes’ argument is both beautiful and ingenious,
but the difficulties of following it through using the mathematics of the time were
considerable.

Archimedes began by approximating the circle by a polygon with a large number of
sides.
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4. Archimedes

Figure 4.1.: A polygonal approximation of the circle.

He then cut the polygon into triangles, and “unrolled it” along its perimeter, into a
sawtooth of wedges. This unrolling has not changed the total area, so this line of
triangles has the same area as the original polygon.

Figure 4.2.: Unrolling a polygon into triangles.

Then, Archimedes recalls that the area of a triangle is given by half its base times its
height: that means if you shear a triangle, the area is unchanged as both the base and
height are not altered by the procedure.

Figure 4.3.: Shearing a triangle leaves area invariant.

So, Archimedes shears all of the triangles along the sawtooth to the left, until all of
their vertices coincide atop the perpendicular to the leftmost edge.
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4.1. Measurement of the Circle

Figure 4.4.: Shearing the sawtooth produces a right triangle.

Thus, for every regular n-gon, archimedes can find an exact right triangle which has
the same area, and whose height is the radius of the polygon and whose base is the
perimeter. Archimedes then very carefully argues that as the number of sides of the
polygon goes to infinity, the difference of its area from the circle, goes to zero, and
the difference of its perimeter from the circumference of the circle does as well. Thus,
the circle must share the same property as the polygons, it must have the same area
as a right triangle made from its radius and circumference!

It is important one does not come away with the impression that it must just ‘obvi-
ously’ work, and that once Archimedes had his argument for polygons he was essen-
tially done. Perhaps the best way to see this is to consider for yourself a seemingly
analogous argument, which completely fails.

Exercise 4.1 (Convergence to the Diagonal). Consider a simpler analog of
Archimedes’ situation, where instead of trying to measure a curve using straight
lines, we are trying to measure a straight diagonal line using only horizontal and
vertical segments. The following sequence of paths converges pointwise to the
diagonal of the square, but what happens to the lengths?

If you believed that because this sequence of curves limits to the diagonal, its sequence
of lengths must limit to the length of the diagonal, what would you have conjectured
the pythagorean theorem to be?

To compute the convergence of areas, Archimedes was able to make clever use of the
already existing area axioms (of Euclid’s common notions, our Definition 3.1). How-
ever, to measure the length of a curved segment, Archimedes had to introduce two
new axioms (as the measurement of curves is not possible in Euclid’s framework).

Definition 4.1 (Archimedes Axiom I). If p and q are distinct points in the plane, the
line segment from p to q is the shortest of all paths connecting p to g.
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4. Archimedes

Figure 4.5.: The straight line is shorter, per Axiom I

Definition 4.2 (Archimedes Axiom II). If there are two convex paths from p to g,
and one lies inside the convex region defined by the other, than that one is shorter.

Figure 4.6.: The inside curve is shorter, per Axiom 2

Archimedes could not prove these axioms, as there was no deeper fundamental theory
of lengths to rely on. However by formulating his argument axiomatically, he located
any possible uncertainty in the axioms themselves: if these two plausible statements
were true, then his striking conclusion necessarily followed.

Like much of Archimedes’ work, these axioms were incredibly prescient and hit on
deep truths of mathematics. In our modern re-building of geometry we will in fact
take Archimedes’ axiom 1 as the definition of a straight line. And Archimedes’ re-
striction to only considering convex curves was also essential: we’ve already seen in
Exercise 32.15 how delicate arguments can be. But it’s even worse than this: when
you drop the convexity requirement its not even true anymore that all curves must
have a length (see the bit at the end of this section for an example).

The surviving text of Measurement of the Circle is only fragmentary, but if you wish
to read some of the argument in its original (translated) form you can find it here.

Should you open this text you may be at first shocked by the quantity of numbers
you see - in Greek works usually geometry reigns supreme and there is essentially no
algebra to be found. But here Archimedes takes the opportunity to deduce a practical
consequence from the theoretical development discussed above.
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4.1. Measurement of the Circle

Figure 4.7.: Archimedes’ calculation of 7 using the first several stages of the method
of exhaustion: he computed provably over- and under-estimates (by #def-
archimedes-axiom-2) starting with hexagons, and iteratively doubling the
number of sides

Sides Inscribed Circumscribed

6 3.0 3.4641
12 3.1058 3.2154
24 3.1326 3.1597
48 3.1394 3.1461
96 3.1410 3.1427

A FracTAL IN THE PLANE

The Koch Snowflake is a fractal, defined as the limit of an infinite process starting
from a single equilateral triangle. To go from one level to the next, every line segment
of the previous level is divided into thirds, and the middle third replaced with the other
two sides of an equilateral triangle built on that side.

o 7o) o O O 7o) o A o

Figure 4.8.: The Koch subdivision rule: replace the middle third of every line segment
with the other two sides of an equilateral triangle.

Doing this to every line segment quickly turns the triangle into a spiky snowflake like
shape, hence the name. Denote by K, the result of the n'" level of this procedure.
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Figure 4.9.: The first six stages Ky, K1, Ky, K3, K4 and K5 of the Koch snowflake proce-
dure. K, is the fractal itself.

Say the initial triangle at level 0 has perimeter P, and area A. Then we can define
the numbers P, to be the perimeter of the nth level, and A, to be the area of the n'"
level..

Exercise 4.2 (The Koch Snowflake Length). What are the perimeters P;, P, and P3?
Conjecture (and prove by induction, if you’ve had an intro-to-proofs class) a formula
for the perimeter P,.

Explain why as n — oo this diverges (using the type of reasoning you would give in
a calculus course): thus, the Koch snowflake fractal cannot be assigned a length!

Before doing the next problem: ask yourself what happens to the area of an equilateral
triangle when you shrink its sides by a factor of 3? Can you draw a diagram (similar
to that from last week’s Exercise 32.9 but larger) to see what the ratio of areas must
be?

Exercise 4.3 (The Koch Snowflake Area). What are the areas A, A, and As in terms
of the original area A?

Find an infinite series that represents the area of the nth stage A, (if you’ve taken an
intro to proofs class or beyond - prove it by induction!). Use calculus reasoning to
sum this series and show that while the Koch snowflake does not have a perimeter, it
does have a finite area!
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4.2. Quadrature of the Parabola

4.2. QUADRATURE OF THE PARABOLA

Archimedes also found the area enclosed by a segment of a parabola and a straight line
through an ingenious infinite process. His theorem relates the area of this parabolic
segment to the area of the largest triangle that can be inscribed within.

Theorem 4.2. The area of the segment bounded by a parabola and a chord is 4/3™s
the area of the largest inscribed triangle.

Figure 4.10.: A parabolic region and its largest inscribed triangle

After first describing how to find the largest inscribed triangle (using a calculation
of the tangent lines to a parabola), Archimedes notes that this triangle divides the
remaining region into two more parabolic regions. And, he could fill these with their
largest triangles as well!

These two triangles then divide the remaining region of the parabola into four new
parabolic regions, each of which has their own largest triangle, and so on.

Je44q

Figure 4.11.: Archimedes’ infinite construction of the parabolic segment from trian-
gles

Archimedes proves that in the limit, after doing this infinitely many times, the tri-
angles completely fill the parabolic segment, with zero area left over. Thus, the only
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4. Archimedes
task remaining is to add up the area of these infinitely many triangles. And here, he

discovers an interesting pattern.

We will call the first triangle in the construction stage 0 of the process. Then the two
triangles we make next comprise stage 1, the ensuing four triangles stage 2, and the
next eight stage 3.

Proposition 4.1 (Area of the nth stage). The total area of the triangles in each stage is
1/4 the total area of triangles in the previous stage.

If A, is the area in the nth stage, Archimedes is saying that A, = iAn. Thus

1 1 1
Ag=T Ay =-T Ay=—T Ay=—T..
0 174 27 160 % e

And the total area A is the infinte sum

A=T+ lT+ iT+iT+-~-
4 64

16
:(1+1+i+i+...)’]‘
4 16 64

Now Archimedes only has to sum this series. For us moderns this is no trouble: we
recognize this immediately as a geometric series

But why is it called geometric? Well (this is not the only reason, but...) Archimedes
was the first human to sum such a series, and he did so completely geometrically.
Ignoring the leading 1, we can interpret all the fractions as proportions of the area
of a square. The first term 1/4 tells us to take a quarter of the square, the next term
says to take a quarter of a quarter more, and so on. Repeating this process infinitely,
Archimedes ends up with the following figure, where the highlighted squares on the
diagonal represent the completed infinite sum.

(c) The infinite process: 1/4 +

(a) The first term: 1/4  (b) The second term: 1/4+1/16 1/16+1/64 + -
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4.3. The Sphere and the Cylinder

He then notes that this is precisely one third the area of the bounding square, as two
more identical copies of this sequence of squares fill it entirely (just slide our squares
to the left, or down). Thus, this infinite sum is precisely 1/3, and so the total area is
1 plus this, or 4/3

Figure 4.13.: The area of the parabola is the yellow shaded region in these squares

Exercise 4.4. Use the result of Exercise 32.9 (that you can inscribe an equilateral
triangle with half the side lengths) to produce an alternative proof of Archimedes
sum, but dividing up a triangle instead of a square.

Exercise 4.5. Construct an argument in the same spirit as archimedes to show the

following equality:
(-2
n=1 3 2

Can you cut a shape iteratively into thirds? It may not be as pretty as Archimedes’, but
thats oK!

4.3. THe SrHere AND THE CYLINDER

Archimedes continued his investigations of curves into the third dimension, where
he proved fundamental results about the sphere.

Theorem 4.3 (Sphere Volume: Archimedes). The volume of the sphere is equal to the
volume of its enclosing cylinder, minus the right circular cone with the same base and

height.

That is, the sphere’s volume is 2 /3rds that of its enclosing cylinder.
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4. Archimedes

Like before, Archimedes required careful use of the method of exhaustion to prove
that equality held in the limit. Modern calculus allows us to reach the same result
directly from Archimedes’ insight much faster.

Exercise 4.6 (Sphere and Cone Slices). Using Calculus, find the volume of both of
these shapes as volumes of revolution and show they are equal.

But Archimedes was not content to understand the volume of the sphere, he also
wanted to relate its surface area to the area of a known shape. He succeeded via an
absolutely ingenious argument, to prove the following

Theorem 4.4 (Sphere Surface Area: Archimedes). The surface area of a sphere is
equal to that of its enclosing cylinder.

Mathematics yutuber 3BluelBrown has made an excellent video discussing
Archimedes proof, which I encourage you to watch: we would have a movie day in
class if I we did not have many other interesting places to go!

https://youtu.be/GNcFjFmqEc8?feature=shared

Archimedes himself was so proud of this argument that he instructed that a sphere
and cylinder be engraved on his tombstone. After he was killed during the Roman
invasion of Syracruse in 212BCE, his tomb was quickly forgotten, only to be found
centuries later when the great roman orator Cicero searched it out in 75BCE. In his
own words:

“Once, while I was superintendent in Syracuse, I brought out from the
dust Archimedes, a distinguished citizen of that city. In fact, I searched
for his tomb, ignored by the Syracusans, surrounded on all sides and
covered with brambles and weeds. The Syracusan denied absolutely that
it existed, butI possessed the senari verses written on his tomb, according
to which on top of the tomb of Archimedes a sphere with a cylinder
had been placed. But I was examining everything with the eyes ... And
shortly after I noticed a small hill not far emerged from the bushes. On
it there was the figure of a sphere and a cylinder. And I said immediately
to the Syracusans “That’s what I wanted!” > Cicero, 75 BC

If you are interested in reading Archimedes’ original work a translation of the paper
The Sphere and the Cylinder is available here.
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https://youtu.be/GNcFjFmqEc8?feature=shared
https://math.mit.edu/~mqt/math/resources/archimedes_on-the-sphere-and-the-cylinder_bk-1.pdf
https://math.mit.edu/~mqt/math/resources/archimedes_on-the-sphere-and-the-cylinder_bk-1.pdf

5. MODERN AXIOMS

Euclid’s postulates were chosen with care to be both self-evident and useful. But they
are by no means the only possible axiom set one could choose to base Euclidean ge-
ometry off of. Just like it is possible for other statements to be equivalent to Postulate
5, it’s also possible for another set of axioms to be Equivalent to Euclid’s:

Definition 5.1 (Equivalent Axiom Systems). Two axiom systems &/ and & are equiv-
alent if you can both use the axioms of & to prove the axioms of %, and vice versa.

In modern math, when defining something axiomatically we often prefer to choose
axioms whose meaning is clear. Can we formulate a collection of axioms equivalent
to Euclid’s, that capture the essence of the geometry of the plane?

S5.0.1. Axioms 1,2 & 3: Srace 1s ComPLETE & INANITE

The first three axioms of Euclid focus on the ability to draw lines (between any points,
and of any length) and circles (of any radius). All of these together work to capture
the property that space doesn’t have any holes, and goes on forever.

Definition 5.2. A space X is complete if it does not have any holes, gaps or bound-
aries. Intuitively, a space is complete if you can continue walking straight in any
direction, for as long as you like.

It is easiest to explain this notion by giving non-examples. The unit disk D = {(x, y) €
R? | x? + y? < 1} is not complete because if you start at the center you only have to
walk one unit before you have to stop: you've reached the edge of space!

The punctured plane (all of R?, except the origin has been removed) is also not com-
plete: any line segment passing through the origin in R? cannot exist in this space, if
you were to try and walk along it you would have to stop when you hit the missing
point!

But being complete does not imply that space is infinite: indeed, the surface of the
earth is complete, but finite in size! Anyone who starts walking in any direction on
the earth’s surface can continue walking forever without falling off the world, they’ll
just come back to their old location over and over.

The other property that us moderns would see as implicitly underlying the first three
axioms of Euclid is the infinitude of space.
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5. Modern Axioms

Definition 5.3. A space X is infinite if there are pairs of points arbitrarily far apart
from one another.

The way to check if a space is infinite is to ask, “*for every natural number N, can I
find a pair of points farther apart than N?” From this reasoning, we can see that the
real line R is infinite, as we can look at the points 0 and N + 1: they’re at distance
N + 1 apart, which is greater than N. The same argument applies to the plane or
3-dimensional space, or any R™.

But this fails for the sphere: while it is complete its finite in size the farthest two
points can possibly be from one another is if they are opposites on the sphere (like
the north and south pole). And these points are only distance  apart, so there are
no points on the unit sphere at distance greater than 4.

5.0.2. Axiom 4: Seace 1s HoMOGENEOUS AND IsoTROPIC

Euclids fourth postulate is short and intuitive: all right angles are equal. But it’s
actually doing a lot of work! To see this, we must unpack what Euclid meant. Two
angles are equal (in their measure) if they are congruent: that is, if there is a rigid
motion of space that carries one to the other. Thus, Euclid here is claiming that you
can always translate and rotate space so that any right angle is carried to any other.

Us moderns would naturally separate this into two actions: you can translate space
to carry any point to any other, and then you can separately rotate space about any
point, carrying any direction to any other. These properties are called homogenity
and isotropy respectively.

Definition 5.4 (Homogeneous Space). A space is homogeneous if for every pair of
points in the space, there is a rigid motion taking one to the other.

Definition 5.5 (Isotropic Space). A space is isotropic if for any point p and any two
directions leaving p, there is a rotation of the space taking one direction to the other.
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Figure 5.1.: A space that is not homogenous. Space looks different near points on the
hill to points away from the hill. This space is also not isotropic (on the
sides of the hill there’s no symmetry between up and down), even though
it does have rotational symmetry around the very apex of the hill.

We will be able to make these notions much more precise shortly, when we come back
and redevelop geometry from calculus. But even before having everything rigorously
defined, its useful to see these properties in action.

Example 5.1. Isotropy implies homogenity.

Proof. Let p and g be distinct points of a space X, and draw the line segment between
them. Say this line segment is of length L, and mark the point m which is of length
L/2 along it: the midpoint. Since X is isotropic there are rotations about m of any
angle we wish.

Rotate about m by 180 degrees: this exchanges the points p and g. Thus there is a
motion of X taking p to g, so X is homogeneous as claimed. O

In two dimensions, it turns out that homogenity also implies isotropy: if a space looks
the same at every point then it also looks the same in every direction. But this is
false in higher dimensions! Indeed, some of my favorite spaces are three dimensional
worlds which are homogeneous but not isotropic.
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5. Modern Axioms

Figure 5.2.: A quick peek at a geometry called SL,, which is homogenous but not
isotropic. You can tell, because the center of your field of view looks very
different than the view off to the side.

35.0.3. Axiom 8: Seace 1s FLAT

The fifth axiom, and all of its equivalents, capture something about space above and
beyond the fact that it is infinite in extent and looks the same at every point.

By the list of equivalents to postulate 5, this additional bit of information has a lot
of effects on the space: it determines how lines, circles, and triangles behave and it
forces the Pythagorean theorem to be true!

It is difficult for us to give a full definition of “flatness” here, but we will in due time.
Indeed - much of this course’s purpose is to specifically get acquainted with this
notion. For now, we’ll make do with the following intuition: the plane is flat, and any
surface you can make by bending the plane without stretching is also flat. Thus, the
surface of a cylinder is flat, as you can roll up a sheet of paper without stretching it,
as is the surface of a cone.

Definition 5.6 (Modern Axioms for Euclidean Geometry). The Euclidean plane is

« Complete

« Infinite

« Homogeneous
« Isotropic

. Flat
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There are spaces which are not flat - the surface of a sphere, for one. Our definition
of flatness (and the lack thereof - curvature) will require mathematics beyond the

Greeks, and we will return in detail once we have construction our geometric
foundations from calculus.
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6. FUNDAMENTAL STRATEGY

Calculus is the story of humanity’s quest to understand infinity: dealing with the
infinitely small (differentiation), infinitely large (convergence), and processes that
occur infinitely often (sequences, and infinite series). Out of this philosophical quan-
dries grew an extremely useful set of mathematical tools that radically changed our
world.

No longer were we constrained by the straight line geometry of the Greeks, or even
the algebra of polynomials from the Middle East. The new mathematical tools pro-
vided a means of calculating - or a calculus with arbitrary curves.

The Fundamental Strategy of Calculus Upon zooming in far enough,
functions appear linear. At this level of zoom, you can replace difficult
(nonlinear) problems with simple (linear) ones

This was Archimedes’ fundamental insight. In trying to compute the area of a circle,
he divided it into small circular wedges. Of course, it was no easier to calculate the
area of a wedge than it was to calculate the area of the circle as a whole - as each
wedge still had a curved (nonlinear) side. But - as the number of wedges grew - each
wedge shrank, and allowed us to zoom in on a smaller and smaller piece of the curve.
The farther we zoom, the closer this small curved arc is approximated by a straight
line - making our problem into a linear one: we replace the area of a curved sector
with the area of a triangle!

Figure 6.1.: Large circular sectors are not well approximated by triangles But small
circular sectors only have a tiny piece of circular arc. Tiny arcs are ap-
proximately linear, so small sectors are well approximated by triangles.
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6. Fundamental Strategy

This insight was discovered time and again over the following twenty centuries, by
mathematicians the world over. As this is a geometry course - and not one on the
history of calculus - we will not have the time to treat many of these amazing insights
with the respect and awe they deserve. (Though, for those interested in such matters
- consider taking Real Analysis with me in the spring!).

6. 1. INANITESMAL SPACE

In the original, pre-rigorous formulations of calculus, mathematicians had the correct
picture in their minds - that if you zoom in far enough on any smooth graph, it should
look linear. But they had difficulty putting this intuition on a firm mathematical
footing. Of course, at any finite level of zoom the curve is not linear, but still curves
very slightly! It’s only in the limit of infinite zoom that this approximation becomes
exact.

But at the level of infinite zoom, what is the resulting line made out of? It can’t be
made out of regular points (x,y) on the plane: as these points are what makes up
the curve. It must instead be made out of some new, infinitesimally small numbers.
The intuition was that infinitely near every number x on the line, there were also
infinitesimal numbers nearer to x than any other other “normal” (finite) real number.
And infinitesimally near any point p in the plane, there were infinitesimally small
points.

But immediately from this idea sprung forth many questions: how many of these
infinitely small numbers must there be? If € is one of these infinitesimals near x, then
what about 2e? That must still be infinitesimally near to x, as € is so so so small!
Similarly, ke must be infinitesimally near x for any k: there’s an entire number line
of infinitesimal numbers near every real number!

Figure 6.2.: Tangent space to a point on the line.

What about in the plane? If v and w are two points infinitesimally close to p, then
what about v+w, or kv+cw for scalars k, ¢? These must also be infinitesimally near p:
so it appears there is an entire plane of infinitesimal points that must be near every
finite point!
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6.1. Infinitesimal Space

e

Figure 6.3.: Tangent space to a point on the plane.

This mental picture seemed to make perfect sense, but there were some deep ques-
tions. What are the rules of arithmetic for infinitesimally small numbers? Using
arithmetic for just infinitesimal numbers alone, or just finite (normal) numbers alone
posed no trouble, but strange things happened if you tried to combine them. If € is
infinitely close to zero, what is the number 1/€? It must be bigger than all normal
numbers: so, is it infinity? But then what is 2/¢? Another infinity larger than the
first? Luckily, we don’t have to worry about these questions, as during the develop-
ment of Real Analysis mathematicians proved an important theorem:

Theorem 6.1. The real line does not contain any infinitesimal numbers.

This tells us as geometers that we should not be trying to combine the arithmetic
of finite and infinitesimal numbers, and should instead keep them separate! This in
fact makes things easier: at each point of the plane we have a plane of infinitesimal
numbers, but different infinitesimal planes do not mix together, or with the points
of the space. Because we often use these infinitesimal numbers to describe tangents
to curves, the modern terminology for these infinitely zoomed in spaces are tangent
spaces

Definition 6.1 (Tangent Space to the Line). To every point x € R, there is attached a
separate real line of infinitesimal numbers, denoted T, R and called the *tangent space
to R at x. Inside a fixed tangent space we can write down linear equations, but points
of TyR cannot be combined with points of R itself, or T)R for any other point y.
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6. Fundamental Strategy

S\ /4

Figure 6.4.: There is a separate line of infinitesimal numbers attached to every single
point.

Definition 6.2 (Tangent Space to the Plane). To every point p € R?, there is attached
a separate plane of infinitesimal vectors, denoted TP]R2 and called the *tangent space
to R? at p. Inside a fixed tangent space the rules of linear algebra apply, but points of
TPJR2 cannot be combined with points of R? itself, or TR for any other point g.

Remark 6.1. “Nice enough” here means that when you zoom in, linear algebra begins
to apply. The collection of spaces for which this is possible are called manifolds.

These definitions look very similar, and invite an immediate generalization. If X is
any nice enough space, we can define the tangent space at every point as a vector
space attached to that point, with the same dimension as X. We will make use of this
more and more as the book progresses.

To keep things straight, its useful to have some notation for tangent vectors, that will
help us remember where they are based at.

Definition 6.3. Let X be a space (the line, the plane, etc) and let p be a point of X.
Then we denote the tangent space at p as T, X, and when we need to be extra-precise,
we put p a subscript even on individual vectors, to show they live in T, X. For example

vy =(1,2), = (;)P

A warning - if you don’t keep careful track of where a vector is based, its easy to get
confused! The vector (1, 1) may represent an infinitesimal vector based at p = (1,1)

or an infinitesimal vector based at g = (0, 1): but these two infinitesimal vectors are
different!
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6.2. Implementation

Figure 6.5.: Tangent vectors at different points truly live in different spaces, even if
they have the same description with coordinates. It’s always important to
keep track of where a vector is based.

This will feel much more natural once we start actually doing calculus in this way.

6.2. IMPLEMENTATION

In broad strokes, modern applications of calculus follow closely Archimedes template.
Given a difficult, nonlinear problem, the first step is to zoom in: to look infinitesi-
mally in the tangent space of every point, where the problem simplifies and becomes
linear.

/

N \,
\/
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=9 =0 "0 =0 =0 o0

Figure 6.6.: Zooming in to each tangent space replaces the original function with a
linear function.
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6. Fundamental Strategy

While zoomed in, we work infinitesimally and simplify the problem as much as
possible, taking advantage of the linear mathematics we now have to work with.

—

TS

T~

Figure 6.7.: Working infinitesimally often involves linear equations.

Once we have succeeded at this, we zoom out: piecing back together the infinitesi-
mal linear information from all the relevant points into finite information answering
the original question.

+ o+ o+ o + e+

Figure 6.8.: Zooming out: combining infinitely many linear problems to solve one
nonlinear problem.

These steps may look different from problem to problem, but the overall strategy
remains unchanged. Most of the time the zoom in step involves some form of dif-
ferentiation, or tangent line approximation, but the zoom out step can be more varied.
The most common means of zooming out is integration combining infinitesimal infor-
mation from an infinite continnuum of points. But infinite summation is also a means
of zooming out - combining together an infinite sequence of infinitesimal terms. And
sometimes, zooming out requires no extra work at all: if we can solve the problem
completely at the infinitesimal level, our zoom out is only to come back up to reality
and report the answer.

Below are several familiar examples of the fundamental strategy in action, so you can

see the variety of methods fitting this general framework.

Example 6.1 (Area Under a Curve). Starting with a continuous function on an inter-
val [a, b] in the real line, the goal is to find the area between the graph of f and the
x—axis, fromx =atox =b:
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6.2. Implementation

Zoom In: If we look infinitesimally near a single point x, we can approximate f as
constant (even better than linear!).

Work Infinitesimally: Thus the infinitesimal area is given by an infinitesimal rect-
angle as the top side is no longer curved.

Zoom Out: To get the total area, we need to combine together (sum up) the areas of
these infinitesimal rectangles. At any finite level of zoom this would be a (Riemann)
sum, but at the infinite level of zoom of calculus, this becomes an integral!

b

Area = J f(x)dx

Example 6.2 (Archimedes’ Parabola). To find the area under a parabolic segment,
Archimedes followed a similar approach, though without the modern theory of inte-
gration. This makes the application of the fundamental strategy even more clear.

Zoom In: Fill the parabolic segment with more and more triangles. As the triangles
get smaller, they zoom in more and more on smaller segments of the parabola, which
are better and better approximated by the straight edges of the triangles.

Work Infinitesimally: The area of each triangle is easy to calculate, and the rela-
tionships between the areas of different triangles (for instance, those in level n vs
those in level n + 1) is deducible using Euclidean geometry. It turns out, the areas of
the triangles follow a pattern - at each level the new contribution is 1/4 the area of
the previous.

Zoom Out: To find the area of the entire parabola, we must sum the areas accu-
mulated at every level. Its no longer relevant where these numbers came from as we
know the pattern: each number in the list is 1/ 4th the previous. Its a geometric series!
So zooming out requires us only to sum this series - the sum gives the total area.

Example 6.3 (Computing Function Values). Consider the problem of evaluating a
function line sin(x): what is the value of sin(0.23)? Unlike polynomials the sine
doesn’t seem to have a nice formula that we can just plug 0.23 into...so, we use calculus
to find one!

Zoom In: Some values of sin(x) we do know how to calculate well: the simple mul-
tiples of x that appear on the unit circle. So, we will zoom in on one of these: here
choosing x = 0 (as its close to 0.23). At this point, we cannot see anything about
sin(x) except its value, and the value of its derivatives at 0.

Work Infinitesimally: Differentiating sin repeatedly we see a pattern: its derivative
cycles through the following list: sin, cos, — sin, — cos and then repeats. We know how
to evaluate both sin and cos at x = 0, so we can evaluate all the derivatives:

f(o) =0, f,(o) =1, f//(o) =0, fr//(o) =1, f////(o) =0--
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6. Fundamental Strategy

Zoom Out: Now that we know the infinitesimal pattern, we must assemble all this
information into a function. Its easy to write down a linear function with f(0) = 0,
£7(0) = 1, jsut take f(x) = x. To also get f’’(0) = 0 and f”"/(0) = —1 we need a cubic
function: f(x) = x — %x3. And to get all the derivatives right we need an infinite
series!

sin(x) = x — 1oyl 1o,
3! 5! 7!
Summing this series at any point x gives the value of sin at that point - even though
we only used the infinitesimal information at x = 0 to derive it! With this formula, its
no trouble to evaluate sin(0.23), or any other value.

Example 6.4 (Maximizing a Function). Given a smoothly varying function f(x) on
an interval [a, b], a difficult problem is to find the point x, at which f(x) is largest.

Zoom In: Our main insight is that when a function has reached its maximum value,
it changes from increasing (before the peak) to decreasing (after the peak). Zooming
in at some point x inside the interval (g, b), the rate of change of f at that point is
captured by the derivative. So we just need to study the derivative.

Work Infinitesimally: If a function is increasing the derivative is positive, and
when its decreasing it’s negative. So, when it switches from increasing to decreas-
ing, we must have f’(x) = 0. This has replaced a calculus problem (maximization)
with an algebra problem (solving for the zero of a function).

Zoom Out: To zoom back out, we need to consider the entire interval and make sure
we have found the answer. The calculus procedure above let us find all the points
where f’(x) = 0 inside the interval - these are potential places for the maximum to
occur. The other potential places are at teh endpoints of the interval. So, we need to
compare the value of f all these points, and report the largest value we found.

In this Part of the book, we will do a deep dive into these three components of the
fundamental strategy, so that we can utilize this powerful tool in the rest of our geo-
metric investigations. First, we will learn about working infinitesimally - that is, what
linear functions look like in one and two dimensions. Then we will learn how to zoom
in - starting with a nonlinear function and differentiating it to get something linear.
And finally, we will review methods of zooming out: integration and power series.
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7. WORKING INFINITESIMALLLY

To use the fundamental strategy of calculus, we need to get good at zooming in -
replacing a function with its linearization, as well as zooming out - putting these
linearizations back together to answer our question. Fundamental to both of these
tasks is understanding linear things themselves, so this is where we begin.

This class does not assume any previous knowledge of linear algebra, and we will
introduce everything we need along the way (which is not that much! We will be
using linear algebra as a tool, not delving into it deeply as the object of study itself).
In this chapter I've collected the essential pieces of linear algebra that will come up
throughout the course. For any of you who have taken linear algebra in the past, I
would recommend you skim through this chapter to refresh your memory. For those
of you who have not - there is no need to read the whole thing right now. Treat this
chapter as a reference that you can return to time and again, as our toolkit in class
expands. For now, its only necessary to read the section on vectors and the section
on matrices.

7.1. VECTORS

Vectors are a specific way to describe points in space. To picture vectors, often arrows
are drawn based at a fixed point, called the origin. The length of the vector is called
its magnitude, and we interpret this arrow as storing the data of a magnitude and a
direction based at this origin. A one dimensional vector is an arrow on the line. If we
call its origin zero, then We can think of it as ending at some particular real number:
the size (or absolute value) of the number gives its magnitude, and the sign (positive
or negative) is the direction.

Remark 7.1. For students familiar with linear algebra, this means we are essentially
fixing the basis (1, 0), (0, 1)

Vectors do not exist all by their lonesome, but instead come together in a collection
called a vector space. The subject of linear algebra is really the study of vector spaces,
and the power that this level of abstraction can provide. However, we will be much
more pragmatic in this course: the only vector spaces we will ever need are the spaces
R (the real line), R? (the plane), and R? (three dimensional space). Because of this, we
will always be able to describe vectors in cartesian coordinates, writing them unam-
biguously as n-tuples of real numbers like this:
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7. Working Infinitesimally

v={ab)= (Z)

Definition 7.1 (Standard Basis). For the vector space R", the standard basis is the list
of vectors all of whose entries are zero except for a single entry, which is equal to 1.
For example, the standard basis for R? is

€ = (13 0) € = (Os 1)
And the standard basis for R is

e; =(1,0,0) e; =(0,1,0) e3 =(0,0,1)

7.1.1. VECTOR ARITHMETIC

Vectors, much like numbers, can be combined and modified using operations: they
can be summed up using vector addition, and multiplied by numbers using scalar
multiplication.

Definition 7.2 (Vector Addition). If u,v are two vectors, then their sum is the vec-
tor whose tip lies at the opposite side of the parallelogram spanned by u and v. In
coordinates, this is just the component-wise sum of the two vectors:

u={a,b) v={cd)

-6

v

<L

E )

0

Figure 7.1.: Vector Addition

We will often see vector addition as a means of performing a translation: adding a
vector V shifts a point p in the plane to a new point p + V. Doing this simultaneously
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7.1. Vectors

to all points in the plane slides the entire plane by the vectorv. For example, ifv = (1, 2)
then translation by v$ is the function

=) ()= G )

The second operation we can do to vectors is called scalar multiplication: this changes
the length of a vector, without changing its direction (though, it flips the vector
around backwards when the scalar is negative).

Definition 7.3 (Scalar Multiplication). If v is a vector and k is a number (scalar), we
can create a new vector kv which points in the direction of v, but is k times as long.

In coordinates, if v = {a, b) then
a ka
o =k(3) = (i)

o w\~
N
<

[]
\-
<\

Figure 7.2.: Scalar Multiplication

The collection of all scalar multiples of a nonzero vector v trace out the line through
the origin, containing the vector v. Combining this with vector addition to allow for
translations, we can easily describe lines in space in the language of linear algebra.

v
)

b

Figure 7.3.: Affine Lines
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7. Working Infinitesimally

Definition 7.4 (Affine Lines). An affine line in a vector space is a function of the
form

) =p+1v

We can refer to such a line as the line through p in direction v.

The Youtuber 3BluelBrown has put together an excellent video series called the
“Essence of Linear Algebra”. While much if it is beyond what we need for this course
- T highly recommend watching the entire series! I'll post throughout this article a
few of the installments that are particularly relevant: here’s the introductory video
on vectors.

https://youtu.be/fNk_zzaMoSs?feature=shared

7.2. LINeAR MAPS

The operations of addition and scalar multiplication are of fundamental importance
to vectors. Because of this, functions which play nicely with addition and scalar
multiplication will

Definition 7.5 (Linear Maps). A function F between vector spaces is a linear map if:

o It preserves addition: F(u + v) = F(u) + F(v) for all vectors u, v.
o It preserves scalar multiplication: F(cv) = ¢F(v) for all scalars ¢ and all vectors
V.

It’s easy to find examples of functions which are not linear: all they have to do is
violate one of these two properties. For example, f(x) = x? is not linear since f(x +

y)=(x+ y)2 =x2 + y2 +2xyand f(x) + f(y) = X2 + yz, so f(x+y) = f(x)+ f(y).
In fact, most functions are nonlinear.

Example 7.1 (1 Dimensional Linear Map). The single variable function f(x) = 2x is
a linear map. To see this, we check both addition and scalar multiplication:

flx+y)=20x+y)=2x+2y= f(x)+ f(y)

flex) = 2ex = c2x = cf(x)

Of course, nothing about the 2 above is special the functions f(x) = mx - which we
know from algebra classes to describe lines through the origin - are all examples of
linear maps. Examples get more interesting in two dimensions:
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7.2. Linear Maps

Example 7.2 (2 Dimensional Linear Map). The function F(x,y) = (2x,x + y) is a
linear map. Again, we just need to check addition and scalar multiplication. Let
u = (uj,up), v = (v,vy, and c be any constant. Then check, using the rules we
learned above, that

F(u+v) = F(u) + F(v)

F(cu) = cF(u)
Below is one relatively straightforward warm-up proposition using the definition of

linearity, which nonetheless proves very useful: linear transformations send lines to
lines.

Proposition 7.1 (Linear Maps Preserve Lines). If{(t) = p + tv is an affine line and F
is a linear map, then F(£(t)) is also an affine line.

Proof. This is just a computation, together with the definition of linear map and affine
line. Plugging in £(¢), we use that F preserves addition, soF(p + tv) = F(p) + F(tv).
Next we use that F preserves scalar multiplcation, so F(tv) = tF(v). Putting it all
together,

F(p +tv) = F(p) + tF(v)

Since F(p) and F(v) are constant vectors, this result is of the form
vector + ¢t - vector

which is the same form we started with: so its also an affine line. O

Figure 7.4.: 2D Linear Maps send lines to lines, so we can visualize them as squeezing
or stretching a grid

Here’s 3Blue1Brown’s video on Linear Transformations and Matrices: it does an ab-
solutely excellent job of displaying the geometric meaning of linear maps we just
discovered above, as well as motivating the definition of matrices (which we define
below).

https://youtu.be/kYB8IZa5AuE?feature=shared
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7. Working Infinitesimally
7.3. MATRICES

Linear maps are very constrained objects: the fact that they preserve addition and
scalar multiplication tells us that its possible to reconstruct exactly what they do to
any point whatsoever from very little data. We will mostly be concerned with linear
maps from R? - R?, so I'll use this as an example.

Say we know that L is a linear map, and we also know what happens when we plug
in the vectors (1, 0) and (0, 1).

L(1,0) = (2,3) L(0,1) =(-1,1)

How can we figure out what happens to (x, y) after applying L? Well, first we use ad-
dition and scalar multiplication to break down the vector (x, y) into simpler pieces.

(x,y) = (x,0) + (0, ) = x(1,0) + y(0, 1)

Then we can feed this linear combination into the function L, and use the fact that it
preserves these operations to our advantage:

L(x,y) = L(x(1,0) + ¥(0, 1))
= L(x(1,0)) + L((0,1))
= xL(1,0) + yL(0,1)
=x(2,3)+y(-1,1)

We can further simplify this answer by using addition and scalar multiplication
(again!):
x(2,3) + y(-1,1) = (2x,3%) + (=3, )

=2x—-y,3x+y)

Thus, from knowing only what L does to the vectors (1,0) and (0, 1), we can deduce
the entire formula for L

L(x,y)=(2x—y,3x +y)
The takeaway from this computation is that remembering what a linear map does to

the standard basis vectors is of fundamental importance. In fact, this is exactly what
the notation of a matrix is all about!
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7.3. Matrices

Definition 7.6 (Matrix). A matrix is an array of numbers. The following are all

examples of matrices
1 2
3 1 2
(1 2) (7) (3 4) (3 4)
5 6

Definition 7.7 (Matrix of a Linear Map). If L is a linear map, the matrix for L has its
first column equal to the image of the first basis vector, the second column equal to
the image of the second basis vector etc. In symbols, for a map from R?:

| |
(L(l, 0) L(o, 1))
| |

Example 7.3 (Matrix of a Linear Map). Consider the linear transformation L(x, y) =
(2x — y, x + y). To find the matrix representation of L, we just need to compute L on
the basis vectors (1,0) and (0, 1):

L(1,0) = (f) £(0,1) = <_11>

The first of these is the first column of the matrix, and the second is the second column:
that’s all there is to it!
2 -1

Exercise 7.1 (Matrix of a Linear Map). Find a matrix for the following linear maps:

« L : R? —» R? which has the equation $L(x, y) = (4x — 3y, 2x + 2y)
« M : R? > R which has the equation L(x, y) = 2x — 6y.
« N: R > R} with L(x,y) = (x — y,x + 2,y — 2).

One of the best ways to understand linear maps is to visualize by hand how the trans-
form the plane. Below is a picture drawn on the Euclidean plane.

Figure 7.5.: Stretching an image via a linear transformation.
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Applying the linear transformation with matrix (3 (1]) to this image turns the unit
square of rectangles with sides (2, 0) and (0, 1). This transforms our image as below

Similarly, the transformation ( _10/ 2 (1) ) reflects the x axis, while leaving the y direction
unchanged.

Figure 7.6.: Compressing and reflecting an image via a linear transformation.

But all sorts of changes can happen! Linear maps can rotate, stretch, and squish our
original square / image into any sort of parallelogram!

Exercise 7.2. Choose your own image on the plane (hand-drawn is great!), and draw
a reference image of it undistorted, inside the unit square. Then draw its image under
each of the following linear transformations:

2 1 0 -1

1 1 1 0

62 G

7.3.1. ComrosiTIoN & MULTIPLICATION

Now we have at our disposal an easy-to-remember, easy-to-write notation for linear
maps. All we do is store the results of the map on the standard basis! But how do we
use this? How can we actually apply this linear maps to points? Looking back to our
explicit example where ( 1) corresponds to L(x, y) = (2x — y,x + y), its clear: the
first row stores the x and y coefficients of the first component, and the second row
the coefficients of the second component.

Definition 7.8 (Applying a Matrix to a Vector). Given the matrix L = (g Z), the
linear transformation associated to this is

_fa b\(x\ f[ax+by
L, y) = (c d) (y) B (cx+dy)

This formula is called the multiplication of a matrix by a vector.

72



7.3. Matrices

Now we know how to apply a linear transformation, but how do we compose them?
If I have two linear transformations, which are each a function R — R%, 1 can do one
after the other and get a new linear transformation. Abstractly, this is no problem.
But if I actually want to compute things? Each linear transformation is represented by
a matrix, how do I combine together two matrices in the right way to make a matrix
for the result?

Example 7.4. Its perhaps most instructive to do this directly yourself. Start with two
linear transformations, say L(x,y) = (x — y,2x + y) and M(x, y) = (3x + y, 2x — 5y),
and compose them, simplifying the result as much as you can. What are the matrices
for the three transformations L, M and M o L?

If you keep track of what you are doing during your simplification process, you’ll
notice a pattern: you can deduce the matrix for the composition directly from the
matrices of the transformations themselves!

Definition 7.9 (Matrix Multiplication). If L and M are linear transformations with
the following two matrix representations

) )

Then the linear transformation L o M has the following matrix:
Lom=(? b\(e f\ _(ae+bg af+Dbh
“\¢ dJ/\g h) \cet+dg cf+dh

The ij-entry of this matrix are formed by multiplying the i row of the first by the jih
column of the second element-wise, and adding up the results.

Early on in the course we will not have too much use for composing linear transfor-
mations explicitly, but once we reach the chapter on hyperbolic geometry - we will
find this operation extremely useful to help explore spaces we struggle to visualize.
7.3.2. INVERSION

How can we undo the behavior of a linear map?

Exercise 7.3. Given linear transformation L(x, y) = (x+y, x — 2y), what vector does
L send to (3, 4)?

In the exercise above, we attempted to undo the behavior of L for a single vector. If
we tried to do this for all vectors we would have a function that undoes the action of
L. We call this an inverse function
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Definition 7.10 (Inverses). If L: X — Y is a function, an inverse to L is a function
M : Y — X which undoes the behavior of L. That is, for every x € X, if we apply L
to get y = L(x) €Y, the inverse M takes y back to x. Similarly if we start with M and
then apply L they undo each other, so nothing changes. In symbols

M(L(x))=xvx e X LM(y)) =yvyeY

Exercise 7.4. Try to invert the linear map from above: L(x, y) = (x+y, x —2y). Find
a function M(x, y) = (px + gy, rx + sy) such that M(L(x, y)) = (x, y) and vice versea.

If you do the above exercise carefully, you’ll find that the fact that the original linear
map was (x,y) — (x + y, x — 2y) did not matter: you could have used any constants
at all, and ran the same sort of argument for any linear transformation (x, y) — (ax+
by,cx + dy) at all! We will never have need to invert anything besides a 2 x 2 matrix,
so the important takeaway from this section is the following general formula.

Proposition 7.2 (Inverse of a 2 x 2). IfL = (‘C‘ Z) is a linear transformation, it is
invertible if ad — bc # 0, and the inverse has matrix

7.4. DETERMINANTS

In the formula for inverting a linear transformation above, a strange looking linear
factor showed up in front of the matrix: the reciprocal of ad — bc. What does this
quantity measure?

A linear transformation L of the plane takes a square (spanned by the unit basis vec-
tors eq, e;) to a parallelogram (spanned by the images of the basis vectors L(e;) and
L(ey)). So, ratio by which L scales areas in the plane is captured by the area of the par-
allelogram spanned by L(e;) and L(e;). How can we find this area? It helps to draw a
picture of the parallelogram we want. If L = (¢ 3), then L sends the first basis vector
to {a, c) and the second to (b, d):
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(a+c>
b+d

Figure 7.7.: The determinant measures the change in area under a linear map.

We can actually find this area in a pretty satisfying way using just what we’ve proven
about Euclidean geometry so far. We know the areas of squares, rectangles, and right
triangles, so let’s try to write the area we are after as a difference of things we know:

Figure 7.8.: A formula for the determinant can be found knowing only the area of
squares, rectangles, and right triangles. (I learned this awesome diagram
from Prof Daniel O’Connor!)

Exercise 7.5. Show the area of the parallelogram spanned by (a, ¢) and (b, d) is ad —bc,
using the Euclidean geometry we have done, and the diagram above.

Definition 7.11 (Determinant). The determinant of a linear transformation M =
( ab ) is
cd

a
detM = c d

b‘:ad—bc
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Thus, the quantity we saw in the definition of the 2 x 2 matrix inverse was just 1/ det.
This makes sense: if L scales up the area by a certain factor, then its inverse must
undo that scaling, it must scale by the reciprocal!

Theorem 7.1 (Invertibility & The Determinant). A linear transformation is invertible
if and only if its determinant is nonzero.

This theorem lets us think of the determinant as a tool to detect invertibility. If the
determinant is zero, then the linear transformation takes a square to something of
zero area: a point, or a line segment! And then information has been lost - the square
has been crushed onto a smaller dimensional space - and there’s no undoing that.

So far we’ve figured out the meaning of the determinant when it is a positive number.
But it can also be negative: what does it mean to scale area by a negative number? It’s
easiest to see via an example - the matrix (‘01 9) has determinant —1, and it flips an
image upside down across the x-axis. This is the meaning of a negative determinant

- a reflection!
“ 1} l
[
T
— -z

Figure 7.9.: Determinants: the first map expands the area by a factor of three, and
the second map expands by a factor of two but also reverses orientation,
reflecting the image.

3
l&

g
"

We often refer to this concept formally with the term orientation. We say a function is
orientation preserving if it does not reflect, or flip an image, and orientation reversing if
it does. Thus, the determinant is not only an invertibility detector, but an orientation
detector as well.

Definition 7.12 (Orientation Preserving). A linear transformation is orientation pre-
serving if its determinant is a positive number.

76



8. ZOOMING IN

8.1. SNnaLE~VArABLE CALCULUS

Given this new picture of where the infinitesimals of calculus live, its helpful to briefly
turn our gaze backwards and consider the calculus we already know in a new light.
Instead of drawing a function f(x) as a graph on x and y axes, we will start by thinking
of it as a rule, telling us how to move around points on the line. Here’s a depiction of
y = x? from this perspective.

0 0.062 025 0.56 1 1.56

Figure 8.1.: The function f(x) = x? as a rule taking points on the line to other points
on the line, visualized for points between —1.25 and 1.25.

This may be a bit hard to interpret at first, mostly because of all the crossing lines: the
squaring operation folds the line in half, sending all the negative numbers to positive
numbers, which clutters our view. The same point can be made more clearly with a
function that does not do this, such as y = x3:

Figure 8.2.: The function f(x) = x* as a mapping from the line to itself.

It’s quite easy to see from this map that our function f(x) = x° is stretching the line
at some points, and compressing it at others. The gray lines connecting inputs to
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8. Zooming In

outputs guide our eyes in this qualitative judgement, where we see that points very
near the origin are getting pulled closer and closer together, whereas points further
out are getting pulled apart.

But this is all an analysis of finite points along the line: what we are really interested
in of course, is the infinite level of zoom required by calculus. To see this, we need to
imagine the infinitesimal tangent spaces at each point. Below, I've illustrated this near
a point undergoing infinitesimal stretch, as well as a point undergoing infinitesimal
compression.

] =

Figure 8.3.: The effect of a function on tangent spaces at each point is a linear stretch
or compression

After passing to the tangent space, we expect (via the Fundamental Strategy) that our
function becomes a linear function. But the tangent spaces are just lines, and whats a
linear map from a line to a line? It’s just multiplication by a constant (a 1x 1 matrix...).
Which constant? The derivative, of course! For the example at hand we have

f(x) = 3x?

Here we interpret the derivative not as a slope, but as the infinitesimal stretch factor:
the fact that f’(1) = 3 - 12 = 3 means that near the point 1, infinitesimal lengths are
being expanded by a factor of 3. The fact that £/(0.1) = 3 - (0.1)?> = 0.03 means that
near the point 1, distances are stretched by 0.03 - that is, compressed by a factor of
33!

It would be great to have a good mental picture of this before we go too far into the
weeds. And we are incredibly fortunate that 3Blue1Brown has anticipated our needs,
and produced a beautiful video on this topic! This is his final installment in the series
“Essence of Calculus”, and while it is the one most relevant to our course (the series
focuses on the concepts of Calculus 1 and 2) I wholeheartedly recommend taking
some time to refresh your knowledge by watching the entire thing!

https://youtu.be/CfW845LNObM?feature=shared
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8.2. Linearizing Curves

8.2. LiNeArizZING CURVES

Now we know how to linearize space, how do we find the linearizations of functions
at the infinite level of zoom we desire? Its perhaps easiest to start with curves. Curves
are functions from some interval I C R into R% or R3. Thus we can write them with

components, like y(t) = (x(t), y(£)).

Proposition 8.1 (Differentiating Curves). Lety : R? be a curve. Then at a fixed time
t (and thus a specified point y(t)), the linearization of the curve is given by the vector

t+e)—ylt
V/(®) = lim yt+e)—y(®)
€—0 €
in the tangent space T},(t)]R2. If this limit does not exist, the curve is said to be not
differentiable at that point.

First, we check that this definition makes sense. If € is some small (but finite) number,
the points y(t + €) and y(t) are two points along the curve, very near to each other.
Their difference is a vector based at y(t)! Taking the limit as ¢ — 0 makes this vector
shrink to zero length, but rescaling by 1/¢ lets us zoom in, and the result is a *tangent
vector based at y(t)!

Exercise 8.1. Show that if we write the curve y(¢) = (x(¢), y(¢)) in coordinates, that
we can use the rules of vector addition and scalar multiplication to simplify this cal-
culation. Indeed, the tangent vector at y(t) is just given by the derivatives of the
coordinate functions

y'(0) = (x'(1),y'®)

Geometrically, we should interpret this derivative as being a way of taking an in-
finitesimal piece of the t line based at the point ¢, and placing it into the tangent
space at y(1):
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=0

Figure 8.4.: The derivative to a curve is a linear map taking infinitesimal pieces of the
line onto infinitesimal pieces of the curve.

Example 8.1. The curve f(t) = (t,°) traces out the standard parabola in the plane.
This passes through the point (2,4) when ¢t = 2. The derivative of f is the function
£/ (@) = (1, 2t), so the tangent vector to f when ¢ = 2 is the vector

@ =149

in the tangent space T(ZA)]RZ.

Exercise 8.2. Differentiate the following curves:

« Tangent vector to (¢, sin(t)) in T(,,/Zl)]Rz.

« Tangent vector to f(t) = (ﬁ Vt+ 1) when t = 2. Which tangent space is it
in?

8.3. LINeARIZING MULTIVARIABLE FUNCTIONS

Besides curves, the other main type of function we will be interested in are functions
from a 2-dimensional space back to itself. These are things like rotations of the plane,
translations of the plane, but also include even weirder things, that move points about
the plane in strange ways.

Definition 8.1 (Multivariable Function). A function ¢ from the plane to itself is a
function whose input is a point p € R? and its output is another point in the same
space: ¢(p) € R%.
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We can make this more concrete by writing both the domain and the range in coordi-
nates: since p € R? we can write p = (x, y) for two numbers x, y. Thus, we can write
¢(p) = ¢(x, y). But since ¢(x, y) is also in the plane, we can write it in components as
well, say #(x, y) = (a,b). Since the output *depends on x, y we see that the coordinate
a is a function of both x and y, as is b. Thus its more helpful to write them as a(x, y)
and b(x, y) to remember this.

Definition 8.2. If ¢ is a function from the plane to itself, we can write it in compo-
nents as two separate real-valued functions of x and y. Often to aid in readability, we
name the component functions with the same letter a the overall function:

$(x. y) = ($1(x, ), $2(x, ¥))

What should the linearization of such functions look like upon zooming in? Well, we
already know how curves work, so a good place to start is by looking for curves. If we
hold x constant in the domain, we get a line parallel to the y axis through p. Similarly,
holding y constant we get a line parallel to the x axis through P. Plugging these into
¢, we get two curves passing through ¢(p).

curve; (x) = (¢1(x,b), ¢a(x, b))
curvey(y) = (¢1(a, y), ¢2(a, )

Figure 8.5.: Understanding a multivariate function by looking at curves through a
point, and their linearizations.

Zooming in, the linearization of these curves are two vectors in T¢(p)1R2, which we
can compute explicitly in coordinates:

d
< $1(x.b)
= ’ =12
v, = curve;’(x) (aifﬁz(X, b))
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F)
—$1(a,y)

= curve,’(y) = [
vy, = curvey’(y) (%gﬁz(a,y))

These are each vectors that lie in the tangent space T¢(p)IR2, and so they span a par-
allelogram there. Indeed, we see that upon zooming in, the map ¢ seems to take an
infinitesimal square with sides (1, 0), (0, 1) based at Tp]R2 to an infinitesimal parallel-
ogram in the range’s tangent space.

ANIMATION

This is the behavior of a linear map! And even better, we know exactly how to write
down a linear map as a matrix if we are given what it does to the standard basis!

Remark 8.1. Here the symbol 9 denotes a partial derivative: that means, we treat all
the other variables as constants, and only differentiate the specified one. It’s easiest
to see via example,%@x2 ¥+ ax +by) = 6xy + a+ 0 where here we have treated y, a
and b as constants, and taken only the derivative with respect to x

Definition 8.3. Let ¢ : E? — E? be a multivariable function, written in components
as

P(x, y) = ($1(x, ), $2(x, ¥))

Then at a point p € E2, the derivative of ¢ at a point p is a 2 x 2 matrix given by the
x and y derivatives of its two component functions:

9% 9

_ | ox ay
Dép=\op 00,
ox ay

Where after taking the derivatives, we plug in the point p to each entry of the matrix,
to get a matrix of numbers. This is a linear map from the tangent space TP]R2 to the

tangent space T¢(p)lR2.

To lighten notation, sometimes we will just write 9, for %, and we will write a vertical
bar for evaluation, much as in calculus:

Example 8.2. The derivative of ¢(x,y) = (x + y, i) at the point (4,7) is given by

(1 1

ox(x+y) dy(x+ y)) _ ( )
1y —x/y*

IM:(¢uM) 2,(x/7)

Plugging in the point,
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Dazy = (1}3/ —xl/y2> @ B (1}7 —41/49)

Because ¢ takes the point (4, 7) to the point
#(4,7)=(4+7,4/7) = (11,4/7)

this is a linear map from T(4,7)]R2 to T(11,4 /7)]R2

The usual calculus rules hold: differentiation of a sum of functions is a sum of their
derivative matrices, and you can pull scalars out from the derivative

Exercise 8.3. Find the derivatives of the following functions, at the specified points.

« The function f(x,y) = (xy, x + y) at the point p = (1, 2).

« The function ¢(x, y) = (xy2 — 3x, ﬁ) at the point g = (3,0).

8.3.1. ComMpPOsITIONS

In single variable calculus, we often made use of the chain rule to take derivatives.
This let us remember less things, as we were able to construct derivatives of com-
plicated functions from simpler pieces. It’s instructive to take a look back at the
formula:

(fo8(x)) = f'(8(x))g" (x)

What is this saying in our new language of linearizations? Recall that the number
line itself has tangent spaces, just like the plane, and we should interpret something
like g’(x) as saying the linearization of g at x. From this perspective, in words this
says

The linearization of f - g at x is the result of linearizing g at x, and mul-
tiplying by the linearization of f at g(x).

This makes perfect sense geometrically, where we start with an infinitesimal piece of
the line based at x, apply g so it gets stretched by a factor of g’(x), and moved to be
located at g(x). Then we apply f: this further stretches by a factor of f’(g(x))! So
the multiplication we see in the formula is really a composition: its saying first stretch
by g, and then stretch by f.

This has a direct analog in higher dimensions, if we remember that the way to com-
pose linear transformations is by matrix multiplication.
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8. Zooming In

Proposition 8.2 (Differentiating Compositions). If F,G are both transformations of
the plane, the derivative of F - G at the point p is the composition of the derivative of G
at p with the derivative of F at G(p):

D(F = G), = DFg()DG,

Example 8.3. If G(x,y) = (xy,x + y) and F(x,y) = (2x — y, xy) then we compute
the derivative of F o G at (1, 2) as follows: First, we find the derivative of G at (1, 2):

_(2 1)
w2 3 2

Then, since G takes (1,2) to the point G(1,2) = (1-2,1 + 2) = (2,3), we need the
derivative of F at (2, 3):

(2-y -1 (-1 -1
DF(“)_< Y x)<23>_<3 2)

Finally, we compose these linear maps with matrix multiplication (making sure to be
careful about the order!)

1 -1\(2 1\ [-5 -3
DF(z,a)DG(l,z):<3 2)(3 2):(12 7)

Exercise 8.4. If F,G, H are the following multivariate functions

I x
DGz = (1 +y 1+ x)

F(x,y) = (x = y,xy)
G(x,y) = (=y,x)

H(x,y) = (x*,y%)

Differentiate the following compositions:
« FeGat(1,1)

« GoGat(0,2)
« FoGoH at(~1,3).

84



8.3. Linearizing Multivariable Functions

8.3.2. INVERSES

Inverse of F is a function H with H(F(x)) = x, which ‘undoes’ the action of F at
each point. Familiar one dimensional examples include squaring and the square root,
exponentials and logarithms, as well as trigonometric functions and their arc-versions
(sin and arcsin for example). One nice consequence of the chain rules is that it’s
possible to differentiate an inverse function, even if you don’t have an explicit formula
for it!

The same reasoning applies directly in higher dimensions: if F is a multivariable func-
tion with inverse H, then the composition HF = I is the identity function, sending
every point p to itself. This is straightforward to differentiate: if I(x,y) = (x,y)

then
DI = <8xx ayx) _ (1 0)
0xy ay y 0 1
Note that the matrix we got by differentiating is constant - it has no x’s or y’s in it:
thus this matrix represents the derivative of the identity function at every point in
the plane. Now, using the multivariate chain rule we can differentiate the equation
HF =1 to get

10
D(HF), = DH(;)DF, = (o 1)

But this says that the two matrices, DH at F(a) and DF at a multiply to give the
identity matrix! This is the definition of being inverse matrices, so we have

Theorem 8.1. IfF is an invertible multivarible function, its inverse function H has the
following derivative:

DHF(a) = (DFa)_l

Note that this theorem only tells us how to find the derivative at the point F(a): to
find it at a point p we want, we need to do some more work, and figure out which
point F sends to p.

Example 8.4. Let F(x, y) = (x3,x?y), and let H be its inverse where defined. To find
the derivative of H at (8, 4), we first find the derivative matrix of F

(%) 9,(x*)\ _(3x* o0
br= (ax(ny) ayy(xzy)) = (zxy x2>

Then, we invert this, using the formula for 2 x 2 matrix inverses
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8. Zooming In

_ 1 x? 0
DRy '= —————

_ (0
T 3xd \—2xy  3x?

By Theorem 8.1, this is the derivative of the inverse H at the point F(x, y). We want
to find the derivative at (8, 4), so we need to know which values of (x, y) to plug in.
That is, we need to solve for which (x, y) satisfies F(x, y) = (8,4). This is a system of

equations:
3
x 8
ren=(3) ()

The first equation tells us that x = 2, as that’s the only real number that cubes to
8. Now we can plug this into the second equation, which says 22y = 4,50y = 1.
Plugging in (2, 1) gives the result

—2.2-1 3.2°
_1(4 o0
T48\—4 12

As a review of Calculus I, try this out for a function of a single variable yourself:

- 1 2 0
DHga) = (DFe1)™" = o= ( )

Exercise 8.5. Consider the function f(x) = arccos(x) what is its derivative at x = %?

8.3.3. DiFerenTIATING LINEAR MAPS

We won’t actually have that many opportunities during the course where we will
need to find the explicit derivatives of an inverse function as we did above. But during
the proof of Theorem 8.1, we noticed an interesting fact: the derivative of many
maps we have calculated depends on which point (x, y) we were differentiating them
at. But not the map I(x,y) = (x,y): its’ derivative was a constant! If you look
at our computation you’ll notice this can certainly be generalized: for instance the
derivative of f(x,y) = (2x + y,x — y) is a constant matrix for the same reason.

Proposition 8.3 (Derivative of a Linear Map). If¢ is a linear map, then D¢ is constant,
and equal to ¢.

Exercise 8.6. Prove Proposition 8.3.
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8.3. Linearizing Multivariable Functions

While the symbolic proof of this is relatively straightforward, its good to pause for a
minute and contemplate what it means. The derivative at a point is supposed to be
the best linear approximation to the function at that point. But what happens if the
function is already linear? Well - then the best linear approximation at that point is
itself! And this is true at every point - so the derivative is the same as the map at
every point!

In symbols, if M is a matrix and our linear function is f(p) = Mp, then the derivative
is Df, = M. We ar already very familiar with this from single-variable calculus,
although perhaps we did not think through the meaning carefully at the time. After
all, what is the derivative of the linear function y = mx? Its the constant y = m:
which is just saying that infinitesimally near every x, the function y = mx is scaling
things up by a factor of m.

Can we characterize which maps have this property? If ¢ = (¢;(x, y), ¢o(x, y)), when
is it the case that D¢, is a constant matrix?

Exercise 8.7 (When the derivative is constant). Prove that a function ¢ : R*> — R?
has a constant derivative if and only if the function is affine: that is, a linear map plus
constants.
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9. ZOOMING Our

9.1. ONe VARIABLE INTEGRATION

The quintessential ‘zoom out’ technique in mathematics is integration. It allows us
to add up, or integrate together a continuum of infinitesimally small changes into a
single finite change. While its definition is in terms of a limit (a Riemann sum, as we
reviewed in the chapter on the Fundamental Strategy) the true power of calculus is
that we do not need to compute this limit, but instead can antidifferentiate!

Remark 9.1. In calculus classes we often write integration over an interval [a, b] by

b
putting the bounds on the top and bottom of the integration sign, like [,. You are
welcome to continue using this notation, however I will sometimes opt to put the en-
tire interval in the subscript as f[ op] This fits better with notation for double integrals

like [[; and other generalizations, where the domain usually appears as a subscript.
Theorem 9.1 (The Fundamental Theorem of Calculus). Let f be a function defined

on [a,b], and F be an antiderivative of f - that is, a function such that F'(x) = f(x).
Then we may integrate f using this antiderivative:

j F(dx = F(b) — F(a)
[ab]

Because of this, we will use the indefinite integral | fdx as a notation for the collection
of antiderivatives of f. In this class we’ll assume familiarity with the 1-dimensional
integral as seen in a Calculus I and II course. That means, we’ll be free to use antidif-
ferentiation, u-substitution, integration by parts, etc where helpful.

Exercise 9.1. Compute the following integrals, as a refresher of your calculus skills:

dx

J sin(2q — 3)dq J o

J yzey3dy J t2edt

Besides calculation, theoretical properties of the integral will also be useful in helping
us prove things. Two of fundamental properties of the integral are below.
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9. Zooming Out

Proposition 9.1 (Subdividing Intervals). If f is an integrable function on the interval
[a,b] and c is some point inside the interval (that is,a < ¢ < b), then

J fdx = J fdx + fdx
[a,b] [ac] [e,b]

When we interpret the integral as area, this theorem is is one of the greek area axioms
- but is now not an assumption but rather something we can prove! There’s one other
property of the integral that is rather straightforward from its interpretation as area:
an integral of a function that has some positive area, but no negative area to cancel
it out must be positive!

Proposition 9.2 (Integrating Positive Functions). Let f be a continuous function, and
[a,b] an interval.

« If f(x) > 0 for all x, then Lf f(x)dx > 0.
« If f(x) > 0 for all x, then fab f(x)dx > 0.

As a consequence of this, if we have a continuous function f which is nonnegative
on an interval, and we know to be positive at some point, then we know the integral
of that function must be positive. This will prove useful to us, so we’ll separate it off
as a corollary:

Corollary 9.1. If f is continuous and nonnegative on [a,b], and f is nonzero at some

point, then
b

L f(x)dx >0

Proof. Say f is nonnegative on an interval [a, b], and is nonzero (so, necessarily pos-
itive) at some point ¢. Then since f is continuous there is some small interval [/, r]
around ¢ where f is positive, and we can break our original interval into three pieces:

[a,b] = [a,l]u [l r] u[r,b]

By Proposition 9.1, we can break the integral over [a, b] into a sum of integrals over
each of these three intervals:

fdx = J fdx + fdx + J' fdx
[ab] [al]

[Lr] [r.b]

The first and last of these are nonnegative by Proposition 9.2, since f is nonnegative
on the whole interval. But the middle one is strictly positive as f is positive on the
entire interval [[, r]. Thus the overall integral is a sum of a positive number and two
others which are either positive or zero: the result is positive! And hence,

J’ fdx >0
[a.b]
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9.2. Multi-Variable integration
9.2. MULTI~VARIABLE INTEGRATION

If integrals are a means of ‘zooming out’ along a line, how do we zoom out in the
plane? We need a higher dimensional analog of the integral, a double integral

Definition 9.1 (Double Integral Riemann Sum).

Are we going to need a whole new theory of calculus for this? Two dimensional Rie-
mann sums, two dimensional integrals, and a two dimensional fundamental theorem?
Happily no! It turns out much of two-dimensional integration can be summed up by
saying “do one dimensional integration, but twice”.

Proposition 9.3 (Fubini’s Theorem). An integral over the plane can be computed as
two one dimensional integrals, one for the x variable and one for the y:

LX] fpa= | (L fx, y)dy) dx

Thus, there is nothing more to the theory of double integrals than doing a single-
variable integral twice! It’s easiest to see via example:

Example 9.1 (Iterated Integrals). Let R = [0, 2]x[0, 3] be a rectangle in the x, y plane.
To compute the integral [[ xy + 1dA, we write this as an integral for x from 1 to 2
and an integral of y from 0 to 3:

J (J xy + 1dy> dx
[0,2] \J[0,3]

We now compute the inside integral (with respect to y) first:

2 P
Y 9
xy+ldy=x—+y =-x+3
[0,3] 2 =0 2
Then, we integrate this with respect to x:
x=2
J 2x+3dx:2x2+3x =15

[0.2] 2 4 x=0

Its even possible to have the bounds of the first integral contain the variables of the
second integral:
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9. Zooming Out

Example 9.2. Compute the iterated integral below:

1 x
J' J x(2y + 1)dydx
0 Jx-3

We begin with the inner integral, which is dy, so the x is (temporarily) a constant:

2 xz

X
j x(2y + Ddy = x (5 + )
x—3

x—3

=x ((x?‘)2 + (xz)) —x ((x -3+ (x— 3))

=x> —5x% —6x

Now we’ve finished the inner integral, and we need to proceed to the next one:
1

1 N
J 10 = 5x% — 6xdx = == — Zx3 — 3x?
0 6 0

= — —3=—

2
3
?

2

=
W

Exercise 9.2 (Iterated Integrals). For practice, compute the following iterated inte-
grals.

9.3. Powver SeriEs

Besides integration, the other zoom-out type technique we saw time and again in
introductory calculus was the construction of a power series from the derivatives of
a function. Power series constructed this way are often called Taylor Series.

Remark 9.2. Named after Brook Taylor, who introduced them in 1715. However many
such series were known earlier, used in the works of Issac Newton in the 1600s, and
Madhava in the 1300s

Definition 9.2 (Power Series: Taylor’s Version). A power series is an infinite series
(o]

of the form Y,,_, a,x" for some constants a,. If f(x) is a function, the Taylor series

for f is a power series that represents the function f(x) in terms of its derivatives at

x=0:

2 3
fG) = f(0) +f’(0)x+f”(0)x? +_f”’(0)% + o

n

©  £(n)
_ Z f (O)x”
n=0
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9.3. Power Series

Example 9.3 (Power Series for ¢¥). Because the derivative of e* is itself, and =1,
every derivative of e* at x = 0 is equal to 1, and its power series is

X 1 n

!
n=0 "

One of the reasons that power series are such a powerful tool in calculus is the ability
to do math with them: we can treat them like any other function; composing them
with other functions, differentiate them and integrate them!

Example 9.4. Given that the power series for i is ). x", we can find the power

series for 1/(1 — 2x?) by substituting 2x? for x:

1 oo oo
> = Z(2x2)n — Z 4N y2n
1—2x n=0 n=0

Proposition 9.4 (Calculus With Power Series). Given a power series f(x) = Y., a,x"
we can differentiate and integrate the series term-by-term:

HOE i ay(x") = i na,x"!
n=0 n=0

dex:’ian<J'xndx):in?1xn+1

0 n=0

Example 9.5 (The power series for arctan(x)). Given the power series é =Y x",
1
14x2

we can create the power series for by substituting —x? for x:

1 - n o n n
- L) = ;0(—1) x?

n=0

is the derivative of arctan(x), we need only antidifferentiate this

. 1
Now, since 5
1+x
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9. Zooming Out

series term by term to find the Taylor series for the arctangent:

arctan(x) = J ! > dx
1+ x
= J Z(—l)nxzn dx
n=0
= Z(—l)” J- x2ndx
n=0
_ Z(_ )n x2n+1
=0 2n+1
N SN SO )
3 5 7

Exercise 9.3. Find Power series for the following functions

All of these techniques make power series a very useful tool indeed. But of course
those of you who remember Calculus 2 well know that we have so far left out an
important and subtle piece of the story: when do power series work at all? Series
don’t always converge, and to tell when they do we have a variety of different con-
vergence tests to help us out. Happily, all the series we will come across are power
series, where checking convergence is straightforward.

Theorem 9.2 (Radius of Convergence). If f(x) = Y. a,x" is a power series, let

An+1
an

a = lim

n—oo

Then f converges by the ratio test at x if lax| < 1, or |x| < i

Remark 9.3. Warning: not all functions have power series, and those that do are called
analytic. Happily all functions we will encounter in this course are analytic, so we
can push this concern to the back of our minds

This value R = = is called the radius of convergence. Many of the series that will be

of use to us in this class (sine, cosine, and their hyperbolic counterparts) converge on
the entire real line, and we will not have to worry about such things.
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10. FOUNDATIONS

Definition 10.1 (Points of E2). The points of the Euclidean plane are pairs p = (x, y)
of real numbers: that is
E? ={(x.y) | x.y eR} =R’

T,E?
Oc
Tb|E2 Ob .e
T E?
TE
)
%9 T,E o y

o

T E? .

Figure 10.1.: The Plane is built out of the points of R?, together with a tangent space
at each point.

We use the notation E? for the geometry even though the underlying point set is
just the plane R? This is because ordered pairs of real numbers can represent many
different things (see ?@sec-maps) and we wish to make it clear here that right now
we mean their original usage, to describe the geometry of Euclid.

Definition 10.2 (Vectors of E2). At each point p of the Euclidean plane, the set of
tangent vectors is another copy of R?.

T,E? = {(vi,w) | v € R} = R?

Vectors are just pairs of real numbers as we are used to, but we do need to be careful
about keeping track of where they are based. Hence, we will often write a subscript
on a vector to denote where it lives: (1, 2)(; 5) is the vector (1, 2) based at (1,5) € E?,
whereas (1, 2)(_2,3) is the vector with teh same coordinates, but based at (-2, 3).

The origin is the point with coordinates (0, 0) in the plane. Because these zeroes will
make some calculations easier, we will often find ourselves doing things at the origin,
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10. Foundations

and so its useful to have a shorthand notation. We will write O = (0, 0) for this point,
and denote vectors based at O with the subscript v,, consistent with the above.

Now we have a precise definition of what the Euclidean plane is made out of (points)
and its infinitesimal pieces ( vectors), so we can precisely define things like curves
and their tangents.

y(®)

Figure 10.2.: A curve is a function from an interval in R into the Plane.

Definition 10.3 (Curves). A curve in the Euclidean plane is a function y : I — E?
for I an interval in the real line (or possibly all of R). The tangent to y(¢) = (x(t), y(t))
at time £, is its coordinate-wise derivative

v’ (t9) = (x"(to), ¥’ (10)) € Tyr,)E?
A curve is regular if its derivative is never equal to the zero vector for ant ¢ € 1.

But to make real progress, we need the tools to be able to measure length.

10.1. LenagTH oF CURVES

Our new formulation of geometry puts all curves on an equal footing - an allows us to
measure their lengths using the ideas of calculus. This was the dream of Archimedes,
realized only nearly two millennia after his death.

Idea: infinitesimally, geometry looks like what was studied by the greeks, as if you
zoom in on any curve it appears as a line. To impose this fact on our new geometry
we will measure infinitesimal distances via the pythagorean theorem. This will be our
only geometric axiom - from this alone (together with the tools of calculus) we will
rebuild all of geometry.
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10.1. Length of Curves

&2

2
S

a

Figure 10.3.: The fundamental axiom of the plane - the Pythagorean Theorem is true
infinitesimally, in each tangent space.

Definition 10.4 (Infinitesimal Length in E2). If v is a tangent vector based at p € E?
then its infinitesimal length is given by the pythagorean theorem on the tangent space

2
T,E2.
[v] = \/vf + v22

To measure a curve we take inspiration from Archimedes’ measurement of the circle
and approximate it with small line segments. A curve is called rectifiable if these
approximate lengths converge as their number tends to infinity. It’s a consequence
of calculus that regular curves are rectifiable.

Figure 10.4.: The spirit of Archimedes: we can figure out how to define the length of

a curve by thinking about approximations to it.

Then we define the length of real curves by zooming out (integrating) their zoomed-in

99



10. Foundations

(differential) lengths. Unlike in Euclid’s formulation, now all curves are on an equal
footing: all lengths are determined by infinitesimal integration!

Definition 10.5 (Length in E?). If y is a curve which is differentiable, then we can
measure the length of y(¢) from ¢t = a to t = b by integrating the infinitesimal lengths
of its tangent vectors:

b
length(y) = j Iy (Olde

tength = 170 ar
[a,b]

y(®)
y(fe € TR

length = J dt
[a,b]

e € TR dt dt dt dt dt dt dt
C=0C=DC=0C= =0 ==

M M
t a b

Figure 10.5.: The derivative y’(¢) is a linear map taking an infinitesimal vector at ¢
to an infinitesimal piece of arc at y(¢). Integrating the lengths of these
infinitesimal vectors is how we define the length of a curve.

Its helpful to write this definition out in full: if y(t) = (x(t),y(t)) then y’'(t) =
(x'(£),y"(®)) and so ly’ ()] = \x"(£)* + y’()*. Thus

b

length(y) = J X @2+ y (0)dt

a

Such integrals can be difficult to do in practice because of that nasty square root that
shows up in their definition. And when they are possible, these often need several
calculus tricks to succeed:

Exercise 10.1 (The Length of a Parabola). Find the length of the parabola y = x?
between from x = 0 to x = a, following the steps below.

« Parameterize the curve as c(t) = (t,t%), show the arclength integral is L(a) =

j[o’a] V1 + 4t2
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10.1. Length of Curves

Perform the trigonometric substitution x = %tan@ to convert this to some

multiple of the integral of sec3(6).

« Let I = [ sec’(0)d6 and do integration by parts with u = sec § and dv = sec? .

« After parts, use the trigonometric identity tan? = sec?6 — 1 in the resulting
integral to get another copy of I = [ sec® 0d to appear.

« Get both copies of I to the same side of the equation and solve for it! To check
your work at this stage, you should have found that

J sec® 0do = % secOtanf + %ln |sec 8 + tan 0]

Relate this back to your original integral, and undo the substitution x = % tan 6:
can you use some trigonometry to figure out what sec 6 is?
Finally, you have the antiderivative in terms of x! Now evaluate from 0 to a.

Our main use isn’t to compute the lengths of a bunch of random curves. Instead, its
more theoretical - the integral gives a precise definition for the length of any differen-
tiable curve, and a simple definition at that! This will be extremely useful in building
geometry back from our small foundations.

10.1.1. PARAMETERIZATION INVARIANCE

All seems well and good with this definition, but the mathematician in us should be
a little worried: we defined the length of a curve in terms of a parameterization, but
the curve itself doesn’t care how we parameterize it!

To get a sense of this its easiest to look at an explicit example: below are four different
curves which all trace out the same set of points in the plane: the segment of the x
axis between 0 and 4.

a(t) = (t,0) t €0,4]
B@) = (2t,0) t €0,2]
y(t) = (t%,0) te[0,2]

Because these all describe the same set of points, we of course want them to have the
same length! But our definition of the length function involves integrating infinites-
imal arclengths (derivatives), and these curves don’t all have the same derivative!
Thus, to really make sure our definition makes sense, we need to check that it doesn’t
matter which parameterization we use, we will always get the same length.

Exercise 10.2. Check these three parameterizations of the segment of the x-axis
from 0 to 4 all have the same length.
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10. Foundations

Two curves are said to have the same image if the set of points they trace out in
the plane are the same. So, all three of the curves above have the same image, and
the same length. This requires a bit more calculus to check in general, but remains
true.

B(s) = y(0)

B\
® M. Y

Figure 10.6.: Two curves f and y with the same image.

Theorem 10.1 (Length & Parameterization Invariance). If f and y are two curves
with the same image, then

length(f) = length(y)

Proof. Let B(s): [a,b] — E? and y(t): [c,d] — E? be two curves with the same
image. That means they trace out the same set of points in the plane, so for every
value of the parameter ¢ for y there is some value of s for f where f(s) = y(t). Write
s(t) for the function that does this - chooses the matching s parameter for each ¢.

p(s) = y() o

= s(?)

(0)=2]

Figure 10.7.: The function s(t) which takes the ¢t parameter for the curve y, and returns
the s parameter for the curve f which maps to the same point in E2.

We can use this to wite the curve y *in terms of f, as y(¢t) = f(s(t)). We now calculate
the length of y using the definition:
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10.1. Length of Curves

length(y) = j Iy’ ()ldt
[e.d]

C,

- j 1B(s()’ ldt
[c.d]

_ J 17 (s(t))s” (1)t
[e.d]

Where we used the chain rule in the last step to differentiate the composition. Now,
B’ is a vector, but s(t) was a scalar function so s’(t) is a scalar, and we can pull it out
of the norm, and do a u-substitution! Picking up from where we left off,

- j 18 (so)ls” (1)
[ed]

18 (s)lds

J’[S(C),S(d)]

- j 15 ()\ds
[a,b]

= length(f)

O

::f#trem-curves} T here are some things we need to be careful on here: the curves f§
and y are regular - their derivatives are never zero - which implies that they trace
the curve from start to finish without stopping or doubling back. This, together with
the fact that the curves are traced in the same direction implies that s’(¢) is always
positive, which justifies the use of u-substitution. ::
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11. ISOMETRIES

Besides measuring distance, one of the other most fundamental notions to geometry
is that of an isometry, or a rigid motion of space. This comes from greek meaning
same-measure, as an isometry is a function that does not change lengths.

Definition 11.1 (Isometries in E?). An isometry of E? is a function ¢ : E? — EZ
which preserves all infinitesimal lengths of E2.

What does it mean to preserve infinitesimal lengths? If v € Tp]E2 is a vector (an
infinitesimal segment of a curve), then while ¢ takes p to a new point ¢(p), infinites-
imally it acts as a linear transformation from TPEZ to T, (p)EZ. That infinitesimal lin-
ear transformation is the derivative matrix D¢p, which takes the original vector v to
D¢,(v). What we are interested in is whether or not D¢,, changed the length of v.

o )
p
500 .) ~°
p.}' ,
v TypE Ivll = IDg,W|

Figure 11.1.: An isometry does not change the length of any infinitesimal vector.

Definition 11.2. A function ¢ : E?> — E? preserves infinitesimal lengths if for every
peE?andevery v e Tp]Ez, we have

vl = I1Dg, (V)

Using this condition, one can show with some calculus that every isometry is actually
an invertible function: that means, if ¢ is an isometry there is a function ¢! which
undoes the action of ¢. We will not prove this theorem here (as it is purely a result of
advanced calculus, and doesn’t help us learn geometry). If you like, you can think of this
as an extra condition we are assuming* about isometries in this course.
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11. Isometries
Theorem 11.1 (Isometries are Invertible Functions).

Just as one can apply an isometry to points, one can apply it to an entire curve by
composition: if y is a curve, the curve ¢ o y can be thought of as drawing y, and then
performing whatever action ¢ specifies.

Theorem 11.2 (Isometries Preserve Lengths of Curves). Let¢ : E?> — E? be an isom-
etry, andy : I — E? a curve. Then

length(y) = length(¢ o y)

Proof. Let ¢ be an isometry, and y : [a,b] — E? be a curve. Then we know the length
of y itself is defined as length(y) = .[[a,b] ly’ (®)|dt, and we wish to compare this with
the length of g o y

length(¢ +y) = j[ J@eryola

a,
To compute this integral we need to first differentiate ¢ o y using the chain rule:

(poy)'(t) = Ddyyy’ ()

Where here recall that D¢, ;) is a matrix - the linear transformation recording the
infinitesimal behavior of ¢ at a point - and y’(¢) is a tangent vector - an infinitesimal
piece of arc. Since we have assumed that ¢ is an isometry, it preserves infinitesimal
lengths by definition so

IDgyyy” O = Iy’ @I

Using this, we can simplify our integral:

length(¢ « y) = j e yY (Dldt

[a,b]
= D "()|dt
j[ 1D @)
j ot

[a,b]

= length(y)

O

In fact, the converse of this is true as well: if a differentiable function preserves the
lengths of all curves, then it preserves infinitesimal lengths, and is an isometry.
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11.1. Translations & Some Rotations

11.1. TrRANSLATIONS & SomMe ROTATIONS

We will go more in-depth in our discussion of isometries later on, but for now it’s
good practice with the definition to find a couple examples that we can use.

Theorem 11.3 (Translations are Isometries). Ifv = (a,b) is a fixed vector, a transla-
tion by v of E? is given by the function T(p) = p + v, or, in coordinates,

T(x,y)=(x+a,y+b)

. This is an isometry of E2.

¢ — o
e

Figure 11.2.: A translation of the plane does not change the coordinates of any in-
finitesimal vectors: thus it does not change their lengths. Translations
are isometries.

Proof. Here we need to compute the derivative of T: Since T(x, y) = (x +a,y +b) we
get the matrix

DT

T 0Ty
0T, 9T
(ax(x +a) 9,(x+ a))
Ay +b) a,(y+0b)

()

This is the identity matrix which means it does nothing to vectors: if v = (v;,vy) is
any vector based at p € E? then
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1 0\ /v v
o105 1)()- ()

Thus, since DT did not change anything at all about v it did not change its length and
so T is an isometry.

IDT, (W) = vl
O

A particularly nice collection of functions to work with are the linear maps E?> —
E2. One of the nicest properties of these they are easy to differentiate: recall that
if A is a matrix representing the linear map ¢(v) = Av then D$ = A is the same
matrix! So, if we are looking for linear isometries we can save ourselves the work of
differentiation.

Example 11.1. The following linear map is an isometry of E2
0 —-1\(x
sx=( 7))

D) = (=vy,v1)

- (2)
¢ Ve (Vlv VZ)
o H
o) ()

Figure 11.3.: This linear map affects both points and tangent vectors, but it does not
change the length of any tangent vector. Thus, it is an isometry (this is
a rotation by 90 degrees)

Proof. We check that this preserves all infinitesimal lengths. Denote by A the matrix
A =(97), then ¢ is the linear map ¢(x) = Ax, so its derivative is given by the same
linear map, D¢, (v) = Av at every point p.

Thus, to see that ¢ is an isometry, all we need to do is check whether or not the length
of Av is the same as the length of v for an arbitrary vector v = (v{, v,).

108



11.1. Translations & Some Rotations

lAv] = [(=vz, v)l

= (%)% + (v)?

As these lengths are the same, ¢ is an isometry. O

Of course, not all linear maps are isometries: its easy to cook up something that
doesn’t preserve infinitesimal lengths.

Example 11.2. The following linear map is not an isometry of E2:

= 6)
()

(©

il
(AN

Figure 11.4.: This map does not change the length of the infinitesimal vector (0, 1)
at any point, but it does change the length of (1,0). Thus it is not an
isometry.

Proof. Since ¢ is linear, D¢ is equal to the same linear map (211 0) at each point of

E2. To prove ¢ is not an isometry, all we need to do is find one vector which has its
length changed by D¢. Consider the vector v = (1, 0) based at p = O € E2. Then

D ,(v) = (f é) (é) N (5)
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11. Isometries

While v had unit length D¢, (v) has length 2, so ¢ does not preserve all infinitesimal
lengths, and therefore is not an isometry. O

What are the conditions on a linear map being an isometry? Well, if it needs to pre-
serve all infinitesimal lengths, it needs to send the unit vector (1, 0) to some other unit
vector, and same for (0, 1). Since the image of these vectors are the first and second
columns of the matrix representing them, this means that every linear isometry has
a matrix whose rows are unit vectors. Is every such matrix an isometry?

Exercise 11.1. Write down a linear map that sends both (1,0) and (0, 1) to unit vec-
tors, but is not an isometry.

However, if we choose unit vectors correctly, we do get an linear isometry! Intuitively
from our previous experience with the plane we know what to should happen, we
are looking for a rotation! The theorem below confirms that rotations about O in the
plane exist: you can fix that point, and perform an isometry that moves (1,0) to any
other unit tangent vector in TpE?.

Theorem 11.4. Let v be an arbitrary unit vector based at O in E2. Then there exists
an isometry ¢ of E? which takes fixes O and takes (1,0) tov. Such an isometry is called
a rotation about O.

Proof. Let v = (v;,v,) be a unit vector. Then the vector v* = (—v,,v,) is a rotated
copy of v by 90 degrees. From these, we can build a linear map which sends (1, 0) to

v (and also (0, 1) to v'):
wen=(2)0)

Now we check this is an isometry. Let p be an arbitrary point in E? and u = (a, b) be
an arbitrary tangent vector based at p. We need to see that |u| = [DR,u]. Since R is
a linear transformation, we know that it is its own derivative, so

DR, = (Vl _"2)
2 v
And so we can apply without much trouble to u:
DRau= (" ~2\(%) - via — wb
pH= vo v J\b]  \wa-+wb

Calculating the length is now just a matter of algebra, using the fact that v is a unit
vector so v2 + v = 1. After simplifying, we see

IDRpul = Na* +b* = [u]
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Thus the infinitesimal length of u was not changed by the transformation R, and as
p, u were arbitrary this is true for all infinitesimal lengths - R is an isometry. O

Exercise 11.2. Check the calculation that is skipped in the proof above actually
works out as claimed.

11.2. CrReATING IsOMETRIES: CONJUGATION

Some additional exercises to explore deeper the idea of isometries, and practice the
chain rule!

Exercise 11.3 (Composition of Isometries). If ¢ and ¢ are two isometries of E2, then
the composition ¢ - i/ is also an isometry.

Exercise 11.4 (Inversion of Isometries). If ¢ is an isometry of E?, then its inverse
function ¢! is also an isometry.

Together these say that the isometries of a space form a group. Being able to compose
and invert isometries is quite useful when you need to create an isometry that does
a specific task out of a limited set of pieces.

As a first example, suppose you wanted to show there is a rotation about O that takes
some unit vector v € ToE? to another unit vector w € ToE2. So far we only have one
theorem about rotations - Theorem 11.4, which tells us that we can find one taking
(1,0} to any vector. We will need to create two of these, and combine them via
composition and inversion:

Proposition 11.1. For any two unit vectors v,w € ToE?, there is a Euclidean isometry
which fixes O and sends v tow.

Proof. Let ¢, be a rotation taking (1, 0) to v, and ¢,, be an rotation taking (1,0) to
w: both of these are linear, and exist by Theorem 11.4. Now, consider the inverse
function ¢, 1. This is an isometry (by Exercise 11.4) which undoes the action of ¢,,, so
it fixes O and takes v to (1, 0).
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Figure 11.5.: Rotations taking (1, 0)¢ to v, and w, respectively.

Now consider the composition ¢, o ¢, *. This is a composition of isometries, and
hence an isometry (Exercise 32.27). It fixes O since ¢, ! does and @,, does, so all we
need to see is that it takes v to w. So, just follow the vector v! We first feed it into
¢!, which takes it to (1, 0), and then we feed the result into ¢,,, which takes (1, 0) to
w!

Figure 11.6.: The combination ¢,,¢, ! takes v, to w, directly. On the left, we see its
motion step by step, passing through the intermediate vector (1,0),. On
the right, we see the net result.

If you wanted to write this in symbols instead of pictures or words, it looks like this:

D(¢y, * ¢, Do) = (D, )o(Dy o)
= (D)o ({1,0))

=w
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Next, we will look at trying to build an isometry that rotates around an arbitrary point
pin the plane. We already found the isometries that rotate around 0: they are the nice
linear maps of Theorem 11.4. But tracking down isometries that rotate around other
points of the plane sounds more difficult. First of all - they cannot be linear maps!
A linear map fixes the point O, but a rotation about the point p fixes....p! However,
combining a translation taking p to zero with a rotation about zero in the right way,
we can succeed!

Theorem 11.5. Let p be a point in the Euclidean plane andv = (v;,v,) a tangent vector
based at p. Then there is an isometry of E? which fixes p, and takes (1,0) tov.

Proof. Let T be the translation T(q) = g+ p: this is an isometry by Theorem 11.3, and
it takes O to p. Also, let R be the rotation about O which takes the vector (1, 0) based
at O to the vector vy = (v;,v,) based at O. (Recall v, means a vector with the same
coordinates as v = vy € TPIEZ, but based at 0 instead of p.

1 R . I Yo
o
o

Figure 11.7.: We require a rotation about O and a translation from O to p in order to
build a rotation about p.

From these, we construct the map ¢ = T o Ro T™!. This is an isometry because its a
composition of isometries and their inverses (Exercise 32.27,Exercise 11.4), so we just
need to check that it does what is claimed.

This fixes the point p: since T takes O to p, its inverse takes p to O. Then R fixes O,
and finally, T takes O back to p:

$(p) = TRT(p)
=TR(O)
=T(0)
=p
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Next, we nee to check it does what we claim to the tangent vectors. To do so, we
need to take the derivative of ¢ at p, and see that it takes (1,0), to v,. In symbols, we
want to show D@, ((1,0),) = v,.

Figure 11.8.: The composition TRT! fixes p, and takes (1, 0>p to v,. On the left, we
see the step-by-step action of this combination: starting from (1,0}, we
translate to O, rotate to v,, and then translate back to Vp- The right shows
the net result: just a rotation at p.

We know by the proof of Theorem 11.3 that the derivative of T is the identity matrix.
Thus, the derivative of T~! is also the identity matrix (we differentiate an inverse by
using the inverse of the derivative matrix, by Theorem 8.1). So applying DT~! at p
to (1,0), leaves it unchanged, except it moves the basepoint to O (since T7(p) = 0).

Next, we apply R. This fixes O, and by Theorem 11.4 we know DR, takes (1, 0), to
v,. Finally, we apply T: since its derivative is the identity matrix it does not affect the
coordinates of any vector just the basepoint, so it takes v, to v.

In symbols:

D¢,((1,0),) = D(TRT™),,({1,0),)
= DT,DR,DT,'((1,0),)
= DT, DR,((1,0),)
= DT (v,)
= v,
O

Exercise 11.5. Can you modify the argument of Theorem 11.5 above to prove that
in fact for any point p and any two unit tangent vectors v, w,, in TPIEZ, there is an
isometry which fixes p and takes v, to w)?

Hint: look at the proof of Proposition 11.1 for inspiration.
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This operation - move, then do your next trick, then undo the original movement is an
extremely common manuever in mathematics to build new things from known things.
Its essential not only in geometry, but also at the heart of abstract algebra and other
fields, and is called conjugation.

Definition 11.3 (Conjugation). If a and b are two mathematical objects that can be
multiplied or composed, then the object

bab~!

is called the conjugate of a by b.

Often, we will interpret this as doing the action determined by a, at the location deter-
mined by b. Thus we can describe the previous theorem much more succinctly with
our new terminology: to rotate about the point p, we conjugate a rotation about 0 by
a translation from 0 to p. Or - we perform a rotation at the location we translate to.

11.3. HoMoGENITY AND IsOTROPY

The fundamental property of Euclidean geometry that allowed the greeks and an-
cients to make so much progress was the incredible amount of symmetry that the
plane has. It doesn’t matter where you draw a triangle, a circle or another figure: all
locations of the plane look and act the same. This concept that space looks the same at
every point and also behaves the same in every direction is fundamental to modern
geometry

Definition 11.4 (Homogeneous Space). A space is homogeneous if for every pair of
points in the space, there is an isometry taking one to the other.

Definition 11.5 (Isotropic Space). A space is isotropic if for any point p and any two
directions leaving p, there is a rotation of the space taking one direction to the other.

The existence of translations shows us that the Euclidean plane is homogeneous,
while the ability to rotate about any point shows us that it is isotropic.

Theorem 11.6 (Euclidean space is Homogeneous and Isotropic).

In practice, we will use the homogenity and isotropy of Euclidean space to simplify
a lot of arguments. Once we prove something is true at one location (like the origin,
where calculation is simple) we will immediately be able to deduce that the analogous
theorem is true at all other points of the plane! To make such arguments, its useful
to repackage homogenity and isotropy into a useful tool.
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11. Isometries

Proposition 11.2 (Moving from p to q.). Given any two pairs p, v, and q, wy of points
p.q in Euclidean space and unit tangent vectors v, € TPEZ, w, € TqEz based at them,
there exists an isometry taking v, to wy.

\CI
J

Figure 11.9.: The homogenity and isotropy of E? lets us take any unit vector at any
point, to any other via an isometry.

Exercise 11.6. Prove Proposition 11.2 above.

Hint: use Theorem 11.3 to construct isometries taking O to both p and q, and Proposi-
tion 11.1 to build the right sort of rotation around O that you need. Compose these (or
their inverses) to get a map taking v, to v,, then to w,, and finally to w,,.

1 1.4. SMILARITIES

Isometries - maps that preserve all infinitesimal lengths - are very special among the
collection of all possible maps of the plane. Most mappings F : E? — E? don’t do
anything understandable to lengths!

However, there is one important intermediate ground of maps: they don’t preserve
distances - but they don’t change them arbitrarily either. We will call a map a simi-
larity if it scales all infinitesimal lengths by the same factor:

Definition 11.6. An map o : E?> — E? is called a similarity if there is a positive real
number k such that

|Da, (V)] = kllv]

for all tangent vectors v. This constant k is called the scaling factor or dilation of the
map o.
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A\v

Figure 11.10.: A similarity uniformly scales all tangent vectors.

Perhaps the simplest similarities of the plane are given by vector scalar multiplication:
just take the map o(x, y) = (kx, ky).

Example 11.3. The map o(x, y) = (2x, 2y) is a similarity with scaling factor 2. Com-
puting its derivative we see
2 0
Do = ( 0 2)

and so for any point p and any vector v € T, applying Do), just multiplies all its
coordinates by 2. Thus if v = (v, w),,

|Day (W) = [2vi, 2vp)] = 20{vr. vo)l = 2|v]

Since this is the same constant for every vector v, this implies that o is a similarity!K

Because similarities do exactly the same thing to every tangent vector in the plane,
we can compute exactly how they scale the lengths of curves.

Proposition 11.3 (Similarities Scale Lengths). Lety : [a,b] — E? be a curve, and o
a similarity with scaling factor k. Then

length(o ° y) = klength(y)
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Proof. We compute the length of ¢ ° y via an integral:

b
bng&mooy>=_[|Kaoyyanut
ab
=j|w@@rmwt
ab
=Luvww

b
=kjnrmwt
a
= klength(y)

Where in the middle we used the fact that ¢ was a similarity so |[Do(v)| = k|v| for
any vector v. O

1Do, )| = KlIv|l

Figure 11.11.: Since all infinitesimal lengths are scaled up, so is their integral. Thus
similarities linearly expand the length of all curves by their scaling con-
stant.

Just like for isometries, we have as a theorem of calculus that this condition actually
implies that our map is invertible! We will not prove this theorem here, and if you
like you can instead treat this as an extra condition we require of a function to be a
similarity.

Theorem 11.7 (Every Similarity is Invertible).

For isometries, you proved the inverse of an isometry is an isometry (Exercise 11.4)
by showing that if ¢ didn’t change the length of any vectors, than neither could ¢~!.
Here we investigate the analogous question for similarities.
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Proposition 11.4. Ifo is a similarity with scaling factork, then o~ is also a similarity,
this time with scaling factor 1/k.

Proof. Let o be such a similarity, and ¢! be its inverse. Then by definition we know
their composition is the identity function $

coo l=1id

The identity function (x, y) — (x, y) has the identity matrix as its derivative. On the
other side, we can use the multivariable chain rule to get

D(O'O'_I)P = DO'O'_I(p)DGEI =1

Now start with any vector v based at a point p. We first feed this vector into Do, L
which returns a new vector - let’s call it w. We don’t know anything about w at the
moment, but we do know that when we feed it into Do, its length will multiply by k,
since o is a similarity. But we know more than this! The end result must be literally
the vector v: since we started with v and the composition of Do with Do is the
identity matrix.

Thus we know that whatever w is, when you multiply its length by k you get the
length of v, so
klwl = v

But - remember w is just the vector Dpcr_l(v): so we’ve found
IDoy ' @)l = Il
P ok

And this holds for all vectors v - so the inverse is indeed a similarity, and the scaling
constant is 1/k. 0

More generally, we can use the same sort of reasoning to understand compositions
of any similarities.

Exercise 11.7. Prove that the composition of a similarity and isometry is another
similarity, with the same scaling factor.

Exercise 11.8. If o and ¢ are two similarities with scaling constants ¢ and k respec-
tively, the composition ¢ »  is also a similarity, with scaling constant ck.

From this, we can build many more similarities from the simple ones we know.

Exercise 11.9. The similarities (x,y) +— (kx,ky) fix O in the plane: can you use
translations to build a similarity with scaling constant k which instead fixes the point

p = (a,b)?
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12. LINES

Laying down the foundations at a deeper level than the Greeks, we have some work
to do before we can hope to recover the axioms of Euclid. Indeed - no where in our
foundations does the term line even appear: we are in the awkward position of being
able to work with any curve we like, but we do not know which among them is a
straight line!

To find the lines among the sea of curves, we need a good and precise definition.
Definitions single out an important property characterizing the object being defined,
and for that definition to be good, we would like that condition to be checkable within
the framework we are building. So - Euclid’s definition of a line as a breadthless length
is not going to do much for us here.

However, looking to history, we find several good candidate definitions among the
properties of lines the ancients took as essential.

Definition 12.1 (Essential Properties of Lines).

« Archimedes used as an axiom of length that the line segment between two
points is the shortest among all curves connecting them. This could be turned
upside down and directly used as the defining feature of lines: whichever curve
is shortest, we call a line.

« As a followup to the infamously unhelpful breadthless length Euclid states the
important feature of a line being that the points lie evenly with themselves. This
also requires a bit of translation, but if we can define what it means for a curve
to turn, we could then specify straight lines as curves that do not turn.

« The term line also shows up in phrases such as line of symmetry - for instance
in discussing that the human form is left-right-symmetric. The fact that re-
flections fix a line is foundational to geometric arts like Origami, which is what
allows the use of Euclidean geometry to describe the collection of creases made:
they arise as lines of symmetry, so they are the lines of Euclid!

In fact all three of these things can be made into precise statements in our new ge-
ometry, and we can compute exactly what sort of curves satisfy each of them. The
main purpose of this section is to do so, and to show that all three of them end up
specifying exactly the same class of curves! This is one reason that lines are so impor-
tant to geometry: they are the single objects sharing all three of these very natural
properties!
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12.1. SHORTEST

We start first with the insight of archimedes, and attempt to make precise the notion
of shortest curve between two points. In doing so, we will actually first define line
segment, and then use this to define lines more generally.

Definition 12.2 (Line Segment). Given two points p,q € E?, a curve y starting at p
and ending at q is called a line segment if it is distance minimizing. That is, for all
other curves « from p to g, we have

length(y) < length(a)

Figure 12.1.: Defining a line segment y as the shortest curve joining its endpoints.

This definition seems very powerful: if you know something is a line segment you
know a lot about it: you know how its length relates to the length of every single
other curve!

Theorem 12.1 (Segments of x-axis are Minimizers). Finite segments of the x axis, that
is, curves of the form

Y@ =(@0) a<t<b

are length minimizers.

Proof. First, we compute the length of the x-axis between 0 and L by integrating the
infinitesimal lengths of y:

Yy =(0) = Yy =010 = [y’®l =1

L

L
length(y) = j Iy Olde = L dr=L

0
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This of course is unsurprising! But its good to know explicitly that we have found a
curve of length exactly L. Now, let a(t) = (x(¢), y(¢)) be any arbitrary (regular)curve
connecting (0,0) to (L, 0).

Our goal is now to show that length(ar) > L, as this would mean no curve can have a
length less than L, and our segment of the x-axis above is indeed the shortest curve!
The difficulty in doing so is that we know wvery little about @, and hence very little
about its coordinate functions x(¢), y(¢). If « is defined on the interval [a, b] knowing
that it starts and ends at (0, 0) and (L, 0) implies

x(a)=0 x(b)=1L
y@=0 yb)=0

but this is essentially all we know. Nonetheless, let’s push onwards and see what we
can learn about length(«) by writing out its definition.

b b

le’ (ldt = j (O + (0P dt

a

length(a) = J

a

Now we do some estimation: we know that whatever y is, y’(¢)? is nonnegative -
because its squared, after all! So

YER20 = xOF +y O > ¥ (1)

We can then take the square root of both sides of this equation (which preserves

inequalities) to get
X (12 +y' () 2 Nx' () = ¢’ 2 (1)

Igoring all the middle terms in this string of inequalities, (and recalling the left hand
side is the norm of «”) we see that

le’@®)] > x'(t) forallt

Thus, as functions of t, we see that the curve x” lies below the curve |a’|: since the
area under the lower curve must be less than or equal to the upper, this inequality is
still preserved after we integrate.

b b

L o (Ol dt > j () dt

But now we have really made some progress: on the right side here we are integrating
a derivative, so we can use the fundamental theorem of calculus! The antiderivative
of x’(t) is just x(¢) of course, so we evaluate at the endpoints:
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b b
J x't)dt = x(t)] =x(b)—x(a)=L-0=1L

a

And with that, we’ve done it! The integral on the left side was precisely the length of
a, so
length(ar) > L

O

Now that we have a firm understanding of segments, how can we properly bootstrap
this idea to a definition of lines? A line itself has no endpoints, and so is not a distance
minimizing curve! However, it has the property that if you cut out any segment from
it, that segment is distance minimizing. To say this formally, we need a word for “cut
out a segment of a curve”

Definition 12.3 (Finite Segment of a Curve). Given a curve y: R — EZ, a finite
segment of y is the restriction of y to some finite interval [a,b] C R.

a b

Figure 12.2.: A segment of a curve is a restriction of that curve to a sub-interval of its
domain.

This makes the definition for a line completely precise:

Definition 12.4 (Line). A curve y is a line if all of its finite segments are line seg-
ments.

This sounds pretty useless until we unpack it: since line segments are distance mini-
mizers, this is saying that to be a line, a curve must have the property that it is distance
minimizing between any two points it passes through! A strong condition indeed.

However, given the work we did above on segments of the x axis, we can now imme-
diately apply this to the entire axis itself.
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Corollary 12.1 (The x-axis is a line). Every finite segment of the x-axis is a distance
minimizing line segment, so the x-axis is a line.

Well, after all this theory we have finally managed to track down one line in the plane!
How can we find more? One option of course is to mimic the argument given here:
with trivial modifications we can similarly prove that the y axis is a line, and that
curves of the form x = a or y = b are all lines as well. But it would take a little
more work (in the form of a clever u-substitution) to apply this further: we took big
advantage of the fact that one of the coordinate derivatives was zero in our proof!

Instead, we take this as our first opportunity to use one of the most powerful ideas
in modern geometry: symmetry. We proved that isometries preserve the length of all
curves, and this has an important consequence: isometries send lines to lines!

Theorem 12.2 (Isometries Send Lines to Lines). Let y: R — E? be a line, and
¢ : E? — E? be an isometry. Then ¢ o y is also a line.

Proof. To argue that ¢ o y is a line, we need to show that all of its finite segments
are length-minimizing. So, pick some arbitrary interval [a,b] C R and look at the
restriction of our curve to that segment, which goes from ¢(y(a)) = p to #(y(b)) = q.

q

p

Figure 12.3.: A line segment y and its image under an isometry ¢.

Assume for the sake of contradiction that this is not length minimizing: then there is
some other curve a connecting p to g which is of shorter length.

e QJZS

Figure 12.4.: A mysterious curve a which is assumed to be shorter than ¢ o y.
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Now, apply the inverse function ¢~ to everything: this takes the segment ¢ o y back
to y, and takes  to a new curve ¢! o, starting and ending at the same points as the
corresponding segment of y:

p

Figure 12.5.: Applying ¢! moves a back to share endpoints with the original y, which
we know to be length-minimizing

Since isometries preserve length, we know that since @ was shorter than ¢ - y, we
must now have that ¢! o« is shorter than y! But this is impossible: we assumed that
y itself was a line, so all of its segments are length-minimizing: there are no shorter
curves!

Thus, its impossible that « exists, so ¢oy must have been the shortest segment between
p and q after all. As all segments of this curve are distance minimizers, its a line! [

This gives us an easy prescription to track down lines: we already know y(t) = (¢,0)
is a line - and if we apply any isometry at all to this, we will get another line!

Corollary 12.2 (Affine Equations are Lines). Every linear equation f(t) = (at,bt)
describes a line that passes through the origin. Every affine equation of the form

at +c
w = (bt + d)
is also a Euclidean line.

Here we concentrate on the main case where (a,b) is a unit vector. We comment
below the proof on the small change needed when it is not.

Proof. Then, the rotation ¢ = (¢ _ab) taking (1,0) € T(o0)E? to (a,b) is an isometry,
so it sends lines to lines. Applying it to the x-axis y(¢) = (¢, 0), we see

0= 2)6)= ()
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Thus, t — (at, bt) is a line! Next, we can use the fact that for fixed c, d the translation
Y(x,y) = (x + ¢,y + d) is an isometry of E2, so

Y(at,bt) = (at + ¢, bt + d)
is also a line! 0

If v = (a,b) is not a unit vector, then we can run the argument above using the unit
vector . This gives us that the curve below is a line

vl
a b
@) = t, t
¢ (\/a2+b2 \/az—i-bz )

Since we know that the length of curves does not depend on their parameterization,
we can speed up or slow down f by pre-composing it with another function, and
not change the fact that it is distance minimizing! Speeding it up by t — +/a? + b?t
gives

B (\/az + bzt) = (at, bt)
Thus ¢ — (at, bt) is a line for any a,b € R!
We saw in Theorem 12.2 that any isometry will carry a line to another line. The same
is true more generally of similarities:
Exercise 12.1 (Similarities Send Lines to Lines). Let y: R — E? be a line, and
o : E? — E? be a similarity. Prove that ¢ o y is also a line.

*Hint-replicate the proof of Theorem 12.2 as closely as possible, replacing the isome-
try ¢ with the similarity o, and keeping track of the scaling factors of o versus ¢!
(Proposition 11.4).

Using these tools, we can already start our process of rebuilding the Elements from
below!

Theorem 12.3 (Proving Euclid’s Axiom I). Given any two points p,q € E?, there is a
line segment connecting p to q.

Proof. Knowing that line segments are given by affine equations, we need just fine
an affine equation y(t) where y(0) = p and y(1) = q. Perhaps the simplest such is

y®)=p+(qg—phk
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Theorem 12.4 (Proving Euclid’s Axiom Il). Given a line segment between two points
of E2, it can be extended indefinitely in either direction.

Proof. Let p,q € E? and define the line segment y : [0,1] — E? by y(t) = p+(q— p)t
as in the previous theorem. To extend this line segment indefinitely, we need only
extend the domain from [0, 1] to an arbitrary interval [a, b] containing [0, 1].

The result is still an affine equation on a closed interval, and so still is a line segment
by Corollary 12.2. And, as [a, b] contains [0, 1] this new segment contains the original
segment from p to g, so it represents an extension of the segment. O

12.1.1. UniQueness oF LINES

Above we proved the existence of lines, and found that all affine equations describe
lines in the plane. But are these all the lines there are to be found? In fact they are
- and we can confirm this with very little extra work: we had all the ideas in place
already during the proof of Theorem 12.1.

Proposition 12.1. Segments of the x-axis are the unique distance minimizers between
their endpoints.

Proof. Let y(t) = (£,0) between t = a and ¢t = b, and a(t) = (x(¢), y(t)) be a different
curve with the same endpoints. Then since a does not just trace the x axis, we must
have y(¢) # 0 at some point. But y(a) = 0 and y(b) = 0 at the endpoints, so for y to
go from zero to nonzero, it must have nonzero derivative on some interval.

o
Y

Figure 12.6.: Proving that the line segments we already know of are the unique mini-
mizers.

But, this means that y’(t)? is strictly greater than zero on some interval, so |a’(t)] >
ly’ @I, and |’ @] — ly’(#)| > 0 on some interval inside of [a, b]. Furthermore, since
we already knew |a’| > |y’, this quantity is never negative. Thus

b

J e’ )] - Iy’ Ol dt > 0
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And, re-arranging the integral, this immediately implies

b b
length(a) = J loe’ |dt > J ly’ldt = length(y)
a a

Applying isometries to this, we can extend this result to any of the segments we
already know:

Exercise 12.2. Prove that all Euclidean lines are given by affine equations. Hint: we
already know that the affine equation y(t) = (at + b,ct + d) defines a line. Can you
show there is no curve of an equally short length, by using steps similar to the proofs
Theorem 12.2 and ?@cor-cor-affline-eqns-are-lines to reach a contradiction given
that we just proved Proposition 12.17

12.2. STRAIGHTEST

Another notion of line is “curve that doesn’t turn”. How do we make this precise?
The unit tangent vector to a curve gives its direction, so we say a curve “turns” if the
tangent changes direction.

The derivative of the tangent vector is acceleration, a “straight curve” would have
acceleration zero.

Definition 12.5 (Straight). A curve y is called straight if its tangent vector does not
change. That is, if its acceleration is zero.

Remark 12.1. You might worry what it means to say that tangent vectors are constant,
since each one of them technically lives in a different tangent space! This difficulty
will be absolutely crucial to deal with later on, when space itself is curved. But here in
E2, we can take advantage of the fact that we can make sense of the basis vectors (1, 0)
and (0, 1) in each tangent space Tp]EZ: then constant just means that the components
of the vectors are constant in time.
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Figure 12.7.: This curve is not straight: which we can measure by seeing that its tan-
gent vectors are not constant: they change in direction as we move along
the curve.

We’ve already done all of the hard work above, and we can now quickly confirm that
this alternative definition picks out exactly the same class of curves.

Theorem 12.5 (Distance Minimizers are Straight). A curvey is distance minimizing
if and only if it is straight.

Proof. This is a direct computation, now that we’ve proven that every distance mini-
mizer is given by a linear equation £(¢) = p +tv. Differentiating once leaves ¢’(t) = v,
and differentiating twice gives
0
v@t) =
=)

To prove the other direction, we now assume we start with a straight curve y, and we
wish to prove its distance minimizing. If y is straight, then y’” = 0 and integrating
twice we see that

Thus, € is straight.

y@) = (at +c,bt +d)

for some constants a, b, ¢, d. Thus, y is an affine curve, and we know affine curves are
distance minimizers (Corollary 12.2). So, we are done! [

This will turn out to be true in general: while we will have to be a little more careful
when moving onwards to other geometries, curves that are straight will coincide with
curves that minimize distance.

130



12.3. Folding

12.3. FOLDING

Finally we come to the third possible definition of line, and show that it also picks
out the same collection of curves!

Definition 12.6 (Line of Symmetry). A fixed point of an isometry ¢ : E? — E?isa
point p with ¢(p) = p.

A curve y is called a line of symmetry of E? if there exists an isometry which fixes
y(¢) for all ¢.

This captures the intuitive notion of a crease from folding paper, or reflecting across
a line: this swaps the two sides of the plane but leaves What are the fixed sets of
reflections?

Proposition 12.2 (Reflecting in the x-Axis is an Isometry). The map ¢(x,y) = (x,—y)
is an isometry of E2.

® (x,y)
(a,b)
o ¢

® (x7 _y)

Figure 12.8.: Reflection across the x axis is an isometry of E2.

Proof. First, notice that ¢ is actually a linear map, so we can write it as a matrix:

(s )0

Since ¢ is linear, its derivative is constant and also equal to ¢ at every point. Thus to
check that it is an isometry, we only need to see that it does not change the length of
any vectors.

Let v =(v;, 1), € Tp]E2 be a tangent vector based at some arbitrary point p. Then
_ 1 0 Vi) _ Vi
po=(o 5)()= (%)
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And measuring lengths with the vector norm,

IDG (] = \v2 + (=% = o7 + 2 = b

Thus, ¢ is an isometry. O

This map fixes the line of points (x, 0) as it only negates the y component.Thus, the
x axis is a line of symmetry! Similar to before, we can use isometries to prove that
every affine curve is the fixed point of some reflection.

Exercise 12.3 (Reflections in Any Line). Prove that every affine curve is a line of
symmetry. Hint: given an isometry that reflects in the x axis, can you build an isometry
that reflects in any other line? Consider moving the line to the x axis, reflecting, and
then moving back.

The converse is also true: that every line of symmetry is an affine equation: so this
characterization of lines exactly agrees with the two previous. To prove this, we
will need a bit better understanding of the isometries of Euclidean space, and so will
postpone until that chapter,

12.4. DisTANCE

So far in our development of Euclidean geometry, we have defined the length of a
curve, but we have not defined any notion of distance between two points. This
makes some sense, as the distance between two locations depends on how you get
from one to the other, and that’s exactly what our definition captures!

However, now that we know there is a unique shortest curve between any two points,

there’s a natural candidate for distance: the shortest possible path.

Definition 12.7 (Distance). The distance between two points p, q € E? is the length
of the shortest possible curve starting at p and ending at q.

Because of all of our hard work above, we can turn this rather abstract definition into
something concrete and practical!

Theorem 12.6 (The Euclidean Distance). Let p and q be any two points in the plane.
Then the Euclidean distance between them is given by

dist(p.q) = Ip — gl = \[(pr — a1)? + (ps — 2)?
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Figure 12.9.: Because lines are affine equations (and thus have constant derivative),
the infinitesimal pythagorean theorem scales up to the distance function.

Proof. We can write down a distance minimizing curve from p to g as an affine equa-
tion:

y®)=p+tlg—p)

This is equal to p when t = 0 and ¢ when ¢t = 1. Thus, its length is given by the
integral of y’” over [0, 1]. Computing the derivative is straightforward since y is affine:

Y @) =q—p=(q — p1,q — p2), and so the length is

dist(p, q) = length(y)

1
=j Iyl dt
0

1
= L \/(Ch = p1)? + (g — pp)?dt

1

- \/(ql —p1)? + (g2 — p2)? L dt

= \/(Ch — p1)? + (g2 — po)?

Proposition 12.3 (Distance is preserved by isometries). If p and q are any two points
in the plane and ¢ is an isometry, then

dist(¢(p), #(q)) = dist(p, q)
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d(q)

/v [P

p ¢
d(p)

Figure 12.10.: Distance is invariant under isometry since isometries send lines to lines,
and preserve the length of all curves.

Proof. First, we start with the isometry case. Given two points p, g we can construct
a line segment y from p to g (Theorem 12.3), and as this segment is the minimizer we
know its length accurately measures the distance: $dist(p, q) = length(y).

Applying ¢ we recall that isometries carry lines to lines (Theorem 12.2) to note that
¢ oy is a line segment between ¢(p) and ¢(q), and as line segments are distance
minimizers, we know

dist(¢(p), ¢(q)) = length(¢p - y)

Finally, we recall that isometries don’t change the length of curves (Theorem 11.2) to
see

length(y) = length(¢ o y)

and stringing all these equalities together gives

dist(p, ) = length(y) = length(¢ - y) = dist(¢(p), $(q))

Exercise 12.4. If p,q are any two points in the plane and o is a similarity with scaling
factor k, prove

dist(c(p), o(q)) = k dist(p. q)

Hint: follow closely the argument for isometries above, replacing the theorems relating
isometries, line segments, and lengths with the corresponding results for similarities.
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Goy a(q)
/ \O'/V
o(p)

Figure 12.11.: Distance is scaled under similarity since similarities send lines to lines,
and linearly scale the length of all curves.

It will often be useful to measure distances not just to points, but to more complicated
objects in the plane.

Remark 12.2. We are avoiding a detail here, that anyone who has seen real analysis
may be interested in. Sometimes, the minimum distance between p and a point in R
doesn’t exist, but only the infimum of such distances does. However, we will never
encounter such cases in this text.

Definition 12.8 (Distance to a Set). Let R C E? be a region in the plane. Then the

distance from a point p € E? to R is defined as the *shortest line segment connecting
p to any point of R, and is denoted dist(p, R).

Eks e

Figure 12.12.: The set of points at constant distance from a set (red region). On the
right, a collection of points and the shortest line connecting them to a
point of the set.

12.4.1. Useru COMPUTATIONS

Now that we know exactly what lines are, we can convert elementary geometric
problems - such as when they intersect - into algebraic problems, solvable via systems
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of equations. Here’s an example.

Exercise 12.5 (Intersecting Lines). Calculate the point of intersection between two
lines ax + by = c and the the diagonal line x = y. When is there no intersection?

With the ability to solve equations (since lines are given by affine equations, which are
easy to work with!) we have developed a geometric superpower. To demonstrate this,
we can use this to prove Playfair’s axiom (remember, this is equivalent to Euclid’s 5th
Postulate!)

Proposition 12.4. Given any line L in E2, and any point p € E? not lying on L, there
exists a unique line A through p which does not intersect p.

Exercise 12.6. Prove Proposition 32.1.

Hint: use isometries to help you out!

First, use an isometry to move L to the x-axis. Then, use another isometry to keep L on
the x axis, but to move p to some point along the y axis (and possibly, use a reflection to
then insure p has been moved to a point on the positive y axis, if you like!). Then, prove
that through any point on the y axis there is a unique line that does not intersect the
X-axis.

In addition to algebra, founding our new geometry on calculus makes all of these tools
also available to us. As a first example, we will use our knowledge of derivatives to
minimize the distance between a point and a line. Minimizing distance turns out to
be a pretty common thing one needs to do in applications of geometry, and while
straightforward theoretically (take the derivative, set it equal to zero), its annoying
in practice because of the square root in the distance formula. But there is a nice trick
to get around this:

Exercise 12.7 (Minimizing the Square: A Very Useful Trick!). Let f(x) be a differen-
tiable positive function of one variable, and let s(x) = f(x)? be its square. Show that
the minima of s(x) and f(x) occur at the same points, by following the steps below:

« First, assume x = a is the location of a minimum of f. What does the first
and second derivative test tell you about the values f’(a) and f’’(a)? Use this,
together with the fact that f(a) > 0 to show that x = a is also the location of a
minimum of s (using the second derivative test).

« Conversely, assume x = a is the location of a minimum of s(x). Now, you
know information about the derivatives s”(a) and s’’(a). Use this to conclude
information about f’(a) and f’’(a) to show that a is a minimum for f as well.

This tells us anytime we want to minimize a positive function, we could always
choose to find where its square is minimized instead, if that turns out to be easier.
The main question is below, where without loss of generality we have taken the point
to be the origin (as we could always slide it there via an isometry).
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Exercise 12.8 (Closest Point on Line). Let L be the line traced by the affine curve

y@) = (z: _—:_— 2), and O be the origin, as usual. Calculate dist(O, L)

Hint: use calculus to find the closest point on L to O. Can you minimize the squared
distance from y(t) to (0,0)?
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13. SHAPES

Defining the notion of lines and distance really helps in getting our new geometry
off the ground. In this relatively short chapter, we give precise definitions for fami-
lar shapes: including polygons and cirlces, but also other conic sections - parabolas,
ellipses, and hyperbolas known to the ancient Greeks.

13.1. PoLyGons
Definition 13.1 (Polygon). A polygonal chain is a sequence Ly, L, ..., L, of line
segments, where the ending vertex of L, coincides with the starting vertex of L, .

A polygon is a closed, non-intersecting polygonal chain. The interior of a polygon is
called a polygonal region.

Figure 13.1.: A polygonal chain (left) and a polygon (right). The polygonal region is
shaded red.

A triangle is a polygon with three sides, a quadrilateral is a polygon with four sides,
and so on. We will study polygons in more detail later on, especially in the curved
geometries of the sphere and hyperbolic space. But for now, we content ourselves in
getting used to the definitions by re-proving some familiar results of the greeks.
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Exercise 13.1 (Constructing an Equilateral Triangle). Beginning with the segment
[0, £] along the x-axis, construct an equilateral triangle by finding the coordinates of
a point p = (x, y) € E? which is equidistant from both endpoints of the segment.

Exercise 13.2 (Equilaterals of Half the Size, Reprise). Re-prove that inside of an equi-
lateral triangle, you can inscribe a smaller one with exactly half the side length. You
already did this problem, using Euclid’s Axioms, but now we can do it much easier
in our new foundations!

Hint: just find where the vertices should be, and then measure the distances between
them!

13.2. CIRCLES

Euclid’s definition of a circle is as follows: A circle is a plane figure bounded by one
curved line, and such that all straight lines drawn from a certain point within it to the
bounding line, are equal. In modern terminology, we may phrase this as below:

Figure 13.2.: The circle C,(r) is the set of points at distance r from a fixed point p.

Definition 13.2. A circle centered at a point ¢ € E? is a curve such that the distance
between p and any point on the curve is the same. This fixed distance is called the
radius of the circle. We denote the circle of radius r centered at p as Cp(r).

Now that we know the distance function on E? we can formally write down the
equation of a circle directly from this definition.

Theorem 13.1. The circle of radius r centered at p = (h, k) is given by the set

Cy(N) ={g=(x.y) € E? | (x = h)* + (y = k)? = r?}
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Proof. This is just a direct computation: if ¢ = (x, y) is an arbitrary point in the plane,
its distance from p = (h, k) is

dist(q. p) = lg — pll = \JGc = 1)? + (y — k)2

For g to lie on the circle, this distance needs to be set equal to r. The equation is easier
to work with after squaring both sides to remove the square root, giving

(x—h)2+(y—k)2:r2

O

Corollary 13.1 (Proving Euclid’s Axiom III). Given any point p, and any radiusr, the
circle Cp(r) exists.

Proof. Now that we have the actual equation for a circle, Euclid’s axiom is rather
straightforwardly true. Saying we can draw a circle about any point of any radius is
just asserting that the equation

(= h)? +(y = k)P =7

has solutions for every h, k,r. And this in turn is just a property of the real numbers,
and the existence of square roots! For simplicity considering the case centered at 0,

for any x € [—r,r] we can solve directly for y = ++/r?2 — x2, which is a real number as

r > |x| so r? — x? is positive, and all positive reals have real square roots! O

One intuitive result about circles that we will use a lot in the near future is that any
isometry of the plane that fixes the circles center must preserve the circle:

Proposition 13.1 (Isometries Fixing the Center Preserve the Circle). Let C.(r) be a
circle centered at c, and ¢ be any isometry of E? sending c to itself. Then ¢ preserves C:
that is, if p is any point on C, ¢(p) is also on C.

Proof. Let C.(r) bea circle, and ¢ an isometry fixing c. If p € C.(r) is any point, then
by definition dist(p,c) = r. Applying the isometry ¢, since isometries do not affect
distances, we see

r = dist(p, ¢) = dist(¢(p). ¢(c)) = dist(¢(p). )
Where the second inequality is because ¢(c) = c. But this says the distance from ¢(p)

to the circles center is also r, so #(p) lies on the circle! Thus ¢ sends the circle to
itself.
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Figure 13.3.: If an isometry fixes the center of a circle, it sends the entire circle to
itself.

Exercise 13.3. Prove that applying any isometry or similarity to a circle results in
another circle.

COMPUTATIONS

Recall that in all of Euclid’s axioms, conditions for intersections with circles were
never specified! Indeed - Euclid intersected two circles in his construction of the
equilateral triangle. Now that we have a precise description of circles in our new
foundations, we can fix this gap:

Exercise 13.4. Prove that two circles intersect each other if the distance between
their centers is less than or equal to the sum of their radii.

Hint: start by applying an isometry to move one of the circles to have center (0,0), and
then another isometry to roate everything so the second circle has center (x,0) along the
x-axis. This will make computations easier!
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Figure 13.4.: Two circles intersect if the distance between their centers is less than or
equal to the sum of their radii.

The other case that is interesting but does not appear in Euclid is the intersection of
a circle an a line.

Exercise 13.5 (Circles Intersecting Lines). Prove that a circle intersects a line when-
ever the shortest distance from that line to the circles center is less than the circles’
radius.

Hint: start by applying an isometry that either (1) moves the line to the x axis, or (2):
moves the circle’s center to the origin - whichever one makes the computation easier for
you!

13.3. ArrLICATION: CLASSIFYING |SOMETRIES

The above exercises allowed us to compute exactly when two circles intersect - and
crucially: how many times they do so. While our motivating reason to compute
these things may have been to fill a gap in Euclid, this information can take us quite
far when used correctly. Indeed, here we show that it is the key which allows us to
classify all possible isometries of the plane!

We have discovered many isometries so far - translations, rotations (both about O
and other points), reflections across lines, and all possible combinations thereof by
composition and inversions. However, we have conducted no methodological search
for isometries and so there is no good reason to think we are done. In fact, it seems
dauntingly hard to ever prove we have found them all: who is to say that theres not
some absurdly complicated function we have never thought of, that still preserves all
infinitesimal lengths?

One way to begin making progress on this question is to ask how much information
do you need to completely determine an isometry? Is it possible that there could be
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two isometries that act like exactly the same function inside some region, but differ
elsewhere? If so, that would mean it will be very hard to track down all isometries!
But if not, we could ask ourselves what is the smallest region we need to understand
an isometry on to specify it uniquely. And the answer is rather suprisingly mini-
mal!

Proposition 13.2 (Isometries Fixing 3 Points). Let p,q,r be a triple of non-collinear
points in the plane. If an isometry ¢ fixes all three points, then ¢ is the identity.

Proof. Let p, q,r be three noncollinear points, and ¢ an isometry with ¢(p) = p, ¢(q) =
q and ¢(r) = r. We aim to show that ¢ is the identity: so we will consider an arbitrary
point a in the plane, and show that ¢(a) = a. To do so, it will prove important to pay
attention to the distance between a and the points p, q,r.

Figure 13.5.: The fixed points p, q,r and their distances to an arbitrary point a.

First, look at p. Since ¢ is an isometry we know dist(a, p) = dist(¢(a), p(p)): but ¢
fixes p! Thus a and ¢(a) are at the same distance from p, and lie on a circle centered

at p.

Figure 13.6.: Both $a and ¢(a) must lie on the same circle centered at p.

As q is also fixed by ¢, we similarly see that both a and ¢(a) must lie on the same
circle centered at q.
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Figure 13.7.: BThe same is true for g. So both a and ¢(a) must lie on both of these
circles!.

However by Exercise 32.37, we know that generically circles will intersect in two
points, so from the information we have so far, its not guaranteed that a and ¢(a) are
the same point: one could be at each intersection. But this isn’t surprising as we
haven’t considered all the information at hand! We also know that ¢ fixed r and so
both a and ¢(a) must lie on the same circle centered at r.

Figure 13.8.: Because p,q and r are noncollinear, these three circles cann only inter-
sect at a single point! This point must be both a and ¢(a), so ¢ fixes
a.

Each pair of these circles intersects in two points. And, as the points are noncollinear,
all three circles intersect in a single point (homework exercise, below). But this must
be both a and ¢(a): thus ¢(a) = a!

And a was an arbirary point, and we showed that ¢ did not move it. This means ¢
must not move any points at all in the plane - so ¢ is the identity! O

Remark 13.1. In special cases (when a lies at the midpoint of the line segment deter-
mined by p and gq) the circles centered at p and q through a are tangent at a, making
this their only point of intersection. In this case, we already know a = ¢(a) even
without considering r.
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Exercise 13.6 (Circle Triple Intersection). Three circles with non-collinear centers
can intersect in at most one point.

Hint: use some isometries to simmplify the situation: move everything so that two of the
circles center’s are on the x axis, and the third is on the y axis.

PICTUREs

Corollary 13.2 (Isometries Agreeing on 3 Points are Equal). If¢ andy are two isome-
tries of the plane which agree on a set of three non-collinear points, then they are equal.

Proof. Let py, py, p3 be three points for which ¢(p;) = ¥/(g;). Now consider the isom-
etry ! o ¢. This isometry actually fixes each of the three p; (since ¢ sends them
somewhere, and /! brings them back). Thus, by Proposition 13.2 this is the identity.
But if !¢ = id then composing with i/ shows

p=y
O

Using this, we can prove that we have actually found all the isometries, by starting
from an arbitrary isometry and building it using only translations, rotations, and
reflections.

Theorem 13.2 (Classification of Isometries). Every isometry of E? is a composition of
reflection, rotation, and translation.

Proof. Let ¢ be an arbitrary isometry of the plane. and consider the three points O,

p=(,0)and g = (%, %) forming the vertices of an equilateral triangle.

/—5\

Figure 13.9.: An isometry taking pne triple of points to another.

The isometry ¢ sends O somewhere: let T be a translation of the plane taking ¢(O) to
O. Now, the composition T¢ fixes the origin! The point p lies at distance 1 from O, so
the T¢ takes it to another point unit distance away - call this point r.
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/_Qb\‘
0 e
r\i/

Figure 13.10.: The isometry T¢ fixes the origin.

Let R be a rotation isometry fixing O but taking r back to p = (1,0). Now, the com-
position RT¢ fixes both O and p! All that remains is to think about where q has been

sent.
/'45\‘
0 e
r \7;_/

Figure 13.11.: The isometry T¢ fixes the origin.

Since RT¢ is an isometry it preserves distances, so it must send ¢ to a point which is
unit distance from O and p (remember - it send O and p to themselves)!
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®

Figure 13.12.: The isometry RT¢ fixes the both O and p, so there are only two options
on where it sends q. Here we see the case where it does not get sent
directly to g.

There are only two such points in the plane, which lie at the intersections of the
cirlces
x+yt=1 x-1%2+y*=1

The two options are either g itself - (%, g) or the same point with the y-coordinate

negated. So, let F be the following isometry: its the identity if RF@(q) was already
equal to g, and is the reflection in the x axis otherwise.

Figure 13.13.: Composing RT¢ with a flip F across the x axis creates an isometry that
fixes all of O, p and gq.

Now, we have the map FRT¢ : E? — E2, which fixes all three points of the equilateral
triangle! This is the same thing the identity map does on these three points, so by
Corollary 13.2 this must actually be the identity!

FRT¢ = id

One by one composing with the inverses of the maps we’ve added on, we can now
solve for ¢:
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¢ — T71R71F71

Since the inverse of a translation is just another translation, the inverse of a rotation
is another rotation, and the inverse of a reflection is another reflection (its the same
reflection, actually!) we see ¢ is a composition of translation, rotation and reflection
as claimed. O

Thus - every isometry is built from the building blocks we already know of: there
are no new mystery isometries out there to be discovered! This is a powerful fact
as it lets us claim things about all isometries by just checking them with rotaitons,
translations, and reflections. For example:

Corollary 13.3 (Isometries are Affine Maps). All Euclidean isometries are affine maps
of the plane.

Proof. Let ¢ be an arbitrary Euclidean isometry. By Theorem 13.2, we may write
¢ = TRF for T a translation, R a rotation about the origin, and F(x, y) = (x, +y) either
a flip across the x axis or the identity. Thus, the proof is just a direct computation: a
rotation about the origin is given by a linear map (Theorem 11.4) so

fu v\ [x\ _[uxxvy
RF(x,y)—(v u)(iy>_(—vxiuy)

Next, any translation is an affine map of the form T(x,y) = (x + a,y + b) So

3 _ uxtvy\ [uxzvy-+a
¢(x,y) = TREF(x, y) = T(—vx;}:uy) - (—vxd:uy+b>

Each of these components is an affine function, so the entire isometry ¢ is affine. [

18.4. CoNc SecTiONs

Though greek geometry lacked the ability to deal with general curves, they did know
quite a lot about a specific family of curves called conic sections These include the cir-
cles and lines we have already discussed, but also parabolas, ellipses, and hyperbolas.
We will not spend much time on them here, except to show how our new formalism
lets us come up with precise equations for these curves much as it did for lines and
circles already:.

Remark 13.2. These curves are called conic sections because we can alterantively

define them as the possible curves one can get by slicing a 3-dimensional cone by a
plane at different angles.
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13.4.1. PARABOLAS

A geometric definition of the parabola dating back to ancient greece is that it is the
set of points which lie at an equal distance from a given point and line in the plane.
More precisely

Definition 13.3. Let L be a line (called the directrix), and f a point not on that line
(called the focus). The parabola P with directrix L and focus f is the set of points
(x, y) which lie at the same distance from ¢ as they do from f:

dist((x, y), L) = dist((x, y), p)

Recall that the distance to a line L is defined as the shortest distance between (x, y) and
any point on L (Definition 12.8).

4

L

Figure 13.14.: A parabola is the set of points which are the same distance from a point
(the focus) and a line (the directrix). In this figure, line segments of the
same color are supposed to be the same length.

Exercise 13.7. Let L be the x-axis, and f the point (0, 2) along the y-axis. Find an
equation that points (x, y) on the parabola determined by L and f must satisfy.

Exercise 13.8. In this problem we confirm that y = x? is indeed a parabola! Let L

be a horizontal line intersecting the y—axis at some point (0, —¢), and f = (0,h) be a
point along the y-axis for £,h > 0.

« Write down an algebraic equation for the coorddinates of a point (x,y)
determining when it is on the parabola with focus f and directrix L.

« Find which point f and line L make this parabola have the algebraic equation
2
y = x°.
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13.4.2. ELuieses & HyrersoLAS

Ellipses and hyperbolas are also defined by a condition involving distance. Instead of
distance from a single point (circles) or distances between a point and a line (parabo-
las), these shapes involve the distances from a pair of points.

Definition 13.4. Let f; and f, be two points in the plane (called focii), and d a number
(called the distance sum). The ellipse with focii fi, f and distance sum d is the set of
points p = (x, y) in the plane where

dist(p, f1) + dist(p, o) = d

Figure 13.15.: An ellipse is the set of points where the sum of distances to two points
is constant. Here, p and g are both on the ellipse as the lengths of the
green and blue polygonal segments are equal.

Exercise 13.9. Find an equation of the form ax? +by? = ¢ determining when a point
lies on the ellipse with focii (1,0) and (-1, 0) with distance sum 4.

A hyperbola is defined similarly, except it is a difference of distances instead of a
sum:

Definition 13.5. Let f; and f, be two points in the plane (called focii), and d a number
(called the distance difference). The hyperbola with focii f;, f, and distance sum d is
the set of points p = (x, y) in the plane where

|dist(p, f;) — dist(p, fo)| = d

This distance difference may be positive or negative (hence the absolute value). Each
sign determines one branch of the hyperbola - its a disconnected curve with two
components!
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fi b

Figure 13.16.: An hyperbola is the set of points where the differece of distances to
two points is constant. Here, p and g are both on the hyperbola as
the difference between the lengths of the green segments equals the
difference between the blue segments.

Exercise 13.10. Prove that the equation y? — x* = 1 determines a hyperbola. What
are the two focii? What’s the distance difference?

13.4.3. EQuibisTANTS TO A LINE

This is not itself a conic section, but like the previous shapes we’ve discussed fits
into the class of “shapes defined by a distance constraint”” A circle is the set of
points which are equidistant from a point (its center). One could attempt to generalize
this notion by replacing the point at the center with something more general, and

measuring

The most reasonable “generalized center” to consider first is a line: it is the only other
shape we know so far, after all! What curves are equidistant to a line? In fact, the
answer here is not that interesting: its just a pair of two lines.

Proposition 13.3. Given a line L, the set of points lying at distance d from L are two
disjoint lines.

Proof. Let L be a line, and choose an isometry ¢ that moves L to the x-axis (which
we will denote X). Now the distance from a point p = (a,b) to a point (x,0) on X is

J(x — a)? + b%, which is minimized when x = a: thus
dist((a, b), X) = \/b? = |p

Thus, the set of points at distance r from X contains all pairs (x,r) and (x, —r) for any
x: these are two lines

Li(x) = (x.r) L_(x) = (x,—1)
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To solve the original problem, we apply the inverse isometry ¢ taking X back to the
line L. Since isometries take lines to lines and preserve distance, this takes L, to two
lines, each at distance r from L as claimed. O

However, we include brief mention of this fact for two reasons. One, in a lost work
of Archimedes, On Parallel Lines, it seems that he tried to work with alternative defi-
nitions of parallelism based on this fact, to simplify Euclids theory. Below is a quote
from Boris Rosenfeld’s A History of Non-euclidean Geometry:

It seems that the first work devoted to this question [the theory of par-
allels] was Archimedes’ lost treatise On parallel lines which appeared a
few decades after Euclid’s Elements. [...] it is very likely that Archimedes
used a definition of parallel lines different from Euclid’s. [...] it is possible
that Archimedes based his definition of parallel lines on distance.

And secondly, while we found here that the equidistant curves to a line are just an-
other pair of lines, this fact (as presciently investigated by Archimedes) is actually
equivalent to the parallel postulate, and so will be false in the other geometries we
study! Thus, we will reference this short section in those future geometries, to con-
trast our new discoveries with the old.
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14. ANGLES

In the geometry of Euclid, an angle was defined as being delimited by straight lines:

A plane angle is the inclination to one another of two lines in a plane
which meet one another and do not lie in a straight line.

However as Greek mathematics (and beyond) turned to the problem of curves, it
became necessary to also speak of curvilinear angles: that is, the angle of intersection
between two curves. This was a difficult concept, as at no finite level of zoom could
this be made into a “true angle”, the sides were never going to be straight.

Figure 14.1.: How can we define the angle between two curves?

From the modern perspective this is no issue, as zooming in on the point of inter-
section we may pass to the tangent space, and replace each of the curves by their
linearizations. This allows us to think of angles as infinitesimal quantities based at a
point.

Definition 14.1. An angle « at a point p € E? is an ordered pair of tangent vectors
a = (v,w) based at p.
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14. Angles

Figure 14.2.: An angle is defined by an ordered pair of two tangent vectors at a point.

The order of the tangent vectors tells us which curve is “first” and which is “second”
as we trace out the angle. By convention, we will trace the angle counterclockwise
from start to finish.

Figure 14.3.: The angle measure of (&, v) on the left, versus the measure of (v,u) on
the right. Both measured as positive angles.

(Occasionally, we wish to read an angle clockwise instead: in this case we will say
that it is a negative angle, whereas counterclockwise default angles are positive)

From this, we can define the angle between two curves in terms of their tangents:

Definition 14.2. Given two curves Cy, C, which intersect at a point p in the plane,
and let v; be tangent to Cy, and v, be tangent to C, at p. Then the angle from C; to
G, is just the pair (v;, 1) of tangents.
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Figure 14.4.: The angle between curves, defined at a point of intersection by their
tangent vectors.

14.1. ANGLE MEASURE

In all of Euclid’s elements, angles were not measured: by numbers. There was a
definition of a right angle (half a straight angle), and definitions of acute and obtuse
(less than, or greater than a right angle, respectively). Though they never attached a
precise number, they did have the angle axioms specifying how to work with angles
like they were a kind of number, however.

In our modern development we find numerical measures extremely convenient: if we
can measure angles with a function, we can do calculus with angles! So we want to
go further, and an actual number to each angle (which we’ll call its measure) in a way
that’s compatible with the original angle axioms.

How do we construct such a number? At the moment we do not have much to work
with, as our development of geometry is still in its infancy: we have essentially only
constructed lines, circles and the distance function. These strict constraints essen-
tially force a single idea for angle measure upon us:

Definition 14.3 (Angle Measure). If u and v are two unit vectors based at the same
point p forming angle @ = (u,v), then the measure of « is defined as the arclength of
the unit circle centered at p that lies between them. Its denoted

Angle(a) or Angle(u, v)
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Angle(a)

Figure 14.5.: The measure of an angle is defined in terms of the arclength of a circle.

This is a very “basic” way of dealing with angles, as it uses so few concepts from our
geometry (its close to the base definitions). Indeed, its geometric simplicity makes
it exceedingly useful throughout mathematics, you’ve all met this definition before
under the name radians.

Because angles are defined in terms of unit circle arclength, it will prove very con-
venient to have a name for the entire arclength of the unit circle. That way we can
express simple angles as fractions of this, instead of as some long (probably irrational)
decimal representing their arclength. We will denote the arclength of the unit circle
by z, standing for turn (as in, one full turn of the circle)

Definition 14.4 (7). The arclength of the unit circle is 7.

— L .

Figure 14.6.: The circumference 7

The first thing we may wish to explore is how this concept interacts with isometries.

Proposition 14.1 (Angles Measures are Invariant under Isometries). If a and f are
two angles in E?, and ¢ is an isometry taking « to f, then the measures of « and f3 are
equal.
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Proof. Let a and f be two angles: so precisely « is a pair of tangent vectors a;, a,
based at a point p, and f is a pair of tangent vectors by, b, at a point gq.

Any isometry taking p to q takes the unit circle based at p to the unit circle based at
q (since isometries preserve the distance function). And, if the isometry takes a; to
by as well as ay to by, it takes the arc of the unit circle defining « to the arc defining S.

Since isometries preserve the length of all curves, the lengths of these arcs must be
the same. Thus these angles have the same measure. O

Because angle measures are defined in terms of the unit circle, we can also attempt to
run the above argument with a similarity ¢ instead of isometry. If the scaling factor is
k, the main change is that ¢ takes the unit circle to a circle of radius k (as similarities
take circles to circles, Exercise 13.3). We know how similarities affect lengths - so
the length of this arc is k times the original angle measure. But to correctly compute
the new angle, we need to be measuring on the unit circle. So, we need to rescale it
down by 1/k a similarity. This then divides the length by k, and overall we see the
new length is identical to the original: so the angle is the same!

Corollary 14.1 (Angle Measures are Invariant Under Similarities). Ifa and § are two
angles in B2, and o is an similarity taking « to f, then the measures of @ and f are
equal.

Computing an angle directly from this definition is challenging, as it requires us to
measure arclength. Much of the later work in this chapter will establish a beautiful
means of doing this. But in certain situations, angles can be measured directly by
more elementary means.

Example 14.1 (Angle between x- and y-axes). The angle from (1,0) to (0, 1) is 7/4.
To see this, recall that we have a rotation isometry fixing the origin and taking (1, 0)
to (0, 1) - this was the first rotation we discovered (Example 11.1).

et 2

Now, look what happens when you apply R multiple times in a row. This repeated
composition is actually straightforward to compute, as it’s just matrix multiplication!

-1 0 0 1 1 0
2 _ 3 _ 4 _
e 5) #=(G) #=l )
Looking at the last line, we see that applying R four times in a row results in the

identity matrix - or the transformation that does nothing to the inputs! That is, after
four rotations we are back to exactly where we have started.
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Figure 14.7.: The angle from (1,0) to (0, 1) is one quarter of the unit circle.

Because isometries preserve angles (Proposition 14.1), we see that our isometry R has
covered the entire unit circle in exactly four copies of our original angle. Thus, the
angle measure must be 1/4 of a circle:

T

0=
4

(This example tells us our first rotation angle: the matrix (§ 7! ) rotates the plane by

a quarter turn or 7/4! This will be a very useful fact, and we will even put it to use
shortly, in Proposition 14.3 where we find the derivative of sin and cos. )

Exercise 14.1 (Angle Measure of Equilateral Triangle). Show the angle measure of
an equilateral triangle is 7/6, in a similar method to the example above.

To start, draw an equilateral triangle with unit side length, and one side along the
x-axis. In Exercise 32.30, you found that the third vertex of this must lie at p =
(1/2,+/3/2). From this, we can write down a rotation isometry (Theorem 11.4) taking
(1,0) to p. The angle this rotates by is exactly the angle our triangle’s sides make at
the origin.

Show that if you apply this rotation three times, you get negative the identity matrix.
Use this to help you figure out how many times you have to apply it before you get
back to the identity! Then use that isometries preserve angles, and the circumference
of the unit circle is 7 to deduce the angle you are after.

Proposition 14.1 and Example 14.1, Exercise 14.1 showcase two essential properties of
the angle measure which stem from the fact that we defined it as a length: its invariant
under isometries, and easy to subdivide. In fact, these are precisely the angle axioms
of the greeks!
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Example 14.2 (Proving the “Angle Axioms”). Now that we have a definiiton of angle
measure in terms of more primitive quantities (vectors, lengths, circles), we can prove
that this measure satisfies the greek axioms.

« Congruent Angles have Equal Measures Since two angles are congruent if
there is an isometry taking one to the other, and the measure of an angle is
invariant under isometries, congruent angles have the same measure.

« Subdividing an Angle If we divide an angle 6 into two angles 6;, 0, by a line,
then 6 = 0; + 6,. This follows directly from a property of integrals! Since an
. . . b
angle is a length, and a length is an integral we can use the property [, fdx =
fac fdx + ch fdx to prove 6 = 0; + 0,.

14.2. WorkiNG WiTH ANGLES

We now turn to the problem of actually computing things with the angle measure.
To do so, it’s helpful to choose a “basepoint” on the circle to take first measurements
from - here we’ll pick (1, 0).

Definition 14.5 (Arclength Function). The arclength function takes in a point on the
unit circle (x, y), and measures the arclength 6 from (1, 0) to this point.

O(x, y) = arclength from (1, 0) to (x, y)

In this section, we will study in detail expressions for this function, and its inverse.

14.2.1. Arc~ SINe AND COSINE

Because the points of the unit circle satisfy x> + y? = 1, if we know the sign of
x,y (which half of the circle the point lives in) we can fully reconstruct the point
from a single coordinate: either (x,+y1— x?) or ({1 — y?,y). Thus, so long as we
remember the correct sign of the second coordinate of interest, the arclength function
is essentially a function of one variable. We could take just the x or y coordinate of a
point on the circle and define a function like ©(x) which would measure the arclength

to (x,v1 — x2), or ©(y) if we expressed the point (/1 — y2,y). However, we do not
need to invent our own notation for these arclength functions of one variable, they
are already well known to us from trigonometry!

Definition 14.6 (Arc Functions: Inverse Trigonometry). The functions arccos and
arcsin compute the arclength along the unit circle from (1, 0) to the point (x, y) as

arccos(x) = arclength from (1, 0) to (x, V1 — x?)
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arcsin(y) = arclength from (1,0) to (/1 — y%,y)

arccos(x) arcsin(y)

Figure 14.8.: The arclength functions given the x and y coordinates of a point on the
circle.

This of course does nothing to help us compute these functions: we’ve just given a
name to them. In fact, we can compute only very few values from first principles:

Example 14.3 (“Unit Circle Values” for Arc Functions). -The point (1,0) lies at ar-
clength zero from (1, 0)...as they are the same point! Thus,

arccos(1) = 0 arcsin(0) = 0

« The point (0, 1) lies a quarter of the way around the circle (Example 14.1), so
has arclength 7 /4. Thus we see

arccos(0) = 7/4 arcsin(1) = /4

« Looking at Exercise 14.1 where we found the angle of a unit equilateral triangle
with sides vertices (0, 0), (1,0) and (1/2,/3/2) to be 7/6, we see

arccos(1/2) =7/6 arcsin(v/3/2) = 7/6

What we need is some sort of concrete expression telling us how to compute arccos(x)
(or arcsin) for arbitrary values of x. And here we can make essential use of our defi-
nition of angle as a length, and length as an integral! Unpacking it all gives directly
an integral formula to compute arccos(x):

Proposition 14.2 (Integral Representation of arccos(x)). Forx € [—1, 1], the arccosine
function can be computed via an integral

1

arccos(x) = J ! dt

x \1-¢2
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Proof. By definition, the arccos(x) is the length of circle between x and 1. Since
x% 4+ y% = 1, we may parameterize the top half of the circle using x as the parameter

by
c(t) = (t,N1—12)

Thus, as lengths are integrals, we can already give an expression for arccos(x):

1

arccos(x) = J Ie” (®)|dt

X

To be useful, we must expand out the integrand here, and compute |¢’|:

) = 1,;"‘>
( \J1—1t2

And thel’l, we must ﬁnd ltS norm:
2
( )
1 t2

tz
1/1+
1—1t2
1

1—¢2

le” @I

Thus, we have an integral representation of the arccosine!

1

1
arccos(x) = J dt
x \1-¢2
O
If we start at x = —1 and go to x = 1, this curve traces out exactly half of the unit

circle (the top half). Thus, twice this value is an integral representing our fundamental
constant 7:

Corollary 14.2 (Defining 7).

1
TZJ 2 dx
—1 41— x?

Exercise 14.2. Complete an analogous arugment to the above to show

y
dt

1
arcsin(y) = J
0 J1-12
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These formulas, via the fundamental theorem of calculus, tell us the derivative of
arcsin and arccos as well!

Corollary 14.3 (Differentiating the Arc Functions). The derivative of the arc functions

are
-1

4 arccos(x) =
dx 1— x?

1
-y

% arcsin(y) = >

Proof. Each of these is an immediate application of the fundamental theorem of cal-
culus: but there’s a small subtlety in how we usually apply this theorem to the first,
so we will start with arcsin.

The fundamental theorem says that % f; f®)dt = f(x), so we immediately get

y
4 arcsin(y) = 4 J ! dt = !
dy dyJo J1—p2 J1-)2

The difficulty with arccosine is that in the way we have it written, the variable x is
the lower bound of the integral. To prepare this expression for an application of the
fundamental theroem, we must first switch the bounds, which negates the integral.
Thus

X
4 arccos(x) = 4 J ! dt = !
dx dx Ji \[1 _ ¢ J1 - x2

This is where the negative sign in the derivative of arccosine comes from: I have to

remind myself of this every time I teach calculus 1. O

14.2.2. SIne AND COSINE

Now that we have the functions that measure arclength, its natural to ask about their
inverses: if we know the arclength from (1,0) to a point, can we recover the coordi-
nates of the point?

Definition 14.7 (Sine and Cosine). Let p be the point on the unit circle centered at
O which lies at a distance of 6 in arclength from (1,0). Then we define cos() as the
x-coordinate of p, and sin 0 as the y-coordinate of p.
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Figure 14.9.: The functions sin and cos return the cartesian coordinates of a point
lying at arclength 6 along the circle.

Example 14.4. At 6 = 0, we have moved no distance along the circle from (1, 0), so
we are still at (1,0). Thus

cos(0) =1 sin(0) = 0

(Because sine and cosine are defined as lengths, which are invariant under isometries,
we see that we could equally well define these functions from a unit circle centered
at any point in E?. After the chapter on symmetry, we will see that we can further
generalize to base them on any circle whatsoever.)

Beyond this, the definition doesn’t give us any means at all of calculating the value
of cos or sin: we’re going to need to do some more work to actually figure out what
these functions are! For their inverses, the secret was unlocked by integration, and
so it makes sense that here we must do the opposite, and look to differentiation for
help!

Proposition 14.3 (Differentiating Sine & Cosine). The derivatives of sin(9) and cos(0)
are as follows:

isin@zcos@ icost—sinQ

do do

There are many beautiful geometric arguments for computing the derivative of sin 6
and cos 6, involving shrinking triangles and side ratios. Below is a different style
argument, which fits well with the calculus-first perspective of our course. We use
the fact that the derivative gives the tangent line to figure out what it must be!

Proof. Let C be the unit circle centered at (0,0), and y(t) = (cos(0), sin(6)) be the
arclength parameterization defined above. Because y traces out the circle with respect
to arclength, its derivative with respect to arclength is unit length, by definition.
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We start by finding the derivative at (1,0). As the radius of the circle is 1 and the x-
coordinate at y(0) = (1,0) equal to 1, we are at a maximum value of the x-coordinate.
Differential calculus (Fermat’s Theorem) tells us that at a maximum, the derivative
is zero. So, x” = 0 at (1,0). But y’ cannot also be zero here: as y is increasing as
we trace out the circle, differential calculus (a corollary of the Mean Value Theorem)
tells us that y”(0) is positive. But now the fact that [y’(0)| = 1 uniquely singles out a
vector:

¥’ (0) =0, 1)(1.0)

Figure 14.10.: The tangent line to the unit circle at (1, 0) is vertical, with unit tangent
vector (0, 1).

This is actually all the differentiation we have to do! The rest of the argument
amounts to a clever use of isometries. Choose a point g = y(6) = (cos(0), sin(h))
on the circle, where we wish to compute the tangent vector. Now create an isometry
¢ taking (1, 0) to q. Since rotations about the center preserve circles (Proposition 13.1),
the curve ¢ - y also traces out the unit circle. Thus, if we find the tangent to ¢ oy at g
we’ll have found the tangent to the circle at g!

At (1, O), we saw the tangent vector was a 7 / 4 rotation from the vector connecting its
basepoint to the origin. Since isometries preserve angles (Proposition 14.1), it must
also be true that the tangent vector at q is a 7/4 rotation of g—O = (cos 0, sin0),. And
we know how to rotate a vector by 7/4: switch its coordinates and negate the first
(Example 11.1)!

(cos 0, sin )y > (—sin 0, cos O),

166



14.2. Working With Angles

Figure 14.11.: At a point 6 along the circle, the tangent can be found by symmetry.
Since the tangent at (1, 0) is orthogonal a 7/4-rotation of the position,
the same must be true at every point of the circle. Thus, at (cos 6, sin 0)
it is (—sin 6, cos ).

Since the tangent vector to the the circle at g is the derivative of y at 0, this tells us
exactly what we were after:

v’ (6) = ((cos ), (sin8)")

= (—sin6, cos 0)

O

Remark 14.1. An alternative to the first step of this proof is to consider that the circle
is sent to itself under the isometry ¢(x,y) = (x, —y). This map fixes the point (1, 0),
and so it must send the tangent line at (1, 0) to itself. But as ¢ is linear, its derivative is
itself, so it applies to tangent vectors also as ¢(v;, v5) = (v;, —v,). Thus, whatever the
tangent vector at (1, 0) is, it must be a vector such that (v;,v,) is parallel to (v;, —w).
This forces v; = 0, and then unit length forces (0, +1).

Exercise 14.3. Because of our hard work with the arc functions already, we have
an alternative approach to differentiating sine and cosine, using purely the rules of
single variable calculus!

« Explain why from the definition of sin, cos we know that sin® 0 + cos?0 = 1

« Use the technique for differentiating an inverse () to differentiate sin as the
inverse function of arcsin, whose derivative we know.

« Combine these two facts to simplify the result you got, and show sin(9)’ =
cos(6).

« Repeat similar reasoning to show cos(6)” = — sin(9).
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Remark 14.2. An alternative second part to this proof is just to write down the matrix:

we know the rotation taking (1,0) to (p;, po) is Z; _q(fz ), so for g = (cost,sint) its

(cost ;f)lsrltt ). This is linear so we can apply it to both points and vectors: applying

to the tangent vector (0, 1)( o) just reads off the second column! Thus the tangent
vector at g is (—sin 0, cos ).

Believe it or not - we already have enough information to completely understand the
sine and cosine functions! Since they are each other’s derivatives, and we know both
values at zero, we can directly write down their series expansions!

Proposition 14.4 (Series Expansions of Cos). The series expansion of the cosine func-
tion is

+ +

2 4 6 8 10!

Proof. We first build what the series ought to be (assuming it exists), and then we
prove that our candidate actually converges! Assume that cos 6 = ay +a;0 + az6% + ---
for some coefficients a,,. Evaluating this at § = 0 we see

cos0 =ay+a;-0+ay-0°+- =aq

Since we know cos 0 = 1 this says ay = 1, and we have determined the first term in
the series:

cos0 =1+ a10 + a6 + a36° + a,0* -
So now we move on to try and compute a;. Taking the derivative of this series gives

(cos6) = ay + 2a,0 + 3a360° + -

And again - every term except the first has a 0 in it, so evaluating both sides at zero
gives us a;. Using that cosine’s derivative is — sin 0, we get —sin(0) = 0 = ay, so a; is
zero.

cosf =1+ 00 + ay0? + as0® + a,0* + -

Moving on to a,, we must differentiate one more time to get the term with a, to have
no Os in it:

(cos@) = 2ay +3-2a30 + 4 - 3a40% + -
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Since (cosf)” = —sinf and (—sinf)’ = —cos 6, this series is equal to — cos 6! And

evaluating at 0 gives —1. Thus 2a; = —1so0ay = —%.

cosf =1+ 00— %92 s + a 0" +

Continuing to a3 differentiating the left side once more gives sin 8 which evaluates to
zero, and the right results in a function with constant term 3 - 2as: thus a3 is zero.

cos9=1+09—%92+003+

Differentiating once more, the left side has returned to cos 6 and the right now has
constant term 4 - 3 - 2a4: thus ay = 1/4!.

cos@=1+09—%92+093+%94+

After repeating the process four times, we’ve cycled back around to the same func-
tion cos O-that we started with! And so continuing, the same pattern in derivatives,
1,0,—1,0 - will continue to repeat. This tells us every odd term will be zero in our
series, and the even terms will have alternating signs:

cosf=1- 1924- 194_ 1964_ 198_
2! 4! 6! 8!

Thus *if cos 6 can be written as a series at all - it must be this one! We only have left
to confirm that this series actually converges (and thus, by Taylor’s theorem, equals
the cosine). O

Exercise 14.4. Prove that the series for cos converge for all real inputs: that is, that
their radius of convergence is co. Hint: review the ratio test!

Exercise 14.5 (Series Expansion of Sin). Run an analogous argument to the above to
show

D" pons
ind = Z(2n+1)' o
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14.3. Tre Dot ProbucT

Having explicitly computable formulas for arccos and arcsin (even though they are
via integral expressions, and probably need to be evaluated numerically as Riemann
sums) lets us act as though knowing the cosine or sine of an angle is just as good as
knowing the angle itself.

Example 14.5. What is the angle between (1, 0) and (1, 2)?

We figure out where the second vector intersects the unit circle by dividing by its
magnitude: (1/+/5,2/+/5). Now we know by definition that whatever the arclength
0 is, its cosine is the first coordinate. And being able to compute arccosines, we
immediately get

cosf = L = ¢ = 1.10714rad
NG

Our goal in this section is to generalize the example above into a universal tool, that
lets us compute the measure of any angle in the Euclidean plane using a simple tool
from linear algebra: the dot product.

Definition 14.8. The dot product of u = (u;,uy) and v = (v;, v,) is

u-v=uw +UZV2

We can already directly compute the angle a unit vector v = (v, v,) makes with (1, 0):
in this situation v; = cos 6 by definition, or (1,0) - v = cos 0. But if u and v are two
unit vectors based at 0, how can we analogously compute the angle they form?

Theorem 14.1 (Dot Product Measures Arclength). If u,v are unit vectors based at
p € E? making angle 0, then
u-v=cosf

Proof. Let u,v denote an angle based at p.The idea is to use isometries to reduce this
to the case we already understand! First, let ¢ be a translation isometry taking p to
0. Since the derivative of a translation is the identity, this takes u and v to the origin
without changing their coordinates. And, since isometries preserve angle measures,
we know the angle 6 between u,, v, is the same as the angle between u,, v,,.

Now let R be a rotation about O taking u, to (1,0),. Since angles are invariant under
isometry, the angle measure between u, and v, is the same as between Ru, and Rv,.
But since Ru, = (1,0),, we know

cos 0 = first component of Rv
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Thus, all we need to do is compute the matrix R, apply it to v, and read off the first
component of the resulting vector! We know from Theorem 11.4 how to create a
rotation fixing O that takes (1, 0), to u, is (Z; ;sz ). The transformation R we need is
the inverse of this:

-1
Uy —u u u

rR=[(" 2 _ 1 2
Uy U —u; U

Now we apply this to u and v to get our new vectors: applying to u gives (1, 0) (check
this!) and applying to v gives

RV _ uq Uy Vi _ uivp + Uy Vo
- —Uy Uy Vo - —UsVp + uivy
The first component here is exactly u - v = uyv; + uyvy. Thus we are done! O

The above applies explicitly to unit vectors, as we used the rotation constructed in
Theorem 11.4 to requires a unit vector to send (1, 0) to. However, this is easily modi-
fied to measure the angle between non-unit vectors: just divide by their magnitudes
first!

Corollary 14.4. The measure 0 of the angle between any two vectors u,v based at a
point p € E? is related to the dot product via

u-v = |ul|v|cos 6

Proof. Let u,v be any two vectors based at p. Then u/|u| and v/|v| are two unit
vectors based at p, and the angle between a pair of vectors is independent of their
lengths (as its defined as an arclength along the unit circle no matter what). Using
Theorem 14.1 we find the angle between these unit vectors:

u v o

lul 1
Multiplying across by the product of the magnitudes gives the claimed result. O
Exercise 14.6. Prove that rectangles exist, using all of our new tools! (Ie write down
what you know to be a rectangle, explain why each side is a line segment, parameter-

ize it to find the tangent vectors at the vertices, and use the dot product to confirm
that they are all right angles).
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14.3.1. TRIGONOMETRIC IDENTITIES

Using very similar reasoning to the above proposition relating angles to dot products,
we can leverage our knowledge of rotations to efficiently discover trigonometric iden-
tities! We consider here the angle sum identities for sine and cosine.

Theorem 14.2 (Angle Sum Identites). Leta, f§ be lengths of arc (equivalently, measures
of angles) and o + f the angle formed by concatenating the two lengths. Then

sin(a + ) = sina cos f§ + cosa sin f8

cos(a + ff) = cosa cos f —sina sin 8

Proof. Let v = (v;, ) be a vector that makes angle @ with (0, 1), and u = (u;, uy) be a
vector that makes angle f with (1, 0).

Figure 14.12.: Vectors v and u making angles « and f respectively.

Now let R be an isometry that rotates (1,0) to u. Since isometries preserve length,
this takes the segment of the unit circle between (1, 0) and v to a segment of the same
length between u and Rv. So, now the total length of arc from (1,0) to Rvis a +
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Ry

Figure 14.13.: A rotation R taking (1, 0) to u takes v to a vector describing the angle
sum a + f.

Thus, the x and y coordinates of Rv are the cosine and sine of a + f respectively.
Writing down the rotation R (via Theorem 11.4) we see

u —u\ (v WV — UpVy cos(a + )
Rv = = = .
u U ) \w vy + Uy sin(a + f)
Finally - since v makes an angle of « wtih (1, 0) and u makes an angle of f, we know

by definition that their coordinates are v = (cosa, sina) and u = (cos f, sin ). Sub-
stituting these in gives the identities we seek. O

Analogously, we have the angle difference identities, which differ only in the choice
of + signs.

Theorem 14.3 (Angle Difference Identities).
sin(a — ) = sina cos § — cos a sin f§

cos(a — ff) = cosa cos B + sina sin f§

Exercise 14.7. Prove Theorem 14.3 similarly to how we proved Theorem 14.2 (you
may need an inverse matrix!).

From these we can deduce the double angle formulas by setting both « and f equal
to the same angle 6 in the addition formula

Corollary 14.5 (Double Angle Identities).

cos(26) = cos? 6 — sin” 6 sin(20) = 2sin 6 cos 0
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And the half angle formulas by algebraic manipulation of the above:

Corollary 14.6 (Half Angle Identities).

(9) /1+c059 . (0) fl—cosﬁ
CoS|— ) = _— sin|—) = —_
2 2 2 2

Proof. We prove the cosine identity here, and leave the other as an exercise. Starting
from the double angle identity for cosine, and the fact that sinz(x) + cos?(x) = 1, we
can do the following algebra:

cos(2x) = cos?(x) — sin?(x)
= cos?(x) — (1 — cos?®(x))

=2cos’(x)—1

Now, we just solve for cos(x) in terms of cos(2x):

2cos?(x) =1+ cos(2x) = cos(x) = \/—1_4'(:35(2’()

This lets us compute the cosine of an angle in terms of twice that angle! Replace 2x
with 6 to get the form above. O

Exercise 14.8. Prove the half-angle identity for sin x.

These formulas are actually quite useful in practice, to find exact values of the trigono-
metric functions at different angles, given only the few angles we have computed
explicitly (z/4, for a square, and 7/6 from an equilateral triangle).

Example 14.6 (The exact value of sin(r/24)). There are several ways we could ap-
proach this: one is to start with 7/6 and bisect twice. Another is to notice that

and use the angle subtraction identity. We will do the latter here, and below in the
discussion of Archimedes cover the repeated bisection approach.

Theorem 14.3 tells us that
. T LT T T . T
sin — = sin — cos — — cos — sin —
24 8 6 8

We’ve successfully reduced the problem to knowing the sine and cosine of the larger
angles /6 and 7/8. These are both do-able by hand: for 7/8 we could either note
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that this is half a right angle so lies along the line y = x, and solve for the point (x, x)
on the unit circle getting
sin £ = /22 (:osZ:\/—5
8 8 2
Or, we could have started with the right angle directly and applied bisection. For 7/6,
we may use Exercise 14.1 to see

T x/§ T 1
sin—- = — cos— = —
6 2
The rest is just algebra:
. 342 142
sin—=————-—
24 2 2 2 2
2
- Y2(5y)
4
=~ 0.258819
14.3.1.1. Tre MeASUREMENT OF THE CIRCLE

The half angle identities played a crucial role in Archimedes’ ability to compute the
perimeter of n-gons in his paper The Measurement of the Circle. Indeed, to calculate
the circumference of an inscribed n-gon, its enough to be able to find sinz/(2n):

Figure 14.14.: The side-length of an inscribed n-gon is 2 sin ZT—n, found via bisecting the
side to form a right triangle. The perimeter of the n-gon is just n times
this.

By repeatedly bisecting the sides, we can start with something we can directly com-
pute - like a triangle, and repeatedly bisect to compute larger and larger n-gons.
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800

Figure 14.15.: Archimedes’ method: repeatedly doubling the number of sides of the
n-gon to get polygons approaching the circle.

Example 14.7 (From Triangle to Hexagon to 12-Gon). Start by inscribing an equi-
lateral triangle in the circle. The angle formed by each side at the center is 7/3, and
so bisecting a side gives an angle of 7/6 - the same as the angle of the equilateral
triangle itself! We know the sine and cosine of this angle from Exercise 14.1:

T _ 3

sin— = —
6 2

T
cos — =
6

Thus, the length of one side is 2 - \/; = /3, and the circumference is 3v/3 = 5.1961524.

Doubling the side number to get to the hexagon requires we compute sin é which

we do via-half angle:
T
7 1—cos 5 \F 1
sin — = {— =./===
12 2 4 2

Thus, the side length here is 1 and the circumference is six times that, or 6. Doubling
once more we now need to compute sin i via the half-angle identity:

1—cos =
T 12
sin — = | —=
24 2
Unfortunately - we do not know cos7/12 yet: but we can find it! Since cos?(x) +
sin®(x) = 1 we may use the fact that we know sin é = % to calculate it:

T (1)2 V3
cos— =4[1—-(|=) =—
12 2 2

Plugging this back in, we get what we are after:

= =~ (0.258819
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Thus the length of one side of the 12-gon is \/2 —+/3, and its total perimeter is

124/2 — 3 = 6.21165

(Note: using a different set of identities we get a different looking expression for our
final answer here: a square root of a square root! But - its exactly the same value.
Can you do some algebra to prove it?)

Exercise 14.9. Continue to bisections until you can compute sin(z/(2-96)). What is
the perimeter of the regular 96-gon (use a computer to get a decimal approximation,
after your exact answer).

Explain how we know that this is provably an underestimate of the true length, using
the definition of line segments.

Be brave - and go beyond Archimedes! Compute the circumference of the 192-gon.

Exercise 14.10. In the 400s CE, Chinese mathematician Zu Chongzi continued this
process until he reached the 24,576-gon, and found (in our modern notation) that
3.1415926 < 7w < 3.1415927. How many times did he bisect the original equilateral
triangle?

Exercise 14.11. Can you use trigonometry to find the perimeter of circumscribed
n-gons as well? This would give you an upper bound to 7, to complement the lower
bound found from inscribed ones.

Figure 14.16.: Circumscribed n gons are the smallest n-gons containing the unit circle.

14.4. EucLip's Axioms 4 & &

The final two of Euclid’s postulates mention angles. Now that we have constructed
them within our new foundations, we can finally attempt to prove these two!
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The fourth postulate states all right angles are equal. Of course, by equal Euclid meant
congruent as he often did. In order to be precise, it helps to spell everything out a bit
better.

Proposition 14.5 (Euclids’ Postulate 4). Given the following two configurations: - A
point p, and two orthogonal unit vectors u,, v, based at p - A point q, and two orthogonal
unit vectors ag, bq based at q

There is an isometry ¢ of E2 which takes p to g, takes up, to ag, and vy, to by.

Exercise 14.12. Prove Euclid’s forth postulate holds in the geometry we have built
founded on calculus.

Hint: there’s a couple natural approaches here.

« You could directly use Exercise 32.28 to move one point to the other and line up
one of the tangent vectors. Then deal with the second one: can you prove its either
already lined up, or will be after one reflection?

o Alternatively, you could show that every right angle can be moved to the “standard
right angle” formed by (1, 0), (0, 1) atO. Then use this to move every angle to every
other, transiting through O

At long last - we are down to the final postulate of Euclid - the Parallel Postulate, in
its original formulation, also mentions angles and so could not be formulated in our
new geometry until now.

Proposition 14.6 (The Parallel Postulate). Given two lines Ly and L, crossed by an-
other line A, if the sum of the angles that the L; make with A on one side are less than
7/2, then the L; intersect on that side.

Of course, we do not need to prove this to finish our quest: we have already proven
the equivalent postulate of Playfair/Proculus. But, bot for completeness and the sat-
isfaction of directly grounding the Elements in our new formalism, I cannot help but
offer it as an exercise.

Exercise 14.13. Prove the parallel postulate.

Hint: try the special case where the crossing line A makes a right angle with one of the
others (say Ly ). Use isometries to move their intersection to O, the crossing line A to the
y-axis, and Ly to the x—axis. Now you just need to prove Ly is parallel to the x-axis if
and only if it intersects the y axis in a right angle.
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14.5. ConFORMAL MAPS

We’ve already seen that isometries preserve the angles between any two tangent vec-
tors in the plane. But these are not the only maps with this property. In general, an
angle preserving map is called conformal

Definition 14.9. A map F: E? — E? is conformal if it preserves all infinitesimal
angles in the plane. That is, if u, v are two tangent vectors at p

Angle(u,v) = Angle (DFp(u), DFP(V))

Remark 14.3. Recall that by default we read angles counterclockwise: this is impor-
tant in the definition of conformality. For example, PICTURE is not conformal as it
sends an angle of 6 to an angle of 7 — 0. (Alternatively, reading clockwise we may
say negative 6. Maps that preserve angles after reversing their sign are called anti-
conformal)

aR

Figure 14.17.: A conformal map preserves all angles, though it may distort lengths.

Because we have a simple relationship between angles and the dot product, we can
formulate this in an easy-to-compute way.

Corollary 14.7. A map F : E? — E? is conformal if for every pair of vectors u, v based
at p we have

o B DFp(u) . DFp(v)
77 TulM ~ IDF,@IIDE,M)]

We won’t have much immediate need for this material on conformal maps - as we
are primarily concerned with Euclidean isometries at the moment, which we already
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know to preserve angles! But, when we study maps of spherical geometry and es-
pecially hyperbolic geometry, being able to tell when a map is conformal will be of
great use - so we provide some material here to reference in the future.

Example 14.8 (Complex Squaring is Conformal). The complex squaring operation
z +> z% can be written as a s real function on the plane in terms of x, y as

S(x,y) = (x* — y2,2xy)

This function is conformal everywhere except at O, which we verify by direct calcu-
lation.

S(x, y)

Figure 14.18.: The complex squaring function is conformal: it sends all the right an-
gles of the grid right angles.

The derivative matrix at p = (x,y) is

_[(2x 2y
DFP‘(zy 2x>

So, now we just need to take two vectors u = (uy, uy and v = (v{,v,) based at p, apply
the derivative, and see what the resulting angle is!

[ 2xu; + 2yuy [ 2xv + 2wy
DFp(u) = (—2yu1 + 2xu2> DF,(v) = (—2yv1 + 2xvy

After a lot of algebra, we can find the length of these two vectors

IDF, )] = \[4G? + y2)@? +13)  [IDF,()] = \J4(x? + y2)(v2 + )
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And we can also find their dot product:

DF,(u) - DF,(v) = 4(x? + yM) (v + uyvy)

Thus, forming the quotient that measures the cosine of the angle between them, we
can cancel a factor of 4(x? + y?) from both the top and bottom!

DF,(u) - DF,(v) B 4(x® + y*) v + tpvy)
"DFp(U)””DFp(V)” \/4(x2 + yz)(u% + ug)\/él(xz + y2)(v12 + VZZ)

uivy + Uy Vo
Jud + ud V2 + 2
u-v
v

But this still isn’t the easiest condition to check, as we have to test it for all pairs of
vectors u, v at every point! Luckily, we can use the linearity of the dot product to help
us come up with an easier means of checking for conformality.

Theorem 14.4 (Testing for Conformality). A map F: E? — EZ? is conformal if it
satisfies the following two conditions:

« It sends(1,0), and(0, 1), to a pair of orthogonal vectors, at each point.
« These vectors DF,((1,0)) and DF;({0, 1)) have the same nonzero length.

Proof.
O

Example 14.9 (Complex Squaring is Conformal). We can re-check that the squar-
ing map S(x,y) = (x* — y?,2xy) is conformal using the theorem above: since the
derivative at p = (x,y) is

_[(2x 2y
DE, = <2y 2x )

we simply apply this to the standard basis vectors and see
DF,((1,0)) = (2x,2y) DF,({0,1)) = (—2y, 2x)

These two vectors are orthogonal as their dot product is zero. And, they are both the
same length: 2,/x2 + y2. This length is nonzero unless (x,y) = O, so S is conformal
everywhere except O.
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But wait! We can do even better than this: say that ¢ sends (1,0), to the vector
(a,b)g(p)- Then we know (via Theorem 14.4) that (0, 1) must be sent to the 7 /4 rotation
of this! So, D¢,,((0,1)) = (=b,a)g(,). But if we know where D¢ sends both of the
standard basis vectors, we know its matrix!

Corollary 14.8. The map ¢ : E* — E? is conformal if and only if its derivative matrix

has the form
a —b
=)

for some a, b at each point p of the plane.

Example 14.10 (Complex Squaring is Conformal). We can re-re-check that the squar-
ing map S(x, y) = (x? — y?, 2xy) is conformal using the theorem above: just taking

the derivative
_(2x 2y
DFyp = <2y 2x )

we see the diagonal terms are equal and the off diagonals are negatives of one another.
Thus, its conformal by Corollary 14.8.

Exercise 14.14 (Complex Exponentiation is Conformal). The complex exponential
€” can be written as a real function on the plane in terms of x, y as

E(x,y) = (¢* cos y,e¥ siny)

Prove that E is a conformal map.

Exercise 14.15. Prove that if a map F is conformal and preserves the length of at
least one vector at each point (say, it sends (1,0), to a unit vector at F(p)), then F is
an isometry.
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Now that we know how to measure angle and orthogonality, we can make sense of
infinitesimal areas.

Definition 15.1 (Infinitesimal Area in E?). An infinitesimal area at a point p is a
region in the tangent space Tp]Ez.

Because the tangent space is a linear space, we will primarily be interested in infinites-
imal areas described by polygons: the most common of which will be parallelograms
as they are defined by two vectors. This suggests a natural means of measuring in-
finitesimal area: just as we took the Pythagorean theorem as the definition of infinites-
imal length, we may take the area of a parallelogram (Exercise 15.5) as the definition
of infinitesimal area.

Remark 15.1. It may seem like we we are bringing in a new concept to our geometry
here - something that can’t be defined in terms of our starting point which only al-
lowed the measurement of infinitesimal lengths. But - as we will show in the final
section of this chapter, this is not the case. We can derive this formula for dA from
a set of requirements mentioning only lengths and angles (angles of course, are also
defined in terms of lengths).

Definition 15.2 (Measuring Infinitesimal area: dA). The function dA is an infinites-

imal area measure on TPEZ, which takes in two vectors u, v and returns the area of
the parallelogram spanned by them:

v

u

Figure 15.1.: Area in the tangent space.
The most common (and useful!) parallelograms that we will encounter are rectangles,
due to our use of x, y coordinates on the plane. Here infinitesimal area is quite simple:

if the length is dx and the height is dy, we have an infinitesimal rectangle with area
the product of base and height:
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vl = dy dA = dxdy

llul| = dx

Figure 15.2.: The area of rectangles in the tangent space to a point

Just like lengths, once we have a means of measuring the infinitesimal notion, we can
zoom back out to recover what we are really after via integration.

Definition 15.3 (Area in E2). If Ris a region in E2, its area is given by the following

integral expression
Area(R) = J] dA = ﬂ dxdy
R R

15.1. ITERATED INTEGRALS

How do we compute an integral over a 2-dimensional region, with respect to the
infinitesimal area dxdy? Looking at a finite approximation gives one answer - we
could sum along rows first, adding up all the little areas with the same y coordinates
at once. Then we could add up all the total area of each row. In the limit, this tells us
to integrate x first, and then *to integrate the result with respect to y.

J] dA = ﬂ dxdy = J <J dx) dy
R R y—slices \Jx—slices

Conversely, we could have instead sliced our approximation into columns (integrating
dy first), and then added up the area of the columns (integrating the results dx). This

would give
H dA = H dydx = J (J dy) dx
R R x—slices \Jy—slices

Thus, thanks to the fact that d A factors as a product, an area integral really is just two
one dimensional integrals performed in succession! And to evaluate explicit areas,
all one needs to do is find a way to measure the length of the x-slices or y-slices of a
region.

In practice, this will be our main means of calculating area. It becomes especially
tractable when the region R can be described in terms of single-variable functions,
where everything reduces to a 1-dimensional integral!
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15.1. Iterated Integrals

Theorem 15.1 (Area Between Two Curves). Let f, g be functions with g(x) < f(x)
on [a,b]. Define R as the region

R={(xy) | x €labl, y€[gkx), fO]}

fx)

g(x)

Figure 15.3.: The region between f(x) and g(x).

Then its area can be computed via

b
Area(R) = J flx) — g(x)dx

Proof. Then at each fixed x, the vertical slice through the region is the interval
[g(x), f(x)], and so the area integral can be written as an iterated integral: first over
[g(x), f(x)] for a fixed x, then over x € [a,b]

Area(R) = H dA = J- J dydx
R [ab] J[g(x).f(x)]
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15. Area

Figure 15.4.: The area integral interpreted as an iterated integral, with [ dy done first.

The inner integral here is straightforward to evaluate: there are no y’s at all - so by
the fundamental theorem we have

@)
e fGo) —gx)

y=y g(x)

| d
[g(). f()]

Substituting back in gives the result:

Area(R) = J

a

f(x) - g(x)dx
bl

Jx) — g()

Figure 15.5.: The area between two curves is just the length of all the slices, added up
(integrated).
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15.1. Iterated Integrals

This is how we can define rigorously the area of a circle: we know (for example) that
the unit circle has equation x% + y! = 1, and so its top half can be written y = \/1 — x2
and the bottom half by y = —/1 — x2. Thus the area is

V1—x?

1 1
J J dydx = J 241 — x2dx
—1J-V1-x? -1

LLea®

Figure 15.6.: Riemann sums for the integral defining the area of a circle with 4,8,16,32,
and 64 bars, respectively.

Corollary 15.1 (Defining 7).

1
7= J 241 — x2dx
-1

Anytime we can describe a region with functions, we are back to calculus. Sometimes
this is impossible for an entire region all at once, but we can break it into smaller
regions, each of which are described by functions.

Example 15.1 (Area Between Piecewise Curves). Compute the area between the
curve y = %xz and the piecewise curve below, for x € [0, 2].

X2 x<1

f& =y >

Drawing the region, we decide to divide it into two regions R; and R,, with R; the
portion with x € [0, 1] and R, the portion with x € [1, 2].
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Jx)

x2/2 X x2/2

x2/2

Figure 15.7.: The region R, and its division into two simpler regions R; and R,.

In each of these regions we can specify the boundaries as functions of x, allowing us
to express them via single variable integrals (Theorem 15.1)

1 1
Area(Rl):J xz—lxzdx:J lxzdlel:l
0 2 0 2 23 6

2

Area(R,) = J x— %xz dx
1

Il
N | =
N =
[SSH T

The total area is the sum of these,

1 1 1
Area(R)=-+=-==

6 3 2
We can use this definition of area to compute the area of a triangle in the plane, since
we now know how to describe straight lines as affine curves.

Exercise 15.1 (Area of Right Triangle With Calculus). Use calculus to find the area
between the x-axis, the y-axis, and the linear equation with y-intercept (0,4) and
x-intercept (b, 0).

Exercise 15.2 (Area of a General triangle). Set up an area integral to measure the

area of a triangle with vertices O, (L,0), and (p,q) (assume L, p and g are positive
numbers: it will be a piecewise area between curves).

0 5.0) O 6.0

(1,3)

Figure 15.8.: Triangles for various p, g, L.
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Show the result gives you half the base times the height.

Similarly, we can make quick work of some impressive results of archimedes, after
checking that y = x? actually describes a parabola (in Exercise 13.8)

Exercise 15.3 (Quadrature of the Parabola with Calculus).

« Write down a formula for the area of the triangle whose third vertex lies at
(x, x%)

« Use calculus to find the point x where the inscribed triangle has maximal area.
Then show that Archimedes was right: the slope of the tangent line to the
parabola at this point is exactly the same as the slope of the line segment form-
ing the triangle’s base!

« Finally, compute the area of the parabolic segment (via integration, as the area
between two curves). Show that its exactly 4/3rds the area of the triangle!

(Hint: instead of finding the height of the triangle to use %bh, can you use the fact that
the determinant of a matrix calculates the area of a parallelogram whose sides are the
column vectors, and that the area of a the triangle you want is half a parallelogram?)

15.2. IsOMETRIES & SIMILARITIES

Now that we know how to evaluate an area integral, its time to study some of its
properties. Our first question with every new concept we define should be how does
this concept interact with isometries? So we investigate this below.

Theorem 15.2 (Isometries Preserve Area). Let R be a region in the plane, and ¢ an
isometry. Then

Area(p(R)) = Area(R)

Proof. Let R be a region in the plane, and at each point p € R consider the unit
orthogonal vectors e; = (1,0),, and e, = (0, 1), defining the unit area square used in
the computation of dA. Since isometries preserve infinitesimal lengths and angles, ¢
takes this to another infinitesimal unit square based at ¢(p), also of unit area.
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¢

1D, (el

= llejll

1D, ()l

= llell

Figure 15.9.: Angles and infinitesimal lengths are preserved, so infinitesimal squares
are sent to squares of the same area.

Thus, the integral [ ) dA is adding up the exact same areas as [| dA, and they are
equal. O

Theorem 15.3 (Similarities Scale Area). Let R be a region in the plane, and o an
similarity with scaling factor k. Then

Area(o(R)) = k*Area(R)

Proof. Running a similar argument to the above, we see that the infinitesimal unit
square defined by e; = (1,0), and e; = (0, 1), at each point is taken to a square
with side lengths k (since similarities uniformly scale infinitesimal lengths, but still
preserve angles).

1D, (eI
= klle |l

1D, (ex)l|
= klle|l

Figure 15.10.: Angles are preserved but infinitesimal lengths are scaled by k. Thus
infinitesimal areas are scaled by k?.

The area of such a square is k?, so the integral defining Area(¢(R)) counts an area of
k? every time the integral defining Area(R) counts a unit area. Thus, the total area is
k? times the original. O
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15.3. Area and General Mappings
15.3. ARrea AND GENERAL MAPPINGS

Both isometries and similarities are rather special: they send every infinitesimal unit
square to another square, possibly scaled in size by a constant factor.

In this section we are interested in discovering what happens to an area under a
general map E? — E2. First, let’s consider a conformal map ¢. This map takes
infinitesimal squares to squares, but they no longer all need to be the same size.

oo QOQQ

Figure 15.11.: Conformal maps take infinitesimal squares to squares, but the size of
the square can differ across the region.

Indeed, by Corollary 14.8 we know that at each point p € E? the sides of such an

infinitesimal square are (a,b) and (—b,a) - each of length \/a? + b2 so the total in-
finitesimal area is scaled up from 1 by a(x, y)? + b(x, y)*. (Here we’ve written a and
b as functions of x, y to emphasize that they may take different values at different
points of the plane).

Thus the area of the region ¢(R) can be computed starting from R, but multiplying
each infinitesimal area by this factor:

Area(p(R)) = J (a(x, )% + b(x, y)?) dxdy
R
Example 15.2 (Area under the map z > z2). The squaring map from complex anal-
ysis can be written as a function of real coordinates x, y, as
S(x,y) = (x* — y?, 2xy)

This map takes the unit square R = {(x,y) | x € [0,1], y € [0, 1]} to the region S(R)
depicted below.
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15. Area

Figure 15.12.: The image of the unit square under the complex squaring map.

Using all that we’ve learned, we can actually compute the area of this region without
having to even describe it explicitly! We know that at each point (x, y), the derivative
map is

_[(2x 2y
DE, = (Zy 2x )
Thus the change in area for the infinitesimal square based at (x, y) is 4(x? + y?). This
allows us to compute the area as

Area(S(R)) = HR 4(x? + y*)dxdy

Which we can now just do as an iterated integral:

ﬂR 4(x? + y¥)dxdy = J: (J 4(x* + yz)dx) dy
[(5 o))
0

—_

J é+4y dy
03

8

)

Finally, let’s consider a general map F: E? — E? of the plane. We know F does
not need to preserve infinitesimal lengths or angle, and so takes takes squares in the
tangent space to rectangles or parallelograms.
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* &

Figure 15.13.: A general mapping need not preserve angles or lengths, and so will take
the original infinitesimal squares defining d A = dxdy to parallelograms
of various sizes and shapes.

But we can figure out from this what F does to infinitesimal areas: it takes the unit
area spanned by (1,0) and (0, 1) to the parallelogram spanned by DF,((1,0)) and
DF,({0, 1))!

DFp(e1)=<zxx?>
2

0 :
F DF (ey) = aYF !

€
2

Figure 15.14.: The area of the parallelogram determined by these two vectors is just
the determinant of DF!

And we know how to calculate the area of a parallelogram using the vectors determin-
ing its sides (Exercise 32.21) - this is just the determinant of the derivative matrix.

Theorem 15.4. If F: E? — E? is any differentiable mapping, F takes the unit in-
finitesimal area in Tp]E2 to the area

aF O,

|detDFP|:asz oF,

= axFlasz - 8yF16xF2

This quantity is called the Jacobian of F at p.
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Much like we have done for isometries, similarities, and conformal maps before; this
lets us compute the area of a region F(R) as an integral directly over the starting
region R itself! At each point p € R we just insert the area scaling factor for how
much F changes the area of an infinitesimal square based there: the Jacobian.

Theorem 15.5. Let R C E? be a region in the plane, and F : E*> — E? some mapping
that takes R to a new region, F(R). Then

Area(F(R)) = I dA = J | det DF|dxdy
F(R) R

We can use this to find areas that seem difficult at first: for example, we will be able
to calculate the area of an ellipse in terms of the area of a circle (we’ll find the circles’
area in the next section).

Exercise 15.4. The map F(x, y) = (ax, by) takes points on the unit circle to the points
2

of the ellipse Z—j + Z—z = 1. (Confirm this with algebra!) Thus, it takes the unit disk

D ={(x,y) | x* + y? < 1} to the interior of this ellipse: call this region E.

‘?-

Figure 15.15.: Stretching a circle into an ellipse.

Computing the Jacobian we see F scales areas by a factor of ab:

a 0 a 0
DF—(O b) — |DF|—det<0 b)—ab

@ @D

dxdy ab dxdy

Figure 15.16.: This stretches all infinitesimal areas by a factor of |DF| = ab
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Thus we can calculate the area of the ellipse E as

= ab Area(D)
We will see in shortly that Area(D) = x, so that immediately gives Area(E) = mab.

One thing to be careful about: while all isometries preserve area, not all area-
preserving maps are isometries! Take any determinant 1 matrix on the plane and
use it as a linear map. This preserves area of all subsets (as derivative is itself, and so
determinant of the derivative is 1). But does not preserve lengths: try a hyperbolic

like
2 0
0 1/2

15.4. THE JACOBIAN, ABSTRACTLY

This optional section gives a second means of deriving the jacobian, instead of taking
the fact that we already understand the area of a parallelogram. We could instead
ask, what sort of behavior do we want the function dA to have; and try to derive its
formula from such a list.

Instead of being explicit about what number d A assigns to every area, we can attempt
to be more austere and just declare that dA assigns the unit square(1,0),(0, 1) unit
area.

To get further than this, we need a proposal about how d A interacts with scalar mul-
tiplication. If v, w are two vectors and we multiply one of them by k, this should
increase the area they span by k: that is,

dA(kv,w) = kdA(v,w)

For vector addition, we analogously propose that the area spanned by u + v and w is
the same as the area spanned by u, w and v, w
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15. Area

dA(u+v,w) = dA(u,w) + dA(v, w)

We’ve illustrated the case of addition and scalar multiplication in the first vector
above, but of course it should not depend which vector we are talking about, so we
propose that dA is linear in each of its input vectors.

We have one final thing to consider: what is the relationship between dA(v, w) and
dA(w,v)? A natural thought is that these both describe the same area, an so should
certainly be assigned the same number! But this is ignoring a useful piece of informa-
tion: that switching between (v, w) and (w, v) negates the sense of angles, essentially
flipping the parallelogram. To allow dA to record this information, we may impose
that switching the input vectors negates the result. (Multi)-linear functions with
this property are called alternating

dA(v,w) = —dA(w,v)

In fact, these properties alone are enough to fully determine the function dA! And,
evaluating it on an arbitrary pair of input vectors, we see the usual formula for the
determinant is forced on us.

Exercise 15.5. Using only the following facts about the function d A(v, w), derive the
standard formula for the determinant

dA((9).(5)) =ad—bc
« dA evaluates to 1 on the square (1,0), (0, 1).

« dA is alternating: dA(v,w) = —dA(w, v).
« dA is linear in both the first and second argument.
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16. 1

One of the great mysteries of mathematics is the ubiquity of certain particular num-
bers. It scarcely matters what field of mathematics you are working in, if you think
hard enough and dig deep enoughs you’ll inevitably run into the mysterious num-
ber

2.718281828459...

apearing in your calculations. (This will even happen to us, in this class, not too
far from now!) This number appears in everything from finance to probability, to
differential equations, group theory, real analysis, and non-euclidean geometry. But
this is not even the craziest of the numerical conspiracies: the true king of almost
magically ubiquitous numbers is

3.141592653589 ...

We have already met this number in this class, but our brief encounter (as the area
of the unit circle) does not provide much evidence or intution for why this should
appear everywhere in mathematics! That is the goal of this chapter: we will see that
a collection of rather remarkable properties of Euclidean space make it so that many
conceptually-different mathematical quantities are all (1) constant and (2) have values
directly related to 7. Its easiest to explain all of this via examples, so instead of further
discussion let’s just dive right in.

16.1. CircLe CONSTANTS

16.1.1. THe LengTH CONSTANT

For any circle C in the plane we can define its length factor to be the ratio of its cir-
cumference to its radius: that is, how many times do we need to lay out the radius
to equal the circumference? If we write circ(C) to denote the circumference, or ar-
clength of the circle C and rad(C) to denote the radius, the quantity we are interested
in here is just their ratio:

_ circ(C)
"0 = rad(C)
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If we write C,,, for the circle centered at p € E? of radius r, we alternatively could
express this length ratio as

length(C,,)
o(Cpp) = ——2

—
o o o O O O O

Figure 16.1.: The length factor of a circle is the number of radii needed to make the
circumference.

We use the letter 7 for this ratio as its value for the unit circle is 7 as we have defined
it previously:
7 :=1(Cp) = length(Cp ;)

Both the numerator and denominator of this definition depend on the circle C being
considered - so there’s no a priori reason to assume that this ratio should be indepen-
dent of the choice of circle. Indeed - we will see very shortly in both spherical and
hyperbolic geometry the analog of 7(C) takes different values for different circles!

But, as an incredible consequence of the existence of isometries and similarities of the

Euclidean plane, it turns out that here this number is a constant!

Theorem 16.1 (Length Factor is Constant). The ratio of a circles circumference to its
radius is a constant, independent of the circle.

Proof. Let Cp,, be any circle in the plane - centered at some point p and of some radius
r. Now let T be the translation which takes p to the origin O. Isometries preserve
distances, and thus send circles to circles. This means T(C,,) is a circle of radius r (a
distance) centered at O: in symbols

T(Cp,r) = CO,r
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Isometries also do not change the lengths of curves (Theorem 11.2), so we know that
length(C,,) = length(Cp,). And since it doesnt change distances (like the radius:
Proposition 12.3) we see that C,, and Cp have the same length ratios:

length(C,,)  length(Cp,)
- =

(Cpy) = =(Co,)

Now we will show that Cp, has the same length factor as the unit circle, and thus
our original circle had the same length factor as the unit circle! To do so, we use
the similarity o(x,y) = (Rx, Ry). This has scaling factor r, and so scales all lengths
of curves (Proposition 11.3), and all distances (Exercise 12.4) by r. Thus, o takes the
unit circle Cp ; to the circle Cp, and also takes length(Cp ;) to r length(Cp ;). Because
both the circumference of the circle and the radius got scaled by r the length factor
is unchanged:

length(Cp ;) rlength(Cy;) length(Co,)

(Coq) =
1 r

= T(CO,r)

Stringing all the equalities together, we see

T(Cp,r) = 7—'(CO,r) = T(CO,I)

Thus every circle has the same length factor as the unit circle, so the length factor is
constant. O

Definition 16.1 (The Circle Length Constant). The constant ratio of the circumfer-
ence to the radius of a circle to its radius is

length(C,,)

r

T

In Exercise 32.41 we found a good approximation to this following the method of

archimedes:
T= 96-2~\/2—\/Z N2+ 2+ V2 + V3 = 6282904 ..

Thus in any mathematical problem involving a circle’s length, the number 7(C) =
T = 6.28 ... is bound to show up: this is just the circumference measured in units of
radii!
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16.1.2. THe ArEA CONSTANT

We’ve found that similarites force the length factor of circles to be a constant - and this
explains at least some occurences of a geometric constant appearing in mathematics.
But lengths aren’t the only important quantity related to circles out there! It’s equally
natural to consider their area.

Here it doesn’t make sense to measure a circles area in units of radii, since radii are
a length and area is....not a length. Instead its more natural to measure area in units
of radii squared: how many squares with side length the radius does it take to fill up
a circle? For a given circle C, we will call this area factor n(C):

Area(C,;)

”(Cp,r) = -2

Figure 16.2.: The area factor of a circle is the number of squared radii needed to com-
pletely fill it’s area.

We use the letter 7 for this as we have already defined 7 to be this ratio for the unit
circle Cp 1:

7 :=n(Cp,) = area(Cp 1)

Again, this fraction involves quantities related to the particular circle Cp, in both the
numerator and denominator, so its totally conceivable that its value would depend on

the particular circle being considered! (And, in spherical and hyperbolic geometry, it
will).

But perhaps after seeing the crucial role of similarities in the argument for the con-
stancy of 7, perhaps you already have a sneaking suspicion that the analogous trick
will prove 7 to be constant here.

Theorem 16.2 (Area Factor is Constant). The ratio of a circle’s area to its radius
squared is constant, independent of the circle
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16.1. Circle Constants

Proof. The proof here is nearly identical to the length factor case, except we need to
use the fact that similarites scale area by the square of their similarity factor (Theo-
rem 15.3), instead of the fact that they linearly scale length.

Again since isometries don’t change distances or areas we can move an arbitrary
circle Cp; to the origin, Cp, and know that

7(Cpy) = 7(Coy)

Next we see that m(Cp,) is the same as the area factor of the unit circle, using the
similarity o(x, y) = (rx,ry), which sends Cp ; to Cp, and area(Cp ;) to rzarea(Co’l).

area(Cp 1) rzarea(Co,l) area(Cp,)
1 N r2 B r2

”(CO,I) = = ”(CO,r)

Stringing these together we see that every circle’s area ratio is the same!

ﬂ(cp,r) = ”(CO,r) = ”(CO,l)
O

Definition 16.2. For any circle C in the Euclidean plane, the ratio of its area to
squared radius is a constant denoted by

Area(Cp,)

a 2

r

This tells us that we should expect yet another constant to be popping up throughout
mathematics: anytime a discussion of circles and their areas show up, we will run
into 7 as the natural conversion factor from radius squared to area!

Archimedes could have went on to estimate the value of 7 by calculating the area of
an inscribed polygon or circumscribed polygon, by adding up the area of triangles.

Exercise 16.1 (r via inscribed areas.). The area of a triangle is half its base times it’s
height. Can you calculate the area of a polygon that circumscribes the circle to get
an approximation of 7?7 Try starting with a hexagon. Then, can you find a way to
use trigonometric identities to double the number of sides repeatedly, like we did for
circumference?

However, Archimedes did not do this...he did something much more clever.
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16.1.3. EquaLiTy

Alone these two facts don’t point towards a single, unified constnat showing up in
mathematics, rather they suggest we should be seeing two different values, 7 and z,
in two different circumstances: area and length respectively.

It was already known to Euclid that these two constants exist: in CITE PROP Euclid
shows the circumference of a circle is always proportional to its radius, and in CITE
PROP he shows the area is always proportional to the radius squared. But it wasn’t
until the work of Archimedes that we discovered the truly astounding fact that these
two constants are related to one another! Recall the main result of the measurement
of the circle

Theorem 16.3. The area of a circle is equal to that of a triangle whose base is the
circle’s circumference, and whose height is the circles radius.

Figure 16.3.: Archimedes’ measurement of the circle

Because we know the area of a triangle to be half its base times its height, this tells
us that

m? = %(Tr)(r)

Or, cancelling the factors of r and re-arranging,

T =21

That is, the two circle constants are just integer multiples of one another! This means
whether we are interested in lengths or areas, so long as we are doing mathematics
that invovles a circle this constant is going to appear. (This also explains why you see
so many formulas with a 277 in them: this is really the length constant 7! But since
they are rationally related we’ve just chosen one of them, 7 to write everything in
terms of.)
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As we have been doing throughout this section of the book, a good exercise is to prove
archimedes observation using modern techiques. We will give two approaches here,
one based on integration, and another on differentiation.

16.1.3.1. INTEGRATION

Both lengths and areas in our modern version of geometry are calculated via integrals,
so it’s no surprise that the values of 7 and r themselves are integrals. Indeed, as we
saw in Corollary 14.2 we can write the circumference of the unit circle as

1
T:J 2 dt
11—

And, from the area chapter (Corollary 15.1) we saw we can express its area as

1
7= J 241 — x2dx
-1

In this homework excercise we will use familiar calculus techniques (just u-
substitution!) to relate these integrals to one another (without evaluating either!)
giving a modern proof of Archimedes’ theorem.

Exercise 16.2. Prove that

1 1 1
dtZJ' 241 — x2dx
Jl,/l_tZ -1

Thus showing thtat g = 7.

Hint: Do u-substitutions to the integrals to make them into the same integral. The goal
isn’t to evaluate them and get a number! This is just a Calc II problem - but a tricky one,
so here’s one outline you could follow:

2

(1) Rewrite the area integrand /1 — x? as 1x

Nk Use properties of integrals to
—X

break this into two integrals, and see

1 2
2
HZT—J S —
“141—x?

(2) Now we just have to evaluate this new integral: Do the u-substitution u =

\J1 — x? to this, to show that

1 2 1
J dezj N1—wldu=nr
-1 -1

1— x2
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(This u-sub requires some work: you’ll need at some point to solve for x in
terms of u!)

(3) Now just assemble the pieces! You never completed a single integral, but you
still managed to prove that 7 = 2.

16.1.3.2. DIFERENTIATION

To give a third proof of this fundamental equality, we will start wtih the formula
defining the area of a circle of radius r:

area(Cp,) = nr?

Figure 16.4.: Area of the circle as a function of radius.

Let’s think a bit about the derivative of this function: this is easy to compute by

hand

iarea(Cp,r) = diirrz =21r
r

dr

but what does it mean? For this, we need to return all the way to the fundamentals,
and think about the definition of the derivative. To unclutter the notation, below I am
going to write area(r) for the area of a circle of radius r (the area doesn’t depend on
the center point after all!)

area(r + h) — area(r)

h

%area(r) =

The numerator here is a difference of areas - between the area of a disk with radius
r + h and a disk of radius r. This is what you get if you remove a disk of radius r from
a disk of radius r + A, so this is the area of a thin circular ring.
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Figure 16.5.: The difference between a disk of radius r + h and a disk of radius r is a
ring of thickness h.

What’s the area of this ring? In the limit as A becomes infinitesimally small (as we take
the limit to become the actual derivative) we can calculate infinitesimally: imagine
the circular ring is made of a bunch of tiny squares, whose height is h: since their other
sides fit together to form the circumference, the sum of their bases is zr. Thus,

area(r + h) — area(r) = (rr)h

With this approximation becoming exact as h — 0. But in the derivatrive we divide
by h, and are left with just zr!

iarea(r) = rr = circ(r)
dr

This is an incredibly cool fact: so we should box it off as a theorem for future refer-
ence!

Theorem 16.4. The derivative of the area function for circles of radiusr is the circum-
ference function

4 area(r) = circ(r)
dr

But now we are all but complete with our third way of proving r = 2. We know the
area function is area(r) = 7r%, and so we can take its derivative to get 2;r. Similarly,
we know the circumference formula is 77, so this relathionship simplifies to

27y = 1r

And, canceling the r (or evaluating at the unit circle, r = 1) gives the result!
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16.1.4. TRIGONOMETRIC SUBSTITUTION

The intimate relationship between 7 and 7 is so fundamental that I cannot help but
offer yet another proof of this result. This may seem wasteful but is in fact often a use-
ful thing to do in mathematics - as different proofs generalize to different situations
easier.

Here, we will focus directly on the area integral of Corollary 15.1,

1
7= J 241 — x2dx
-1

and try to directly evaluate it via the fundamental theorem of calculus (finding an an-
tiderivative, and plugging in the endpoints). To do a little pre-emptive simplifcation,
we may notice that the integrand is an even function of x so we may instead choose
to integrate on half the domain, say [0, 1], and double the result:

1
7'[:4-[ 1—x%dx
0

Now, we perform a rather clever substitution to the integral. Because we rigorously
studied the trigonometric functions we recall that cos?0 + sin’ 0 = 1, and thus if

x = sin @ we could simplify 1 — x? as

1—x%=1-sin’0 = cos? 6

Thus, \/1 — x? simply becomes |cos6|. And, because we computed the derivative of
sin @ and cos 6 in the chapter on angles, we know that

dx = d(sin0) = cos 6d0

The last portion of the integral we need to convert are the bounds. The lower bound
of x = 0 means we seek 6 with x = sinf = 0. From our defintion of sin and cos,
we see this happens at 8 = 0 since sin is the y coordinate, and 6 = 0 corresponds
to the starting point (1,0). Next, for the top bound x = 1 we seek the 0 value with
x = sinf = 1. This occurs along the positive y axis, so a quarter turn around the
circle, or 8 = r/4. Putting all these pieces together, we see

T

1 i i
J V1 —x%dx = J | cos 8] cos 0d6 = J cos?6do
0 0 0

It appears we aren’t doing much better: we didn’t know the antiderivative of y/1 — x?
which is what set all of this off, but we also don’t know the antiderivative of cos? 6!
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16.1. Circle Constants

However, the reason this type of substitution is powerful is that there arent many
square root identities out there we can use to change how a function is represented,
but there are plenty of trigonometric identities.

Indeed, from the angle sum identity we derived,
cos(a+ b) = cosacosb — sinasinb

by setting a = b = 6 and using the pythagorean identity cos? 6 + sin” 6 = 1, one can
show that

1+ cos 260
2

cos?0 =

Exercise 16.3. Derive this identity.

This lets us rewrite our integral

J4c0s20d9:J' 1+cos20 4 1J4d9+1rcoszed9
0 0 2 2 Jo 2 Jo

ENE

The first of these integrals is straightforward: its /4. For the second integral, we can
u-sub u = 26 to get

: 1(:
J c0s 20d0 = = J cosudu
0 2 Jo

But now - finally - we know the antiderivative! Since the derivative of sine is cosine,
we can compute

L
2

2
J cosudu =sinu| = sin(%) —sin(0)=0—-0=0
0

0
All that work for zero!! But, putting it all together, we see
! i 2 17
J V1 —x%dx = J cos“0df = - -
0 0 24
And going back to the very beginning we recall that 7 was exactly four times this

integral. Thus

soalT_T
2

Our fourth independent derivation that 7 = 2.
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16.2. SrHERE CONSTANTS

To talk about things in spheres and cylinders rigorously, we neeed to study a bit of
3-dimensional Euclidean geometry. We will return to this in more detail later in the
course, but here we only give a slight taste, as it is important to our overall discussion
of .

Just as a circle was the set of points a fixed distance (the radius) from a fixed point
(the center), a sphere is defined just as a circle except now in three dimenions. We
found the equations for distance minimizing curves in 2D to be affine, and that let us
find the distance formula dist((x, y), (h,k)) = \/(x — h)? + (y — k)2 and consequently
the fomrula for a circle (x — h)? + (y — k)? = r2. All of this carries through with no
changes in three dimensions, where the distance formula becomes

dist ((x, 7, 2), (B, k. ) = \[Gx = )2 + (3 = k)% + (z — 0)?

And consequently, the sphere centered at (h, k, £) of radius r has the formula

(x—hP+(@y—k?+(z—-0)?>=r?

The surface area of the sphere is defined exactly as we have done in the plane, by
dividing its surface into infinitesimal parallelograms d A, and then integrating the area
of these parallelograms to get the final answer. The volume is defined analogously,
except we now need a notion of infinitesimal volume in 3-dimensions. Volume of an
infinitesimal 3d rectangle is given by length times width times height, or in symbols

dV = dxdydz

and so three dimensional volumes are calculated by three iterated integrals instead of
the double iterated integrals for area.

16.2.1. FunpAMENTAL CONSTANTS

Let S, denote the sphere of radius r centered at p, just as we did for Cp,,. for the circle.
Like in two dimensions, we can define an area ratio and a volume ratio for the sphere,
comparing each quantity to the relevant power of r.

Theorem 16.5 (Surface Area Ratio is Constant). The ratio

area(S,,)
2

is constant, and independent of the sphere considered.
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Proof. The proof strategy here is exactly analogous to what we did for the length and
area constants of a circle: we prove that every sphere has the same surface area ratio
by using isometries and similarities to relate it to the unit sphere. First, we translate
Sp,r to the origin, which does not change lengths or areas. Then, we use a similarity
to scale the unit sphere to the sphere of radius r. This scales the surface area by r?
(as similarities scale areas by %) and it scales length by r. Thus

area(Sp 1) r? area(Sp 1
- 2

area(S, ) area(Sp,r)

2 2

1 r r r

Theorem 16.6 (Volume Ratio is Constant). The ratio

VOl(Sp)r)

r3

is constant, and independent of the sphere considered.

Proof. Run the same proof as above, but now notice that when we scale volume, in-
finitesimal volume is measured by dxdydz, so if each is scaled by r we get

rdxrdyrdz = r3dxdydz
Thus volumes are scaled by * under a similarity, and so

vol(Sp 1) r3vol(50,1

1 r’ r

vol(Sp,)  vol(S,,)
3 =

3
O

Just as we gave names 7 for the length constant and 7 for the area constant of circles,
we may be tempted to give names to these two new fundamental constants that we
just discovered. And, temporarily we will do so, but these names will not stick around
for long - we will instead find both to be related to the circle constants! To keep things
concise during their breif existence we will name the surface area constant Cs,, f and
the volume constant Cy ;.

16.2.2. RELATIONSHIP TO TT.

The work Archimedes was most proud of we have barely discussed yet in this class.
In his book The Sphere and the Cylinder, Archimedes managed to find a relationship
between the formulas for the surface area and volume of a sphere, and relate them to
those of a cylinder. This was of course a big deal because the volume of a shape with
curved sides had never been caclulated before, but it was an even bigger deal the form
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that the answer took. Specifically, Archimedes found that for surface area, the area
of the sphere is exactly equal to the area of the round side of a the smallest cylinder
that can enclose it (whose radius is the same as the spheres, and whose height is the
sphere’s diameter)

Figure 16.6.: The cylinder and the sphere have the same surface area.

In modern notation, we would write this relationship with a formula. A cylinder is a
rolled up rectangle, and so we can calculate its area with base times height. The base
is the circumference of the cylinder (so, 77 since this is a circle!) and the height is 2r.
Thus

area(S,,,) = (r)(2r) = 2rr?

Because we already proved 7 is related to x via 7 = 27 we often instead see this
written as

area(Sp’r) = 47712

This tells us immediately the value of the surface area constant, as its definition is
just the surface area over r?!

Theorem 16.7 (Value of the Surface Area Constant).

area(S;,)

Csur f = 2

r
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We will prove this using modern tools below, but I'll postpone the proof until we talk
about Archimedes other great discovery - calculating the volume of a sphere.

Through an ingenious argument by slicing, Archimedes showed that the volume of
the sphere is the same as the volume of the following complicated sounding shape:
the volume in between the cylinder enclosing the sphere (from above), and the double
cone that fits inside it:

Figure 16.7.: Archimedes’ calculation of the volume of a sphere by comparing its slices
with the complement of a cone in a cylinder.

Archimedes original argument was by slicing: he imagined slicing each of these
shapes by a plane at different heights, and he showed that at any given height z,
the cross sections of the two shapes had the same area.

Exercise 16.4. Confirm Archimedes claim: show the slice of a sphere and cylinder-
minus-cone at height z have the same areas, for any z.

Then Archimedes noted that the volume of a region is the integral of the area of its
slices (of course, not using these words, as they were not to be invented for another
1800 years!) and so two shapes with all the same cross sectional areas must have the
same volumes.

He next computed the volume of a cylinder to be the area of its base times its height,
and the area of a cone to be 1/3 its base times height. This gave him the formula

vol(S,,) = (nr)(2r) - %(nrz)(Zr) - g(m’z)(Zr) - ;-‘m3

But this immediately gives us the value of the sphere volume constant in terms of
7r: thus all the constants for circles and spheres are just rational multiples of a single
mysterious number!
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Theorem 16.8 (Value of the Volume Constant).

vol(S,,r) 4

Cyop=——5—=-n71
Vol r3 3

Archimedes found this fact so striking and so beautiful that he asked for a Sphere and
a Cylinder (the key ideas in this proof) to be engraved on his tombstone. As far as we
can tell in the historical record, his wish was heeded when he died in 212BCE- but
his grave was quickly forgotten to those living on his native island of Syracruse.

However, in 75BCE, the great Roman orator Cicero was visiting Syracruse and
searched out Archimedes - then already known as the greatest mathematical mind
in history, and found it due to this carving. In his own words:

“Once, while I was superintendent in Syracuse, I brought out from the
dust Archimedes, a distinguished citizen of that city. In fact, I searched
for his tomb, ignored by the Syracusans, surrounded on all sides and
covered with brambles and weeds. The Syracusan denied absolutely that
it existed, but I possessed the senari verses written on his tomb, according
to which on top of the tomb of Archimedes a sphere with a cylinder
had been placed. But I was examining everything with the eyes ... And
shortly after I noticed a small hill not far emerged from the bushes. On
it there was the figure of a sphere and a cylinder. And I said immediately
to the Syracusans “That’s what I wanted!” > Cicero, 75 BCE

16.2.3. MobperN COMPUTATION

Having seen the beauty of the results which we are after, we will now seek to prove
them with modern (calculus-based) methods. We find the volume of the sphere by
slicing into disks, and we know the area of a disk from slicing it into line segments!

G2

Figure 16.8.: Slicing a sphere allows us to calculate volume by integrating the area of
the slices.
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Because we know the number we are after is constant we are welcome to work directly
with the unit sphere so that extra letters like radii don’t complicate our lives. Call this
sphere S = Sp 1. Then

o= [ v= ([ )

r

Where G, is the circle of radius r that we get by slicing horizontally at height z. Be-
cause we know the area of a circle formula is 77° we can subsitute this into our
integral, and reduce it to a single integration!

1
vol(S) = J r’ dz
-1

All that remains is to figure out the radius of the slice at height z. This is easiest to
do by looking at a side view where we can use the distance formula in a plane:

iz,

YT 72,

Figure 16.9.: The radius of a slice at height z satisfies r? + z% = 1s0r = \/1 — 2.

Alternatively we may just do this algebraically, and note that if x2 + y2 + z? = 1 then

x? +y? = 1 — z2, so at height z the points (x, y) lie in a circle whose radius-squared

isl—zz,or

r(z) =1 - 22

Now plugging this into the area-of-a-disk formula, we can continue our integration
by slicing:
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2

vol(S) = -[1 T (\/1 - zz) dz
-1

Because a homothety multiplies each infinitesimal length by its scaling factor, it in-
creases the infinitesimal volume by the cube of the scaling factor. Thus, scaling up
from the unit sphere to a sphere of radius r scales this as

vol(S,,) = ;—1717’3

Now, we can apply everything we learned thinking about circles to give a quick mod-
ern derivation of the area constant: area is the derivative of volume!

PICTURE

The reasoning goes through exactly analogously here: the difference quotient vol(r +
h) —vol(r) is a thin spherical shell of thickness h, so its volume is approximately the
surface area of the shere times h, and this approximation becomes exact as h — 0.
Thus

area(S,,) = %VOI(SPJ) = %;—170‘3 = 4712

16.3. HigHer DiMENISONS

What about the fourth dimension? Can we fiigure out how spheres work there? The
fact that lines are given by affine eqautions holds true in all dimensions, which allows
us to write down the distance formula in 4D and the equation of a sphere exactly as
before.
To keep things simple we can start again with the 4-dimensional unit sphere, which
is described by

x2+yz+:52+w2 =1

Let’s call this sphere H (or Hp ;) for hypersphere. We wish to find H’s volume by slic-
ing, where we take three dimensional slices with constant w: these slices will intersect
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the 4-dimensional ball by solid three dimensional balls much as we sliced the 3D ball
into filled in 2d circles, and sliced circles into intervals!

It’s going to get difficult to keep dimensions straight here, so I'm going to start sub-
scripting our volumes: I'll write vol; for the usual three dimensional volume we know
and love, and I'll write voly for the new four dimensional hypervolume. This slicing
tells us

voly(H) = Jll (Hs dxdydz) dw

1
= J vol3(S,)dw
-1

1
= J é7Tr?’ dw
13

This leaves us once again with a single integral to do! And all we need is the rela-
tionship between the radius r and the height w, which is exactly the same as in the
dimension below:

r(w) =1 —w?

In theory, all we have to do now is plug this in and integrate! In practice this integral
is a bit more challenging than we have come across before (though nothing that you
haven’t seen already in a Calculus II course)

ar (" 3
VOl4(H)=?”J1< l—wz) dw

This integral requires a trigonometric substitution to complete. It’s perhaps easier to
deal with the bounds if we first realize the integral is an even function, and so we
could instead just integrate on [0, 1] and double the result:

1
gJ (\/1— dW——J' (1 2)Zdw

-1

Now we can make the substitution w = sinf, where we find w = 0 corresponds to

0 = 0 and w = 1 corresponds to 8 = 7/4 (as sint/4 = 1). After this substitution we
have
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3

/4 3
voly(H) = 8?” L (1 — sin® 9)2 d (sin 0)

[*

o
3

: 3
J' ) (cos? 0)2 cos 0d6
0

= 8£J4 cos* 6d6
3 Jo

Now we have yet more work, as we have arrived at the integral of the fourth power of
cosine. This requires some trigonometric work with the double/half angle identites
we proved:

Exercise 16.5 (Integrating cos*(#)). Use the identity cos® x = %(1 + cos 26) twice to

show that
cos20  cos40

4 8

cos*(9) = 3 +
8
Then use this to confirm that

1
J cos49=§Z
0 84

Putting this together with the above, we finally reach our answer (using that r =
27r)

8t 371 T 2
voly(H) = —=—-=— = —
=i 773

This is the first time that our constant has not been a rational multiple of 7z, but
instead a rational multiple of 72! Since homotheties scale four dimensional volumes
by a factor of r*, we get that the full volume formula for a hypersphere of radius r

Theorem 16.9 (Volume of the Hypersphere). The volume of the 4-dimensional hyper-
sphere of radiusr is

77.'2 4
voly(H,,) = 57

From this we can get the three dimensional surface area by differentiation. Again to
keep things straight, I'll write areas for the three dimensional analog of surface area
in 4D space, and area, for the usual 2D area in 3D space that we have thus far been
just calling area.
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Theorem 16.10 (Surface of the Hypersphere).

2
areaz(H,,) = %VOL;(H ) = %%’A — 923

Thus, the 3-dimensional surface area constant for hyperspheres is 2:7: also a multiple
of % because it arose from differentiating volume.

Exercise 16.6. Find the volume and surface area constants for the 5-dimensional
sphere via integration by slicing (for volume) and then differentiation (for surface
area).

16.4. A Surerise IN EVEN DIMENSIONS

If you complete Exercise 16.6 above, you’ll find that the 5-volume has a rather strange-
looking constant out front:

vols = ﬁner
15

What can we do with this information? Carry on the march to higher dimensions of
course! If we try to find the volume of the unit 6-sphere by slicing, (say the axis we
slice along is called w again, for convenience) we can write

1
volg = J vols(\1 — w2)dw
-1

Unfortunately this time (again!) we cannot get rid of the square root since 5 is an odd
power, and we must resort to a trigonometric substitution w = sinf. Skipping the
now-familiar steps,

1 5 z
J (\ll—wz) dw=J4c0569d9
0 0

Now we need only expand out cos® via trigonometric identities and integrate:
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Exercise 16.7. Confirm, similarly to a previous exericse that

J' cos®0do = ix + e sin(20) + 3 sin(40) + L sin(66)
16 64 64 192

And thus, that the definite integral we are after is

i
J cos(’GdGZiz
0 16 4

Plugging this back into our original expression we get some almost magical cancella-
tion of all these constants:

| oo
N
|
|

25T
15 164

<
o
—
=N
I
Do

o R |F e
N I A

Theorem 16.11 (Volume of the 6-Sphere). The volume of the six dimensional sphere
of radiusr is

From here - if we were feeling brave - we could calculate the volume of the seven-
dimensional ball by slicing (which would not need a trig sub, as the slices are 6 di-
mensional and the sixth power will get rid of the square root) yeilding

vol; = 1—6713
105

Then use this to calculate the volume of the 8-dimensional ball by slicing (which
will now need another trig sub, which will introduce another factor of 7 through the
bound 7/4). The result here has some ugly calculation and marvelous cancellations,
ending with

vol L
87 24
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A pretty interesting pattern is arising here - using vol, for the two dimensional volume
(area) of a circle, we have

voly, =7 vol —ﬂ—z vol —ﬂ—s vol —ﬂ—4
2 4= 6= % 8= 04

It appears that the volume of the 2n dimensional ball is 7" /n!. Incredibly, this turns
out to be correct:

Theorem 16.12 (Even volumes).

bis
voly, = —
n

One way to prove this is to continue the process we have been doing, with the trig
subs and all, but via induction (and being clever, realizing we only need to know the
constant term of cos?™(f) - all the rest integrate to zero every time!)

But there’s an alternative way - one can try to integrate via slicing over two dimen-
sions at once, and get a recurrence relation relating the volume in dimension n to the
volume in dimension n — 2:

Proposition 16.1.
T
vol, = —vol,_,
n

If you’re interested in doing this - come talk to me in office hours! But now for the
truly strange part: what is the sum of the volumes of all the even dimensional balls?

n
/A
D, voly = ), T =e"

n>0 n>0 "

WHAT?! This is the series expasion of e* evaluated at 7. But it gets even crazier.
What if we add up the volumes of the spheres of radius r? This multiplies each term
by r?" (since they are even dimensional spheres) and equals

n ré)t 2
Z”_an:Z( ):em’

>0 n! =0 n!
Why in the world is the sum of the volume of all the even dimensional balls what

you get by plugging the area of the circle into the exponential function?! I have no
idea...
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Part IV.

THE SPHERE






17. FOUNDATIONS

After a rather deep dive into the foundations and history of plane geometry, we are
ready to leave the familiar behind and explore other worlds! The first new geom-
etry we will consider is....well.....actually also familiar: its the sphere. We’ve even
met this geometry in our discussion of 7, where we noted that using analogous ar-
guments to what we did in the plane, the distance formula in three dimensions is a
natural generalization of the pythagorean theorem, which provides an equation for
the sphere.

Definition 17.1 (The Sphere (Points)). The (unit) sphere is the set of points (x, y,z) €
R? lying at distance 1 from the origin.

$2 ={(x,y,2) € B3 | x* +y* + 2% = 1}

It’s important to remember that by sphere mathematicians usually mean the surface,
not the interior (we will call the interior of the sphere the ball). Thus, $? is two
dimensional, which is why we denote it this way, and call it the two-sphere.

The sphere has been studied since ancient times: we came across it most recently
while analyzing the work of Archimedes, but it became of particular importance out-
side of mathematics around the same time, when Eratosthenes calculated the circum-
ference of the Earth (quite accurately). But in both of these contexts we are picturing
the sphere extrinsically, from the perspective of three-dimensional beings that could
hold it in their hands.

Remark 17.1. Centuries earlier around 450BCE, the pre-Socratic philosopher
Anaxagoras correctly postulated that the earth was a sphere, floating freely in the
vacuum. But no one knew its size!

The big change in perspective here is that we are going to think of the sphere as a
geometry all on its own, just like we did for the plane! We will work with coordinates
in three dimensions to make our lives easier, but the surrounding 3-dimensional space
is of no interest or consequence to us: the only space that is “real” is the surface of
the sphere itself.

In some sense we are very used to this: as this is how we actually live our lives! Since
evolution did not grace the great apes with wings, we humans spend almost all of
our time walking around on the surface of a large sphere, unable to meaningfully
interact with the totality of the 3-dimensional space it is embedded in. However, this
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17. Foundations

isn’t totally helpful, as our two main ways of sensing the world around us, sight and
sound depend on the physics of 3-dimensional space, and are not constrained to the
sphere.

For me it is helpful to think about spherical geometry as the geometry a mathemati-
cally gifted-ant would discover if it lived its entire life on an orange weak and down-
ward pointed eyes only able to perceive its immediate vicinity on the peel. What
curves on the orange would the ant call lines? How would the ant measure angles
and distances? Does the ant’s mathematics contain the pythagorean theorem?

Remark 17.2. The first treatments of spherical geometry as a true intrinsic geometry
in its own right come not from silly thought experiments about ants of course, but
rather from navigation using the stars, where the celestial sphere modeled the sky,
and spherical trigonometry was first developed.

17.1. CALCULUS ON 2

Having put all the work into understanding a modern, calculus-based approach to
geometry in the plane, we will reap significant benefits here by seeing how many of
the ideas remain conceptually the same on the sphere. Our infinitesimal foundations
all rely on being able to take derivatives, so the first thing we should wonder is what
is the derivative of a curve on the sphere? Happily, because the sphere lives in E* and
we understand Euclidean calculus well, we can directly borrow that notion:

Definition 17.2 (Calculus on the Sphere). The sphere inherits its notion of calculus
from the 3-dimensional space it lives in: if y is a curve on the sphere then y(¢) =
(x(®), y(©), 2(1)) and y* = (x", ", 2").

To really get things moving, we need to define a notion of tangent space to each
point on the sphere. This space should be the set of all infinitesimal tangent vectors
to curves to the sphere. Here we need to put a little more thought in than we did
for the plane, where we just noted that the derivative to a planar curve was also a
2-dimensional vector, so the tangent space at each point should be another copy of
the plane. Why? Well here we have represented points on the sphere with three
coordinates, and so tangent vectors also have three coordinates. But this doesn’t mean
the tangent space at each point is three dimensional! Indeed, there are many three
dimensional vectors at each point which are not tangent to any curve on the sphere.
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17.1. Calculus on 2

Figure 17.1.: Tangent vectors to 2 at a point are the derivatives of curves passing
through that point.

Proposition 17.1 (Tangents to Curves on the Sphere). Ify is a curve lying on the
surface of the sphere passing through a point y(t) = p, then its tangent vector y’(t) is
orthogonal to p in E3.

® e

Figure 17.2.: Tangent vectors to a curve on the sphere through p € ? are orthogonal
to the point p, thought of as a vector from the origin in E3.

Proof.

This argument relied on the observation that the dot product has its own product rule,
which is a straightforward algebraic computation from its definition.
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Exercise 17.1 (Product Rule for Dot Product). Let f(¢) = (fi(t), fo(8), 5(t)) and
g@) = (g1(t), g»(t), g3(t)) be two vector functions. Prove that the dot product sat-
isfies the product rule:

% (J®-g@) = f®)- g0+ f®) - &' (1)

Definition 17.3 (The Sphere (Tangent Vectors)). If p € 2, then the tangent space sz
is the set of all vectors in E* which are orthogonal to p:

Ty) ={qgeE’[p-q=0}

In coordinates, if p = (py, po, p3).these are the points (x, y, z) such that p;x + p,y +
pP3z = 0.

Figure 17.3.: Tangent spaces to the sphere are linear subspaces of E containing all
vectors perpendicular to the position.

17.2. GEOMETRY ON 2

Now that we have points and tangent vectors, we need to bring the actual geometry
into the picture. In our original development of E? we encoded all of geometry via
the notion of an infinitesimal length. We then went on to develop all the higher level
concepts like lengths of curves, and eventually angles - before discovering that the
we could measure angles easily with the dot product! But since we can also measure
infinitesimal lengths with the dot product, we saw that we could alternatively take
this as the basis of all of geometry. We will take this bold new approach here with
the sphere.
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Definition 17.4 (The Sphere’s Dot Product). If v = (v;,v5,v3) and w = (wy, wy, w3)
are two tangent vectors on the sphere based at a point p their dot product is computed
using the standard dot product on E3:

VW 1= VW + oWy + V3w3
This gives rise immediately to our notion of infinitesimal length:

Definition 17.5 (Infinitesimal Length on ). Given a vector v = (v;,,, ) in the
tangent space T,2, the infinitesimal length of v is the square root of its dot product
with itself:

vl =Vv-v= v12+v22+v3‘?‘

Thus, each tangent space comes with an infinitesimal version of the pythagorean the-
orem, just like we had for E?! Remember what tangent spaces are all about: they’re
encoding the result of a limiting process of infinite zoom: the fact that we see the
pythagorean theorem here on the tangent space is just the statement that zooming
in on a point, a sphere appears to be flat! This we are quite used to from living on
the surface of the earth. The magic we will see soon is that in fact all of spherical
geometry can be recovered from this infinitesimal flatness.

Remark 17.3. Some people are too impressed by this fact, and have the mistaken im-
pression that the earth actually is flat!

To define the length of a curve on 2 we follow the exact approach from E?, and use
integration to promote thse infinitesimal lengths to finite ones.

Definition 17.6 (Lengths of Curves on 2). Length of a curve is the integral of its
infinitesimal lengths:

length(y) = L Iy (ld

Now for angles, our new foundations make everything much easier! Instead of work-
ing hard (to define an angle as the arclength of the unit circle in the tangent space,
spanned by two tangent vectors at a point), we instead note that we already know
how this is related to the dot product in Euclidean space, and we know the tangent
space IS euclidean (Definition 17.5). Thus, we can take the relation to the dot product
as our definition:

Definition 17.7 (Angles on 2). The angle between two vectors on the sphere is de-
fined using the inner product:

vew
<(v,w) = arccos( )
[vilwl
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Where here arccos can be calculated by the integral expression we derived in Propo-
sition 14.2 (or by your calculator, which does this faster!)

Exercise 17.2. Consider the curves a(t) = (cost, sint, 0) (the equator of the sphere),
and f(t) = (0, sin(t), cos(?)) (a line of longitude). Prove that they

« Intersect each other at the t = /2
« Form a right angle at their point of intersection.

17.3. |SOMETRES OF 2

Our fundamental tool for working with Euclidean space was isometries. In our de-
velopment of the geometry, we tried to seek out as many isometries early on as we
coould, and then continually used them to make our lives easier: moving points to
the origin, lines to the x-axis, and so on.

The same approach will prove benificial on the sphere: it’ll be nice to be able to move
points to the north pole, or circles to the equator when we desire. So, let’s track down
some isometries! But first - what is an isometry here? We defined an isometry before
as a function which preserved infinitesimal lengths, but that was because infinitesi-
mal lengths were the foundation of our geometry. Now we’ve decided to take the dot
product as our foundations so, perhaps we should change our definition of isometry
here too?

Definition 17.8 (Isometries on 2). An isometry of 2 is a function ¢ : 2 — 2 which
preserves the dot product. Precisely, this means that if p € 2 is a point and v, w € sz
are tangent vectors, then

v-w = (Dgyv) - (DFyw)

However, it doesn’t actually matter which we take as our definition (preserving in-
finitesimal length, or the dot product) they pick out precisely the same class of maps!
In practice, when we want to prove something is an isometry, we will either show
it preserves the dot product, or that it preserves infinitesimal lengths, whichever is
easier. This perhaps surprising claim is justified by a result:

Theorem 17.1. A function f: 2 — 2 (or E> — EZ?, or E> — E3...) preserves all
infinitesimal lengths if and only if it preserves the dot product.

One direction of this theorem is straightforward: if a map ¢ preserves the dot product,

then it certainly preserves infinitesimal lengths! After all, preserving the dot product
means that for any vector v, we have

v-v= (D¢pv) : (D¢pv)
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But length is just the square root of this expression, so this immediately implies |v| =
IDg,v|. The perhaps more surprising direction is the reverse: if a map preserves
all infinitesimal lengths, then it actually preserves the dot product. The trick here is
to show that it’s actually possible to compute the dot product of two vectors using
infinitesimal lengths (the reverse of what we did above!)

Exercise 17.3 (Dot Products from Lengths). Prove that if v, w are two vectors then
the following equation is true:

v +wl? = WP + [wl? + 2v, w)

Solve this for the dot product (moving all the other terms to the other side of the
equation), and then prove the following fact: if |u| = |Dg,ul for all vectors, then
v-w = (D¢,v) - (DP,w) (Hint: apply D¢ to the equation!)

Because isometries are defined using the same basic machinery here as Euclidean
space (preserving infinitesimal quantities) the theorems we proved there about their
composition and inversion carry over without any change:

Theorem 17.2. The composition of any two isometries of the sphere is an isometry, and
the inverse of any isometry of the sphere is an isometry.

So to find isometries of the sphere we just need to track down functions on E* that
preserve the dot product. But in linear algebra at least, such functions already have
a name!

Definition 17.9. If A is a linear map E" — E" such that preserves the dot product
(Av) - (Aw) = v - w, then A is called an orthogonal matrix.

Example 17.1. The linear map (x, y, z) — (x, y, —z) is represented by an orthogonal
matrix:

S O =
S = O
(=]
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Figure 17.4.: The isometry (x, y,z) — (x, y, —z) on the sphere.

Exercise 17.4. A permutation matrix is a square matrix where every row and column
has exactly one “1”, and the other entries are zero. Prove the following permutation
matrix is an orthogonal matrix:

S = O
S O =
_ O O

These maps preserve the dot product on E?, but we need a little more than that to be
sure they are isometries! Isometries of the sphere need to actually be maps 2 — 2.

Corollary 17.1. If$(x) = Ax is an orthogonal transformation of E3, then ¢ sends the
unit sphere to the unit sphere.

Proof. Since A is orthogonal it preserves the dot product. THus it preserves infinites-
imal lengths, and so it preserves distances in E3. This means if p € 2 (so that p is
distance 1 from the origin O) then ¢(p) is also on the sphere (its distance 1 from ¢(O),
but ¢ sends the origin to itself, because its a linear map). O

Putting these facts together gives the following powerful theorem telling us tons of
isometries of the sphere! (In fact, these are all the isometries of the sphere. But we
don’t need that here)

Theorem 17.3. If A is an orthogonal matrix, then the function p — Ap is an isometry
of the sphere.

This theorem gives us access to tons of isometries: all we need to do is track down
orthogonal 3 x 3 matrices. We’ve already seen a couple explicit examples above (the
reflection (x, y,z) — (x, y, —z) and the permutation matrices in the examples), but it
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will prove useful to dig a little deeper and try to figure out what kind of matrices are
orthogonal. The following theorem of Linear Algebra gives us a complete classifica-
tion:

Theorem 17.4. A matrix is an orthogonal matrix if and only if all of its columns are
unit vectors, and each column is orthogonal (hence the name) to every other.

Now that we know the algebraic description of isometries (3x3 number squares where
all the columns are orthonormal) we turn to the geometry: what do isometries of the
sphere do?

The two most useful properties of isometries by far in E? were the ability to move
points around, and the ability to rotate any tangent vector to any other: these were
the properties we called homogenity and isotropy. It was these two properties that
gave the plane its incredible symmetry.

The sphere is of course very symmetric looking as well, and we are used to from our
experience in day-to-day life with the ability to rotate a sphere any which way we
like. But now we should prove it:

Figure 17.5.: Any point can be sent to the north pole of the sphere, or equivalently,
you can send any point to the north pole via an isometry.

Proposition 17.2 (Any Point Moves to the North Pole). Let N = (0,0, 1) denote the
north pole of the sphere, and p and arbitrary point on the sphere. Then there is an
isometry of > which moves N to p. (And thus its inverse moves p to N).

Proof. We will find an orthogonal matrix A so that the isometry ¢(x) = Ax takes N
to p. Since N = (0,0, 1), applying a linear map A to the vector N gives us the third
colum of A. So, to begin to assemble such a map we will make its third column be p:

* %k P
A=1|* = §2)
* %P3
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Now we just need to find values for six missing entires so that the all columns are
orthogonal and unit length. In fact, there are many ways to do this! And we don’t
need any explicit solution we just need to know of their existence. So we will work
column-by-column.

Call the second column of this matrix u = (uq, uy, u3). We know this must be orthog-
onal to p, so we have an equation this must satisfy:

U-p=up +uspy +uzps =0

This is a single linear equation in three variables, and so it has many solutions (a
two-dimensional space of solutions, in fact)! Taking any solution, we can rescale it
to unit length, and use that as our second column.

Now for the first column, we have three unknowns (its three entires): but we have
two equations - it must dot product with both the second and third column to zero.
This still has an infinite number of solutions (in linear-algebra-speak, there’s one ‘free
variable’), and choosing any solution and normalizing it gives a viable first column.

O

Remark 17.4. The argument I give here is a soft or qualitative argument: we prove
the existence of something without actually computing it. If you would like to actu-
ally compute a specific matrix that takes N to p (which is often useful in real-world
applications of spherical geometry), you can do so by starting with any two vectors
u, v where that {u, v, p} is linearly independent, and apply the Gram-Schmidt process.

Theorem 17.5 (The Sphere is Homogeneous). Given any two points p and q on the
sphere, there is an isometry taking p to q:

Proof. Let N be the north pole of the sphere. Then by Proposition 17.2, we can find
an isometry |phi taking N to p, and another isometry i taking N to gq. We will apply
our by-now-standard trick, and compose one of these with the inverse of the other!

Specifically, the map ¢! is an isometry which takes p to N, and ¢/ takes N to g so
the composition ¢/ o ¢~ takes p to g, as desired. O

Next, we wish to see the sphere is also isotropic. We will do this in two parts (just
like we did for E?)! First, we show that you can rotate the sphere about some specific
point, and then we use homogenity to show we can actually do this at any point.
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Figure 17.6.: Rotating the sphere about a point.

Proposition 17.3. Let N be the north pole, and v be any unit vector in Ty, Then there
exists an isometry ¢ of the sphere which fixes N and takes (1,0,0) € Ty? tov.

Proof. First, what sort of a vector is v? Its a unit vector in TNZ, but what set of vectors
is this? By Definition 17.3, its the set of vectors orthogonal to N = (0,0, 1). That is,
the vectors (v;, v, 0): its a horizontal Euclidean plane! So, (v;, ) is a unit vector in
this plane, and we want to rotate (1,0) to this vector, and we know a matrix in the
plane (from Euclidean geometry!) that does this:

Vi —W
2
How can we write down a transformation of E> which does this to the horizontal

plane and fixes the vertical direction (thus fixing N)? We can just insert it as the top
2 x 2 block of the matrix:

Its easy to see that this takes (1,0, 0) to v: as v is the first column of this matrix! So
all we need to see is that this is actually an isometry: that A is an orthogonal matrix.

But this is likewise straightforward: we can take the dot product of any two columns
and see we get zero (try it!) and, each column is unit length (because v was by hy-
pothesis, and (0, 0, 1) is). O

Exercise 17.5. Use Proposition 32.3 and Theorem 32.1 to show the sphere is isotropic:
that given any point p € 2 and any two unit vectors v,w € sz, there exists an

isometry of ? fixing p and taking v to w.
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(Hint: first show you can do this when p is the north pole! Then use homogenity and
a conjugation)

Now we have access to isometries that can move any point to any other point, and
also rotate any vector to any other vector. This prepares us to prove the analog of
the Euclidean theorem Exercise 32.28.

Exercise 17.6. Let p, q be any two points on the sphere, and v a unit vector at p and
w a tangent vector at g. Then there is an isometry of  taking (p, v) to (g, w).

Figure 17.7.: The sphere is homogeneous and isotropic.

These are essentially all the facts that we will need about isometries of the sphere! But
we would be remiss to not mention one very useful dichotomy between isometries of
the sphere: the familiar groups of rotations vs reflections. Like everything else we’ve
studied in this section, this concept is also captured infinitesimally (ie with linear
algebra).

Definition 17.10. An isometry of the sphere ¢(x) = Ax is a reflection if the det A =
—1 and is a rotation if det A = 1.

This lets us see computationally that the matrix in Example 17.1 and ?@exm-
permutation-orthogonal are both reflections, whereas the matrix we created in
?@prp-sphere-homogeneous-step is a rotation.

Exercise 17.7. Prove that you can find a rotation which takes N to any point p of
the sphere.

(Hint: our earlier construction produces an isometry, but we don’t know if its a rota-
tion or reflection. If it is a reflection, can you modify it somehow so that it becomes
a rotation, without changing the fact that it sends N to p?)
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Now that we’ve made it through the fundamentals of spherical geometry, we are
ready to move on from the infinitesimal to the actual, finite geometric properties we
are usually interested in.

In this section, again much of the details will be similar to what we have already
seen in the Euclidean plane, and because of those similarities we will be able to make
rather fast progress. However the actual statements we can prove will start to differ -
signaling something is truly different about this geometry. We will take up the cause
of this difference - curvature - in the following chapter.

18.1. LINES

In Euclidean geometry we considered several distinct definitions of the term line, and
then proved that all three definitions pick out the same class of curves. This allowed
us the freedom to freely switch between the three definitions,

+ Length Minimizing
« Straightest
« Lines of Symmetry

when convenient. The same holds for the sphere: when we are seeking the fundamen-
tal curves of this geometry we can either look for length minimizers, or for curves
that do not turn, or curves that are fixed by an isometry.

I will often call a curve satisfying any of these three equivalent properties a line, be-
cause these curves play the same role in the theory of the sphere that our original
lines do in the plane. But theres a more ancient term which originated with the sphere,
and is now commonly used for this generalization of line all across mathematics.

Remark 18.1. Careful readers will notice that here I am just claiming that all three
definitions remain the same on the sphere, we have not yet proved it. We will prove
it in time, but it will be best to wait until we have developed some more tools, so we
can avoid difficult and unenlightening integrals.

Definition 18.1 (Geodesic). A geodesic on the sphere is a curve satisfying any of the
three equivalent properties which defined lines in the plane.
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The term geodesic is Greek, originally deriving from yewdaicia, or division of earth,
as a line across the surface of the earth divides it in two. This grew into geodesy or
measurement of the earth in english, and then to geodesic in mathematics.

18.1.1. Curves Fixep BY |SOMETRIES

Because we just spent all this effort dealing with isometries it will turn out to be eas-
iest to discover which curves are lines using the lines of symmetry definition. Recall
that we say a point p is fixed by an isometry ¢ if ¢(p) = p. Analogously, we say that
an entire curve y is fixed by ¢ if for each value of ¢, the point y(¢) is fixed by ¢ - like
the line a mirror sits on when it reflects the plane. What is the analog on 2?

Example 18.1. The equator (x, y, 0) of the sphere is a geodesic.

Proof. Consider the first isometry of the sphere we met, (x, y,z) = (x,y, —z). Which
points are fixed by this? Well, if z is nonzero the point is not fixed, as its sent to a
point with third coordinate —z. However, whenever z = 0 this point is fixed by the
isometry! Thus, the set of points (x, y,0) on 2 is fixed, making it a line of symmetry,
and thus a geodesic. O

This is the first major difference between the sphere and the plane: we found a
geodesic on the sphere, but that geodesic closes up, and is finite in length!

Corollary 18.1. Euclid’s Postulate 2 is false for the sphere, as line segments cannot be
extended indefinitely: once you extend a segment of the equator to length T = 27, it
closes up!

From our perspective as 3-dimensional beings looking at the sphere one easy way
to describe the equator is that its the intersection of a plane through the origin with
the sphere. Such things are called great circles (for a reason we’ll understand better

shortly)

Definition 18.2 (Great Circle). A great circle is a curve on the sphere which is the
intersection of 2 with a plane passing through the origin in E3.
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Figure 18.1.: A great circle is the intersection of the sphere with a plane through the
origin.

So far, we know that one great circle is a geodesic. But we also know tons of isome-
tries of the sphere! And just like we did for Euclidean space (where we started only
knowing the x-axis was a line) we can use these to find all the other lines:

Theorem 18.1 (Great Circles are Geodesics). Let C be any great circle on?. Then C is
a geodesic.

Proof. Just like we did for the equator, our goal is to find an isometry of 2 which fixes
the great circle C. Our strategy will mirror when we did this in Euclidean space -
we’ll find an isometry that takes C to the equator, and then use the fact that we know
how to reflect in the equator to figure out how to reflect in C.

But how to do this? Well, the isometries we found for 2 are all orthogonal transfor-
mations, which take pairs of orthogonal vectors to other orthogonal vectors (in fact,
they preserve the entire dot product, and thus the angle between any two vectors of
course). Since the natural language we have available for talking about isometries
discusses orthogonality, how could we describe the equator using this language?

The equator is all the points which are orthogonal to the north pole N = (0,0, 1)!
Similarly, our great circle C is the intersection of ? with some plane P - and this plane
has a unit normal vector v € E3, where we can describe C as the points of the sphere
which are orthogonal to v.
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Figure 18.2.: Every great circle is a geodesic, as it can be moved via an isometry to the
equator.

With this simple observation, we are already almost done! We know that we can find
an isometry which takes N to v (Proposition 17.2), so call such an isometry ¢. Because
of how we constructed these isometries, we know ¢ is an orthogonal transformation,
and preserves angles. Thus, if p is any point of ? orthogonal to C, its sent to a point
which is orthogonal to N! This means the circle C is sent to the equator, as required.

Now let R(x, y,z) = (x, y,—z) be the reflection in the equator that we used to prove
it was a geodesic. From R and ¢ we can build the isometry

Y=¢oRog!

This takes C to the equator, reflects in the equator, and then returns the equator to C.
Thus any point on C is unchanged by ¢, so C is a fixed curve by this isometry - its a
geodesic! O

The realization that great circles are geodesics has another nice corollary - it makes it
easy for us to draw a line between any two points of the sphere! This was the content
of Euclids’ axiom I, so we may say that this still holds on 2.

Remark 18.2. In modern mathematics, the ability to draw a geodesic between any two
points of a space remains very important - spaces where you can do this are called
geodesic metric spaces.

Proposition 18.1. Given any two points p and q of 2, its possible to draw a geodesic
segment connecting them.
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Figure 18.3.: A great circle can be drawn through any two points.

Proof. 1f p, q are two points of the sphere, form a plane P through the origin contain-
ing both p and g. (When p is not exactly opposite g on ? they are linearly independent,
so this plane is just their span. If p = —q then you can take any plane you like con-
taining the line of multiples of p). This plane intersects the sphere in a great circle
containing both p and g, so there is a geodesic of 2 that passes through pand q. [

Instead of describing geodesics as connecting two points, we can also describe
geodesics in terms of their starting point and a starting direction. Like we did in
Euclidean space, we can use Exercise 32.52 to see that given any point p and any unit
tangent vector v on the sphere, there is a geodesic passing through p in direction v
(use this exercise to translate the equator, which passes through (1, 0, 0) with tangent
(0,1,0) to p and v respectively).

<

Figure 18.4.: There is a unique geodesic through each point p on the sphere, in each
direction v.
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18.1.2. STRAIGHTNESS ON THE SPHERE

This section is suggested - but optional - reading, as we have already found all the
geodesics above! But, while the definition of line of symmetry was the easiest to
translate onto the sphere, its worth pausing a bit to talk about how we might define
straightness here. In Euclidean space we said a curve was straight if its tangent vector
did not change in time. But this definition will not do for 2! Indeed, any curve whose
tangent vectors do not change in time can be written as an affine equation, and none
of these lie on the sphere!

What does “straight” mean on the sphere? It still means “does not turn”, but we must
be careful since we are working with the sphere inside of R®, and all curves restricted
to the sphere bend with the sphere itself.

Definition 18.3 (Spherical Acceleration). If y is a curve on the sphere, its spherical
acceleration at p is the projection of y’’ onto the tangent space sz.

Figure 18.5.: Spherical acceleration of a curve (short yellow vector) is the projection
of y’’ onto the tangent space.

This definition is precise, but not useful - we would like to have a formula which will
let us compute the exact value of the spherical acceleration of any curve. And to get
one - we need to do some Euclidean geometry! The key will be the ability to project
a vector onto a plane.

Theorem 18.2. Let P be a plane in E3 with normal vector ii. Then ifv € E3 is a vector
(a point, thought of as a vector from the origin), the projection of v onto P is given by

proj(v) = v — rn,
n-n
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Proof. Let v be any vector, and P a plane with normal vector n.

1,

T /P

Figure 18.6.: The projection of a vector v onto a plane P

Our goal is to figure out how much of the vector v lies in the plane P, and our approach
will be kind of backwards. We will figure out how much of v is not in the plane, and
the subtract this!

To figure out how much of v is not parallel to the plane P, we need to figure out how
much is in the direction of the normal vector n. That is, we wish to compute the
projection of v onto the line spanned by n:

T /A
/ | /f

Figure 18.7.: The projection of a vector v onto the normal vector n to a plane.

This is actually a problem of Euclidean plane geometry, which we can solve using
angles and the dot product! Let’s look just in the Euclidean plane containing v and n,
where the projection of v onto n forms a right triangle with hypotenuse v. From here,
we can see the quantity we want is |v| cos 8, where 6 is the angle between v and n.
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Iv] cos&r

Figure 18.8.: Calculating the projection of v onto the line spanned by n.

But, we also know that cos 8 is defined in terms of the dot product!

v-n
cosf = ——
[vilnl

Thus, the projection onto n is

v-n v-n
[Vl cos € = |v] =
Wilnl - Il

This is the length of the projection of v onto n: what we need now is a vector in the
direction of n, which has this length. The solution? Just multiply by the unit vector
in direction n!

v-n i
Inl I

This can be simplified algebraically, since we have two copies of |n| in the denomina-
tor now:

Phew! But - this is the amount of the vector not in the plane. It’s exactly the part of
v that we don’t care about! To get what we want, we need to subtract this from v:

. v-n
proj=v——mn
n-n
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It'll be useful to note that this formula simplifies a bit if |n| = 1, to become just

projv) =v—(v-n)n

. This allows us to project onto any plane we wish in E3, so long as we know its
normal vector. But our goal is to project onto the tangent plane to 2, so we can do
even better, since we know exactly what the tangent spaces are. Indeed, if v is a vector
in E® based at a point p on the sphere, we can write down a projection map directly
to the sphere:

Definition 18.4 (Projecting onto sz.). If v is a vector in E® based at p, then its
projection onto sz is
proj:(v) =v—(v- p)p

Indeed, at the point p € 2, the tangent space is the set of all vectors orthogonal to p -
so the normal vector to Tp2 is just p itself! This

Corollary 18.2 (Spherical Acceleration). Given a curvey(t) on?, its spherical acceler-
ation is
accy (t) = projz(y” ()
=y"O-G"® y®)y®
Now we can formally define what it means for a curve on the sphere to be straight.
Because this process produces an equation that y has to satisfy to be a geodesic, it is

called the geodesic equation and versions of it are fundamental to modern geometry -
from the sphere to hyperbolic space to black holes and beyond.

Definition 18.5 (The Geodesic Equation for 2). A curve on the sphere is a geodesic
if its spherical acceleration is zero. That is, y is a geodesic if acc (t) = 0, or

y'®O-¢"®-y@)y® =0

Remark 18.3. This looks pretty daunting - at least in comparison to what we had
to do in Euclidean space! There, our equation for straightness was just y”/ = 0,
which we could solve by hand using Calculus I. This equation howver is much more
complicated! If we write out y in terms of components y(t) = (x(¢), y(¢), z(t)) we can
expand this equation all the way out into a system of three equations, for x, y, z:

}//I — ()/// . Y)Y
Writing y(t) = (x(¢), y(¢), z(t)) we can fully write this out as a vector equation

)2} ()
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And, this vector equation is really just a system of three equations, which I'll write
out below (expanding the dot product, which is the common factor multiplied to all
of them):

X ="x+y"y+2"2)x

y// — (x//x + y//y + zllz)y

2/ ="x+y"'y+2"2)z
In less symmetrical geometries, the only way forward from here is to actually solve
this system of coupled differential equations! However, luckily for the sphere there’s
plenty of symmetry, and we can avoid this mess.

Now its our goal to show that the collection of curves which are straight on the
sphere is the same as the collection which are fixed by some symmetry: that just like
in Euclidean space, these two notions of geodesic coincide!

Theorem 18.3 (Straight Curves on the Sphere). All great circles are straight - they
have zero spherical acceleration.

Proof. First, we start with the equator e(t) = (cost,sint,0). We need to show that
acc,(t) = 0, by computing

acc, = e’ — (¢’ -e)e

Computing we see e’/ = —e since its components are sinusoids, and so e’’ - e = (—e) -
e = —(e - e) = —1 because e lies on the unit sphere. Plugging this in, we see that
acc, = ¢’’ — (—1)e = ¢’’ + e But now we can use once more that ¢’ = —e! Thus
o _ _
acc, =€’ " +te=—e+e=0

So, the equator experiences no spherical acceleration, and thus is straight as claimed.

Next, we need to show this for an arbitrary great circle ¢(¢). Let P be the plane con-
taining this great circle, and p be its normal vector. Then since we know there is an
isometry of ? taking N to p, we have an isometry taking c(¢) to the equator e(t), and
thus its inverse is an isometry taking e(f) to c(¢): because this isometry is an orthgonal
transformation I will represent it by its matrix A, so we can write

c(t) = Ae(t)
Where the juxtaposition Ae is matrix multiplication. Now we wish to use the fact that

we know e is straight, to show that c is too. Our overall goal is to compute acc,(t), so
let’s write this out:

acc, =c¢”" —(c"" - c)c
= (Ae)” — ((Ae)"” - (Ae))(Ae)
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18.1. Lines

To simplify, we need to compute the second derivative of the composition Ae(t). Let’s
just take one derivative at a time: by the chain rule

(Ae()) = DAype ()

and, since A is a linear map it is its own derivative: DA,;) = A! Thus this simplifies to
the statement “you can pull A out of the derivative”, and similarly upon differentiating
once more:

(Ae(D)) = Ae'(t) = (Ae())” = Ae” (1)

Plugging this into our spherical acceleration formula, we find

acc, = Ae”’ — ((Ae)”’ - (Ae))Ae

There’s still plenty of simplification to be done! The first order of business is to deal
with the dot product here. Since A is an isometry it preserves the dot product by
definition:(Av) - (Aw) = v-w. Applying this in our case we can remove the As above,
resulting in

Ae”’ —(e” -e)Ae

Now, whatever e’” - e is, its just a number for each value of t. Sine A is a linear map,
we can pull it inside the map, and then use linearity to combine everything together:

Ae” — (e -e)Ae = Ae”’ — A((e” - e)e)
=A(e” —(e" -e)e)

But now we are done! Look at what we are applying the linear map A to here: its
nothing other than the spherical acceleration of the equator e! And we already know
that e is straight, so this is zero. Finally, since A is a linear map it sends zero to zero,
and so

acc, = A(acc,) = A(0) =0

Thus c is also straight! O

This argument was pretty long and algebraic, more so than many of the more geo-
metric arguments we’ve given throughout the course. I wanted to present it this way
to show the power of all the tools we built: we managed to prove something about
the curve ¢ using nothing but properties of isometries and calculus: this is how many
arguments in modern geometry proceed.
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18. Lines & Circles
18.1.3. DISTANCE ON THE SPHERE

Now that we know the geodesics of the sphere, we can really get geometry moving
by deriving the distance function.

But there is one subtlety we have to confront first. In Euclidean space, we proved
that given any two points there was a unique line segment connecting them. And
then we took the length of this line segment as the distance between them. But this
seemingly simple fact is false on the sphere! Here geodesics are circles, and given
two generic points there are actually two ways to connect them with segments of a
great circle - going around the circle one way, or the other!

Figure 18.9.: There are at least two geodesics between any two points of the sphere!
Generically, one is shorter than the other.

Exercise 18.1. True or false, between any two points on the sphere there are exactly
two geodesic segments connecting them. (Can there ever be more? If so, when and
how many?)

Of course, in general one of these is shorter than the other, and this does not pose
any big theoretical problem. We just have to amend our terminology a bit, as in the
plane we found the distance between two points was the length of the line segment
connecting them.

Definition 18.6. The distance between two points p,q on the sphere is the length of
the shortest curve connecting them. This is the length of the shorter of the geodesic
segments defined by the great circle passing through p and gq.

Believe it or not, we’ve already done all the rest of the hard work, and the distance
formula is sitting here waiting for us to realize it! First, let’s consider two points on
the equator. Since the equator is just the unit circle in the Euclidean plane (x, y, 0),
these two points determine two vectors on the unit circle, and what we want to know
is the length of arc between them.
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18.2. Circles

Figure 18.10.: Distance on the sphere is an arclength of a great circle. Thus, distance
is an angle!

But this is the definition of angle! So, in spherical geometry, we have an beautiful
relationship between distance and angle:

The distance between p and ¢ on ? is the same as the angle between them as
vectors in E°.

Even better, we spent plenty of time working out exactly how to measure angles
quantitatively, in the end discovering a nice relationship between the angle 6 and the
dot product. Furthermore, while we developed all of this material just in the plane,
isometries do not change lengths (and thus do not change angles), so we can take this
result from the Equator and apply it to any great circle on ? via an isometry:

Theorem 18.4. let p,q be two points on 2. Then the distance between them is equal to

dist(p, q) = arccos(p - q)

Just like the distance formula in E? was the key to unlocking the rest of geometry
(circles, trigonometry, and ), so is this distance formula, to unlocking the rest of the
geometry of the sphere.

18.2. CIRCLES

A circle is defined to be the set of points which are the same distance (the radius)
from a fixed point (the center). We wish to study these curves in spherical geometry,
now that we have the distance function available to us.

Like many things, its easiest to start working about a familiar point (the origin in E?,
the north pole in ?) and generalize beyond that using isometries.
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18. Lines & Circles

Proposition 18.2 (Circles about the North Pole). The circle of radius r about N =
(0,0,1) in? is given by the points

Cn, = {(x,y,cos(r)) € %}

N N

(TN

r

-

Figure 18.11.: A circle about the north pole N of radius r, and a “cross section view”
showing why all z coordinates are cosr.

Proof. We just need to see these are the points which lie at distance r from N along
2, The crucial point is that we are measuring distances along the sphere, not in E3, so

d((x,y,2z), N) = arccos((x, y,z) - N)
= arccos((x, y,2) - (0,0, 1))

= arccos(z)

Thus, for (x, y, z) to lie on the circle it must (1) be a point on the sphere and (2) have
arccos(z) equal to the radius - equivalently z = cos(r). O

Corollary 18.3 (Circles on the Sphere). Circes are intersections of planes which do
not pass through the origin with the sphere.

We see this is true in the case centered on N, as the circle consists of all points with
a fixed constant z coordinate: this is just a horizontal plane intersecting the sphere!
To argue the general case, we use isometries: we know that any great circle can be
taken to any other by an orthogonal transformation of E? - and these are linear maps
so they take planes to planes.

Thus, starting from a circle around the north pole cut out by a horizontal plane, mov-

ing this plane by an orthogonal transformation takes this plane to another plane, and
its intersection to another circle!
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18.2. Circles

Figure 18.12.: Every circle on 2 is the intersection with some plane not through the
origin.

We have come across two distinct curves on the sphere which can be described as the
intersections of the sphere with planes. First, we had the great circles, corresponding
to planes through the origin, which are the spherical analog of straight lines. These
second ones are planes not through the origin, which correspond to geometric circles.
What is going on here - how can these two different classes of curves seem so similar?
After all, just shifting a plane slightly downwards can turn it from something curved
(a circle) to something straight (a geodesic).

Figure 18.13.: On 2 both circles and geodesics can be found as intersections of planes
with the sphere.

In fact, this is not as strange as it seems at first, and there’s a sort of analog happening
already in the Euclidean plane. Here, as a circle’s radius grows larger and larger, the
circle itself appears ‘straighter’ nearby. The difference is that this only becomes exact
in the limit where the circle’s radius goes to infinity, whereas on the sphere, this
straightening of circles happens at a finite radius: r = 7/4.

18.2.1. Area AND CIRCUMFERENCE

Now that we know what the circles on ? are, its time to get quantitative and study their

radii and circumference. In Euclidean space, we used isometries to show that any two

249



18. Lines & Circles

circles of the same radius could be brought to one another. This same argument goes
through without change on the sphere:

Exercise 18.2. There is an isomery taking any circle of radius r to any other.

This was our first step to understanding the length constant r: because isometries
do not change lengths, this told us that every circle of radius r has the same circum-
ference. And now, we know the same thing for the sphere! But the key step to
understanding 7 and 7 was figuring out how circles of different radii were related.

Theorem 18.5. The only similarities of the sphere are isometries: there are no maps
which non-trivially uniformly stretch infinitesimal distances.

Proof. Let ¢ be such a similarity, which scales all infinitesimal lengths by k. Then ¢
preserves the dot product, and sends infinitesimal squares to other squares, expanding
their area by k?. This doesn’t sound like a problem, until you remember that the entire
spherical universe has a finite area!

The area of the unit sphere ? is 47, and if o : 2 — 2 is the supposed similarity above,
it would take this area to an area 47k?. But - this map is supposed to take the sphere
to the sphere (it can’t take it to a larger sphere in E*: that’s a different space)!

Thus, since the image is the same sphere we know that its area is still 47, so ark? = 4r,
or k? = 1. Thus, the only possibility is k = 1 (as k is the scaling factor, a positive
number), which corresponds to isometries. O

This simple fact - that ? does not have any similarities - has profound consequences
for its geometry. First off, it assures there’s no hope of generalizing our proof that
circumference/radius is a constant. Of course, this does not guarantee that its not a
constant (perhaps we just need a different style of argument). To see what’s really
going on, we need to do some computations!

Before diving into the general case, its helpful to look at a couple of special cases:
we will consider circles of very small radius, great circles, and circles of very large
radius.

If the radius r is very small, then the circle itself fits within a very small region of Z
and small regions of space are well-approximated by their tangent plane. Thus, we
expect that small circles are very close to being Euclidean circles (think about drawing
a circle on the sidewalk, which is a small portion of the spherical earth). Being nearly
Euclidean, we expect their ratios of circumference to diameter to be very close to the
Fuclidean value of 7, or 27 = 6.28.

Now, what about a great circle? For specificity, let’s consider the equator as a circle
about the north pole. The radius is a quarter of a way around the sphere (half way
would be from the north pole to the south pole, and the north pole to the equator is
half of that). But the circumference is one full revolution around the sphere: so this
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18.2. Circles

has(c) Large radii circles have

(@A small circle has(b)A great circle ) .
circumference-to-radius as

circumference-to-radius circumference-to-radius 1 ik
close to 27 = 6.28 equal to 4. small as you lXe.
means that circumference over radius is # = 4! This shows us a very important fact

- the sphere’s analog of 7 (the ratio of circumference to radius) cannot be a constant!
It takes on values slightly larger than 6 for small circles, but takes on the exact value
of 4 for a great circle.

How small can this ratio get? Consider a circle of a very large radius: close to 7 - so
the radius runs from the north pole all the way down to something close to the south
pole. The set of all points which lie at this distance from N is short curve near the
south pole. So here the ratio of circumference to radius is a small circumference to a
big radius - its a very small number!

These qualitative considerations not only show us that the spherical analog of 7 is
not a constant, but also that we expect it to be able to take on any values between 0
and 6.28. But to get more precise than this we actually need to sit down and do some
calculations...

Proposition 18.3. Show the circumference of the circle of radiusr is

27t sin(r)

Proof. We know already that the circle of radius r about the north pole N is contained
in the plane z = cos(r). But this is a Euclidean plane! So, we can measure this circles
circumference using Euclidean geometry.
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18. Lines & Circles

Figure 18.15.: Because circles on ? lie on Euclidean planes, we can use Euclidean ge-
ometry to calculate their circumference.

Say its radius in the plane is d (note its radius on 2 is r, but this lies on the sphere, not

on the plane). Then we can use our understanding of Euclidean circles to see C = 27d.
But what is d? Looking at a side view of our configuration, d is the opposite side of
a right triangle with angle r inside a unit circle:

A

o\

Figure 18.16.: The Euclidean radius is the sine of the spherical radius, since the spher-
ical radius is an angle (distance equals angle on ?)

Thus, d = sin(r) and so C = 2 sin(r) as claimed. O

Corollary 18.4 (There is no length constant.). There is no single number like t which
is a universal constant for all circles on the sphere, like there was for circles on the plane.

Proof. Recall we defined the function 7(r) to be the circumference of a circle of radius
r, divided by its radius. In Euclidean space we found this was a constant, independent
of circle. But on the sphere, we see

_ 2msin(r)

z(r)

which is not constant! O

r
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This pattern continues for area, where we show there is also no analog of 7 by seeing
that areas of circles do not grow quadratically with radius. But first - how do we
find the area of a circle on the sphere? We need to to use integration, to add up all
the small infinitesimal area elements! Here the easiest way to do this is to invert our
relationship between area and circumference discovered in Theorem 16.4. This same
logic applies on the sphere, showing circumference to be the derivative of area.

area(r + h) —area(r) _ circ(r) - h
h T h

d . .
Jarea(r) = hlirf)lJr = circe(r)

Figure 18.17.: The numerator of the derivative of area describes a thin ring, whose
area is approximately the circumference of the circle times the differ-
ence in radii.

Thus, if A’(r) = C(r), we can recover the formula for area via integration:
r
A(r) = J C(r)dr
0
2 .

Proposition 18.4 (Area of a Circle). The area of a circle of radiusr on “ is

A(r) = 4r sinz(r/Z)
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18. Lines & Circles

Figure 18.18.: When measuring the area inside a circle on 2, we mean the area of

the spherical cap whose boundary is the circle, and which contains the
circles center.

Proof. This is just an explicit computation, using the result of ?@exr-sphere-circle-
circumference.

A(r) = Lr 27t sin(r)dr

= —2mcos(r)| = 2n(1 — cos(r))

0

2
:4ﬂ1—cosr —4r fl—cosr
2 2
=47TSil’12<£)
2

Where, in the last two lines, we have used the half-angle formula to simplify our
original answer, into a form that looks more similar to what we are used to in the
Euclidean case. O

Exercise 18.3. Use the series expansion of sin x to give the first few terms of a series
expansion of A(r). Show that the first nonzero term is 77%: this means when r is
small, A(r) is approximately 7r2. What does this mean geometrically?

1 8.3. THree DIMENSIONS

The three dimensional version of spherical geometry is given by the surface of the
four dimensional ball, just as the two dimensional sphere is the surface of the ball in
three dimensions.

While it is hard to directly picture this space in four dimensions, its possible to com-
pute things directly analgously to what we did above.
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18.3. Three Dimensions

Definition 18.7 (Points and Tangent Spaces). The points of 3 are the four tuples of
length 1 in E*:
S={x,y.zw) [ X2+ + 22 +w? =1}

A vector v = (vi, W, w3, V) is tangent to 3at p = (x,y,z,w) if it is orthogonal to p:

TP3={v|v~p=0}

Much of the mathematics of 2 carries over to * with little change. In particular - we
can find the geodesics by finding the straight curves, and see that they are again just
great circles.

Theorem 18.6 (Geodesics). Geodesics on> are great circles: they are intersections of 3-
dimensional hyperplanes in R* with the unit sphere. For example e(t) = (cost, sint, 0, 0)

is a geodesic.

Exercise 18.4. Prove this: write out what it means to have zero tangential accelera-
tion, and prove that e(t) = (cost, sint, 0, 0) is such a curve.

Because the geodesics are the same class of curves, we can measure distance in the
same way - its an arc length of a circle, so distance equals angle!

Theorem 18.7. If p,q € 3 then the distance between p and q is given by

dist(p, q) = arccos(p - q)

Exercise 18.5. Let N = (0,0, 0, 1) be the north pole of 3. What are teh points of the
sphere of radius r about N?

Exercise 18.6. What is the surface area of a sphere of radius r? What is its volume?
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19. CURVATURE

We’ve seen that in some ways the sphere behaves similarly to the plane, and in other
ways its quite different. Qualitatively, the big difference stems from the lack of any
similarities other than isometries: this makes there be no universal constant like 7 or
7, for one. Our goal in this chapter is to quantify that difference.

In doing so, we will uncover the precise quantity of curvature: which measures how
much geometry differs from that of the flat plane. This chapter will be short, but is
discovery crucially important to all geometry beyond that of Euclidean space!

19.1. CircuMrereNce OF CIRCLES

Our first real quantitative difference between the sphere and the plane had to do with
the the size of circles, so this is where we begin. We know (Definition 16.1) that for
circles in Euclidean space C = 2z, and by (?@exr-sphere-circle-circumference)
that the analog in the sphere is C = 27 sin(r). Circles on the sphere grow slower than
circles in the plane, as we can see by graphing these two functions.

CE?.‘-’ZIN

fadg

Figure 19.1.: A graph of the circumference of circles as a function of their radius, in
Euclidean (red) and Spherical (yellow) geometry.

19.1.1. Limits

But how can we turn this slower insight into something quantitative, and infinitesi-
mal? We want to be able to measure the curvature of the sphere at a point p, so we
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19. Curvature

should naturally be looking not at circles of some fixed finite radius, but rather fami-
lies of circles that are shrinking down centered at the point p. How do these behave?
Zooming in on the graph above we reach a first disappointment: it’s hard to tell their
behavior apart from Euclidean circles!

Figure 19.2.: Zooming in on small values of r, spherical geometry looks very much
like plane geometry, which is reflected in the fact that it is difficult to
tell their circumference functions apart.

This is because the series expansion of sin(r) starts out with r — %73 + -+ and so
27 sin(r) starts out with 277 — - - the same as in the Euclidean case! We already
knew this - that at small scales the geometry of the sphere looks Euclidean, so what
we are more interested in is the difference between the two geometries: that is, we
care about

lim Gz (r) — C2(r)
r—0

Or, at least - something like this! This can’t be the right quantity all alone as when
r shrinks, both of these go to zero, and so the limit just gives zero! This problem
is reminiscent of when we define the derivative in Calculus I: if we just look at the
difference in y values

lim(fCx+ ) = f(x)

the result goes to zero - which is not helpful! This is because we really need to be
measuring a ratio - how much is this difference changing as x changes (or, in our case,
as r changes).

This might suggest we take a look at the quantity
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19.1. Circumference of Circles

r

But if we graph this quantity as r — 0 we see this still goes to zero! In fact, the
same happens if we normalize by a denominator of ?: neither of these lets us see the
difference between the sphere and the plane show up in the limit yet.

However, when we normalize by r°, we actually get something that converges to a
finite nonzero number!

Exercise 19.1. Check this, that as » — 07 the following limits both exist, and are
both equal to zero:

. Cpe(r) —C(r)

m———’=-9

li
r—0 r
- Gr(n) - G()
lim ———— =0
r—0 r2

But

G -C
lim —Ez(r) ) #0
r—0 r3

what is its value?

Hint: recall that Cg2(r) = 2tr and C2(r) = 27 sin(r), and L’Hospital’s rule.

This is a number that an inhabitant of the sphere could calculate for themselves: for
smaller and smaller values of r they could compute this ratio by measuring things on
the sphere, and look at what value the limit is approaching. And, the fact that they
do not get zero would tell them definitively that they live somewhere other than the
plane!

At this point, we could just define this ratio to be the curvature, but its convenient
instead to normalize it: we multiply by a normalizing constant so that the curvature
of the unit sphere is equal to +1:

Definition 19.1 (Curvature). If X is any surface and Cx(r) is the function which
gives the circumference of the circle of radius r centered at p, then the curvature at
p is defined by the limit

K(p) = ( 3 > iy B2 — &)

g/ r—0 r3
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19. Curvature

A nice feature of this definition is that, being based totally off of lengths, its easy to
check that curvature is not changed by isometries.

Y

“¢

Figure 19.3.: Curvature is an isometry invariant.

Theorem 19.1. If is an isometry that takes p to q, then k(p) = x(q).

Proof. Let ¢ be an isometry taking p to g. Then as ¢ does not change distances, it
takes circles of radius r (a distance) based at p to circles of radius r based at q. And, as
¢ doesn’t change the length of curves, it does not change the circumference of these
circles.

Since the numerator and denominator of the limit expression are built purely using
the distance r and circumference (and the Euclidean circumference, which is just 27zr
- amultiple of r.) none of these quantities are changed by isometries, so the limit that
we need to evaluate at p is the exact same limit as the one we need to evaluate at ¢:
thus we get the same number both times.

PICTURE O

This has a nice corollary for homogeneous spaces: if there’s an isometry that takes
any point to any other, then the curvature at every point must be the same!

Corollary 19.1. The unit sphere has constant curvature +1, and the Euclidean plane
has curvature 0.

19.1.2. Series & DerivATIVES

We can also approach this more algebraically than geometrically, after realizing that
the correct geometric notion (a normalized difference) looks somewhat like a deriva-
tive. In particular, the series expansion of sin(r) is

ls

. _ 1 3
s1n(r)—r—§r METHA
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so the series expansion of the circumference of a circle on ? is

) =2mr—ZP+ L5 -
3 60

And so, we can see that the third series coefficient is exactly what our limit was com-
puting! But what is the third coefficient is a series expansion? Remember Taylor’s
formula:

f(x) = f(0) + f(0)x +

144 0 1244 0

IOPIN O
2! 3!

The third coefficient is just the third derivative divided by 3!. So, this means we

can replace our limiting expression with C’””(0)/3!, and get a new expression for
curvature:

Definition 19.2. Let C(r) be the circumference function for circles of radius r cen-

tered at a point p, on some surface. Then the curvature at p is given by

CIII(O)
21

k(p) =

Proof. This is just a computation, plugging in our new term in place of the limit:

W(p) = < —73 ) lim Cx(r) — Cga(r)
-3 C///(O)

<7) 3!

__1 Cu/(o)

T 2

_C///(O)

21T

r—0 r3

19.2. Area oF CIRCLES

We could also choose quantify the curvature of a space by comparing the area of
circles to their Euclidean counterparts. Just like above, we could imagine two separate
ways of extracting a quantitative number:

« A normalized limit of the difference between Spherical and Euclidean areas
A normalized derivative of the Area Function
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19. Curvature

In both cases, we want to fix the normalizing factors so that the limit exists and the
curvature comes out to be +1.

Exercise 19.2 (Curvature and Area: I). Give a limit definition of the form

areaz(r) — areapz(r)

K = lim —
r—0 normalizing factor

which computes the curvature of the sphere. What’s the normalizing factor?

Exercise 19.3 (Curvature and Area: II). Give a limit definition of the form
n
k=C- d—areaz(r)
drt -~
r=0

which computes the curvature of the unit sphere. What is n, what is C?

19.3. Distance BerweeN GEODESICS

Besides circles, there’s another interesting difference between the sphere and the
plane we could try to quantify to measure curvature: how quickly geodesics spread
out.

You are not responsible for this material now, but we will come back to it as an
example when discussing the differences between spherical and hyperbolic
space

J

)
LY =

p— 1 —

Figure 19.4.: Starting off at the same point and walking away from each other at angle
0, how far away are two travelers after going distance d?

To be precise, say we have two geodesics passing through a point p, which initially
make an angle of  with respect to one another at the point of intersection. After
traveling for distance d along each geodesic, how far apart are the resulting points?
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19.3. Distance Between Geodesics

The question that turns out to be most interesting mathematically isn’t the actual
distance for some finite value of 6 (as the formulas can get quite messy), but rather
a more infinitesimal notion, looking only at geodesics right next to our original one.
Thus we want to zoom in on 0 near zero, which means we want to differentiate!

To make this precise, need a definition
Definition 19.3. Given a geodesic y through some point p at t = 0, let yy be the
geodesic which makes angle § with y at p.

The collection of all geodesics for 6 varying within some small interval about 0 is
called a geodesic variation about y.

o AL
¥, l2)

(N
L4

—_—

Figure 19.5.: A geodesic variation through p.

Definition 19.4. Given a geodesic y, we can measure the infinitesimal spread of
nearby geodesics by taking a geodesic variation yy(¢) and differentiating with respect
to f at 0:

IO =5
0=0

We can work this out in Euclidean space using the distance formula: if the point is
O and we set one geodesic y off in direction (1, 0), the geodesic at angle 6 starts with
initial direction {cos 0, sin 6) by definition. Since geodesics are affine functions p + tv
we can write down their equations directly from this:

y(®) =(t,0) Yo@) = (t cos 0, sin )

We see that these are spreading out linearly from one another with time, but how do
we quantify this mathematically? By the infinitesimal variation!
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Jw=2

70 Yo(t)

0=0

= (t cosO,tsinB)

0=0

= (~tsin6,tcos )

0=0

=(0,1)

The magnitude of the geodesic variation tells us how quickly nearby geodesics are
spreading out away from y. Here, in flat space we see

lJ®I = 1(0,0)] = ¢

1718)|=¢
Yoy = [¢cn8, bovpr) r r
> ._L r 1\

) &

r aun % lt)
Yolt) =£,0)

Figure 19.6.: A geodesic variation and its Jacobi field in Euclidean space. |J(t)| = ¢
means that nearby geodesics spread out linearly over time.

But what about on the sphere? Here, we may take our geodesic to be a line of longi-
tude, say

y() = (sint, 0, cost)

which passes through the north pole N = (0, 0, 1) at time zero, with initial direction

y'(0) = % (sint,0,cost) = (1,0, 0)

t=0

How do we find the geodesics through N making angle § with y? By using isometries
of course! We can rotate the sphere fixing N by angle 0 using previous work:

cos@ —sinf 0\ /sint cosOsint
Yo(t) = sinf@ cosf 0 0 |=|sinfsint
0 0 1/ \cost cost
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Now we have our geodesic variation, so all we need to do is differentiate it with
respect to 6.

J=2

T Yo(t)

=0

(cosOsint,sinfsint, cost)
6=0

_ 4
do

= (—sin#sint, cos #sint, 0)
0=0

= (0,sint, 0)

| @lt)| = swit)

e,
S

Figure 19.7.: A geodesic variation on 2 and its Jacobi field. The fact that | J(t)| = sin(t)
tells us that nearby geodesics that start spreading out eventually come
back together, after distance t = 7.

Again, the magnitude of this vector measures the rate at which nearby geodesics are
diverging from one another:

IJ®I = [0, sinz, 0)] = sint

How do we interpret this? Well the sine function first grows until ¢t = 7/4 and then
begins to shrink: this means that geodesics first begin to diverge then att = 7/4 begin
to converge once more. Of course, we already knew this - because the geodesics are
great circles (and we had found their explicit formulas to even compute the varia-
tion).

We've seen the qualitative behavior of these variations depends on the curvature:
if the curvature is zero, then geodesics spread out linearly, but when its positive
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19. Curvature

they oscillate sinusoidally between converging and diverging. In fact ::{#thm-jacobi-
equation} Let J(t) be an infinitesimal variation along a geodesic. Then if the space
we are considering has constant curvature k, the infinitesimal variation satisfies the
differential equation

J’+k]=0

19.4. SeHeres oF OTHER S1zEs

So far, our entire discussion has been taking place for the unit sphere, but unlike
Euclidean space, there are multiple different spherical geometries: things behaved
differently depending on the radius of the sphere. For each positive real number R
we can define spherical geometry of radius R, denoted 2, as follows.

Definition 19.5 (Spherical geometry of Radius R.). Let 1212 denote the set of points
which are distance R from the origin in E3. For each point p € 121’ the tangent space
TP?{ consists of all points in E* which are orthogonal to p (definition unchanged from
the unit sphere), and the dot product for measuring infinitesimal lengths and angles
is the standard dot product on E? (also unchanged from the unit sphere).

The development of each of these spherical geometries is qualitatively very similar
to that for 2: we can see without any change that (x, y, z) ~ (x, y, —z) is an isometry
so the equator is a geodesic, and orthogonal transformations are still isometries so all
great circles are geodesics.

What changes is the quantitative details: the formulas for length area and curvature.
In the next two problems, your job is to redo the calculations that I did for 2, for the
geometry f?:

Exercise 19.4 (Circumference and area.). What is the formula for the circumference

and radius of a circle of radius r on %?

Hint: base your circles at N = (0,0, R) and look back at our arguments from class to see
what must change, and what stays the same.

Exercise 19.5. Using the definition of curvature as a limiting ratio of circumferences
(Definition 32.4), compute the curvature of ?2’ and show that
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Think about what this relationship says: as a sphere gets bigger in radius, it’s cur-
vature (which measures the difference between it and the Euclidean plane) quickly
decreases! That is, the bigger a sphere you have, the more difficult it is to tell apart

from a plane at a point.

Figure 19.8.: Small spheres have large curvature, making it easy to see. Large spheres
have small curvature, making it more difficult to notice.

This mathematical fact has tricked an unfortunate number of people into believing
that large spheres like the earth are flat. But now we know better:

Example 19.1 (Curvature of the Earth). The earth’s circumference is 40 million me-
ters (in fact, the meter was originally defined so that the distance from the equator to
the north pole was 10 million meters!). This means the radius of the earth is

40,000,000
21

R = 6,366,197m

and so the curvature of the earth is

- 40,528,473, 456,935
~ 0.000000000000024674011002723

But while small, 0.00000000000002 is not zero, and on large enough scales this small
amount of curvature actually has a big effect, on flight paths, air currents, the forma-
tion of hurricanes, etc.
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We’ve made great progress on understanding the sphere: we’ve discovered the
geodesics, found enough isometries to do meaningful work (we can move any point
to any other, and any geodesic to any other), analyzed circles and defined both
acceleration and curvature. With these tools in hand we are ready to confront some
of the most surprising differences between the geometry of the sphere and that of
the plane, which are become visible when studying polygons.

An n-gon is a polygon with n vertices (or equivalently, with n edges). In the plane we
studied 3—gons (triangles), 4-gons (quadrilaterals), and beyond, but we never men-
tioned 2-sided shapes. Why? Well 2-gons (or bigons, if you are feeling fancy) do not
exist in E2!

This is because for a two sided shape to exist, its two sides would have to meet each
other twice (once at each vertex). And we proved that Euclidean lines are given by
affine equations, and such curves can only intersect once, lest they be equal (linear
algebra!).

Figure 20.1.: Two lines in E? intersect exactly once, if they intersect at all.

However, this basic behavior of lines is very different on the sphere.

Theorem 20.1 (Geodesics intersect twice). Any two distinct geodesics on ? intersect
exactly twice.

Proof. Let C; and C, be two geodesics on 2. Each is a great circle, and so is described
by a plane passing through the origin. But two planes passing through the origin of
E3 must intersect each other in a line! Thus, these two planes have an entire line
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20. Polygons

through the origin in common, and this line must intersect the sphere in two points.
These two points are then intersections between C; and C,.

/

<
\
)
>

Figure 20.2.: Any two planes through the origin intersect in a line implies that any
two geodesics on 2 intersect in exactly two points.

Z.
g 4

There cannot be any more intersections, as we can see also by thinking about the
linear algebra of planes in E3: if our curves had three points of intersection on the
sphere, at least one of them would not be a multiple of the others (as the only multiple
of a point p which still lies on 2 is —p). Thus, we have three non-collinear points
which lie on both geodesics. But, three points in E*® fully determine a plane, so if
these points lie on both planes, the planes are equal, and so the geodesics themselves
are equal (thus not distinct). O

Recall the definition of parallel - we said that two lines were parallel if they did not
intersect! But all lines on ? intersect: thus there are no parallel lines at all!

Corollary 20.1. There are no parallel lines on the sphere. Thus, Playfair’s axiom is

false for 2.

Playfairs axiom (which stated that given any line, and any point not on that line)
is equivalent to Euclid’s 5th postulate, assuming the first four. We do not have this
equivalence available to us here (because not all of the first four are true in spherical
geometry!) so we have to separately ask about thes!":

Exercise 20.1 (Euclid’s Fifth Postulate is False on 2). Show that Euclids postulate is
false by finding a counterexample: give two geodesics on the sphere that intersect a
third in angles which sum to 7, but nonetheless intersect.

Remark 20.1. Its actually hard to precisely make sense of Euclid’s postulate on the
sphere, in his original wording, as it talks about finding an intersection on one side of
the crossing line or the other. But on the sphere there are no sides: everything meets
up on the back!
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20.1. Bigons

But besides answering these interesting foundational questions, realizing that pairs
of geodesics intersect each other twice has another important corollary:

Corollary 20.2 (Bigons Exist). Bigons exist in spherical geometry.

Thus, we begin our study of polygons not with triangles as we did in Euclidean space,
but at an even lower, more basic level: we begin with bigons!

20.1. Bicons

A bigon has two angles, and two sides. At first, we know nothing else about them, so
we might give a different name to each side and to each angle, like so:

4

2

Figure 20.3.: A bigon is a two-sided polygon.

Just like in trigonometry, our goal here is to try to discover relations between the
sides and angles of a bigon. However, unlike trigonometry - the relations here turn
out to be very simple: there just aren’t many ways to make a bigon!

Proposition 20.1. Both sides of a bigon have length r:

Proof. We saw in Theorem 20.1 that if one vertex of a bigon is p, then its sides, being
geodesics, meet again at the point antipodal to p. Thus, each side of the bigon is
exactly half of a great circle, and so has length %27{ =7. O

Next, we should ask about the bigon’s angles: is it possible to have a bigon with two
angles of different measures?

Proposition 20.2. The two angles of a bigon are equal to one another.
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20. Polygons

Proof. To make things easier to picture, we can use an isometry to move one of the
vertices of our bigon to the north pole (and thus the other to the south pole, since
they are antipodal).

Now, the sides of the bigon make a right angle with the equator (since they are great

circles going from the north to south pole) and so reflection in the equator sends the
bigon to itself, exchanging its two vertices.

Figure 20.4.: Reflecting a bigon about the equator exchanges its two vertices, showing
the two angles must be the same.

But now we are done! Isometries preserve angle, and so if there’s an isometry that
swaps the vertices of the bigon they must have the same angle. O

Thus bigons only have one free parameter: once you know the angle a bigon has at
one vertex, you know everything there is to know to construct the entire bigon.

»n

P

Figure 20.5.: Bigons are determined by their angle measure.

Indeed - up to isometry there is exactly one bigon for every angle 6 € (0, 27), where
the bigon with angle 7 is exactly one hemisphere of the sphere, and a bigon with angle
> 7 covers more than half the sphere. Strange world spherical geometry is, where a
polygon can have only two sides and take up more than half of the universe!

272



20.2. Triangles

£ |

Figure 20.6.: Bigons of small medium and large angle size on “.

The final geometric quantity we may wish to understand is the area of a bigon.

20.2. TRIANGLES

Having discovered literally everything there is to know about bigons, its time to move
on to the world of triangles. First, we should be careful and check that triangles even
exist! This might sound silly - but our recent experience with bigons should warn us
to be extra careful.

Proposition 20.3 (Spherical Triangles Exist). Any three points not all lying on the
same great circle determine a triangle.

Proof. Let p q and r be any three points on 2 not on the same great circle. Draw the
shorter geodesic segment connecting p and g (recall, there are two of these, as p and
q both lie on a great circle: if p and q are antipodes then choose either segment).

Likewise, draw the shorter segments connecting p to r and g to r. All we need to do
to show this forms a triangle is to argue that these two new segments do not cross
the first segment.
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20. Polygons

/Q

Figure 20.7.: Left: the case we want to show does not happen, where the geodesics
intersect more and do not form a triangle. Right: what actually happens,
because we know geodesics are great circles.

Of course, they do intersect the first segment at its endpoints p and g! But they can’t
intersect it anywhere else - the entire great circles they define intersect the great
circle containing p and g only at these points, and then at their antipodes —p and —q.

But, since the segment connecting p and g was the shorter of the two geodesic seg-
ments, its not long enough to include both p as one of its endpoints, and —p as a point
in the interior: then it would stretch more than half way around the sphere! Thus,
these other intersections are not on the segment, and the three segments meet only
at their vertices, forming a triangle. O

Remark 20.2. Think for a moment from the perspective of an inhabitant of spherical
geometry, who are so accustomed to dealing with bigons that when they start trying
to understand Euclidean geometry, they don’t think twice and just immediately start
their theory by investigating bigons. Whatever theorems they prove would be useless
because they all implicitly are of the form the existence of bigons implies XXX and the
premise is false: bigons do not in fact exist at all!

Now that we are confident in their existence, we turn to the most surprising - and at
the same time the most useful - property of spherical triangles: their area is intimately
tied to their angle sum.

Theorem 20.2 (Area of a Spherical Triangle). The area of a spherical triangle is equal
to the angle sum, minus 7. In symbols, if a triangle T has angles of measure ., f andy,
then

area(T) =a+ f+y—n

The style of proof here is quite clever, and uses our work with bigons! Indeed, we
will cover the sphere with six bigons starting from our triangle, and find the triangle’s
area by counting area overlaps.
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20.3. Quadrilaterals

Proof.
O

Exercise 20.2. What is the analogous formula for the area of a triangle on the sphere
of curvature x?

Hint: recall that the map taking the unit sphere to the sphere of radius R is a similarity
of E3, and use what we know about similarities effect on area and angles to deduce this
directly from the unit sphere case, without repeating the proof given in class.

This formula has some immediate and surprising consequences. Since polygons have
nonzero (and positive!) area, we can use as a powerful tool in proving the nonexistence
of various objects on the sphere. The strategy goes:

« Assume for contradiction a certain object exists

« break it into triangles

« compute the area of the shape, using these triangles
« find the area is zero or negative: contradiction!

+ Thus, the object does not exist.

20.3. QUADRILATERALS

Theorem 20.3 (Area of Spherical Quadrilaterals). The area of a convex spherical
quadrilateral is equal to its angle sum minus 2.

Proof. Let Q be a quadrilateral on 2, with angles a, ,y,8. Choose two opposite ver-
tices of Q, and draw the line segment connecting them. This segment lies fully inside
the quadrilateral (by convexity), and divides it into two triangles T} and T, dividing
the angles & = &y + o, and y = y; + y, between them:

Figure 20.8.: Determining the area of a quadrilateral by decomposing it into triangles.

Now we can compute the area as the sum of the area of the triangles:
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20. Polygons

area(Q) = area(T;) + area(T,)
=(@+p+yn-mM+@(+d+a—mn)
=(m+a)+tf+(1+y)+d-—2r
=a+pf+y+d-2xn

O

This has some immediate surprising consequences, including the nonexistence of rect-
angles!

Corollary 20.3 (Rectangles do not exist.).

Proof. Assume that there is a quadrilateral R on 2 with four right angles. Then by the
above, we can compute the area

area(R)=<£+£+E+£>—27r=0
2 2 2 2

But this is impossible, quadrilaterals cannot have zero area! Thus, we must have been
wrong, and a right angled quadrilateral cannot in fact exist. O

Exercise 20.3. What is the analogous formula for the area of a quadrilateral on a
sphere of curvature x?

20.4. PLATONIC SOLIDS

Besides proving nonexistence results like that for rectangles, the triangle area formula
helps us determine what regular polygons can be used to tile the sphere.

Recall we call a polygon regular if it has rotational symmetries about its center: in
particular this implies that all its sides are the same length, and all its angles have the
same measure (since isometries preserve both lengths and angles).

In the Euclidean plane, we know that regular polygons of all side numbers > 3 exist
(these are how Archimedes approximated the circle, after all!), but their angles are
strictly determined by their number of sides. We proved in a previous homework
that the angle sum of an n-gon is (n — 2)r, and if all the angles of a regular n gon are
equal, each angle must measure 6, = %7{.

This puts a strong restriction on which regular polygons can be used to tile the plane.
To tile the plane, a necessary (but not sufficient) condition is that we need to be able
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20.4. Platonic Solids

to fit k copies of each polygon around a vertex, without any gaps or overalps. This
tells us that the angles of a polygon that can tile must be § = 27”

Figure 20.9.: Angles need to be an integer divisor of 2r to fit evenly around a point
without gaps or overlap.

Thus, to figure out which polygons even have a chance of tiling the Euclidean plane,
we want to know for which n (the number of sides) there the angle 6, is actually 2z
over an integer. We can start listing:

3-2 T 27
93:—7'[:—:—
3 3 6
gt T
4 2 4
5 5
96_6;271:2_”
6 3
6= 1=2, 51
7 7

Thus, we see that its possible to fit six triangles around a vertex, four squares around
a vertex and three hexagons around a vertex, but as the angles 05 and 6; aren’t even
divisions of 27, there’s no nice way to fit pentagons or 7-gons around a vertex, and
thus no hope of using them to tile the plane.

This is the start to the classification of regular tilings of the plane, where by what

we see from the angle measures, its possible for triangles, squares and hexagons, but
impossible for all other shapes!
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20. Polygons

Figure 20.10.: The three regular polygons that tile the Euclidean plane.

Our goal here is to investigate what changes on the sphere.

Exercise 20.4 (Spherical Pentagons).

« Find a relationship between the area A of a spherical regular pentagon and its
angle measure «. Hint: divide the spherical pentagon into five triangles

« Show that there exists a spherical pentagon whose angle evenly divides 2sx:
how many of these spherical pentagons fit around a single vertex?

« What is the area of such a spherical pentagon? How many of these pentagons
does it take to cover the entire sphere?

The resulting tiling of the sphere is the dodecahedron - one of the Platonic solids dis-
covered by the Greeks (though, usually these are imagined as having flat faces, instead
of actually lying directly on the surface of the sphere). This is pretty encouraging, our
simple investigation into areas of triangles led us all the way to the dodecahedron!
But can it go farther? Can we learn exactly which polygons can tile the sphere from
such meager data?

Exercise 20.5 (No Tiling by Hexagons). Show that there is no regular hexagon which
can tile the sphere.

And, it only gets worse from here:

Exercise 20.6. Prove that for any n > 7, there are no regular spherical n gons that
can tile the sphere.

The problem we run into with hexagons is that their area must be zero, and its worth
commenting briefly on what that means. Having zero area means the angle sum
needed is equal to the Euclidean angle sum - and so this is just telling us that the
sphere is the wrong spot to be looking for such a tiling; instead it exists in the Eu-
clidean plane!
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But what are we learning in the case of 7-gons and above? If we try to find any value
of k where the angles would be 277 /k, we get a negative area: this means the shapes
both don’t exist on the sphere and don’t exist in Euclidean space. However, we will
meet these tilings shortly, in hyperbolic space

Figure 20.11.: A tiling of the hyperbolic plane by heptagons.

So, we've found a pentagon that tiles 2, and no higher n-gons do. This leaves only
three cases left to investigate: the bigons, triangles, and quadrilaterals!

For bigons, the condition that they tile the sphere is just that their angles are 277 /n:
this is possible for every n > 2, so we have an infinite collection of different bigon
tilings:

Figure 20.12.: Bigons of angle 277 /n tile the sphere.

But, these aren’t really that interesting: they’re just what you get by drawing an n-
gon on the equator, and then extending perpendicular geodesics up to the north and
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south poles. Indeed, these are so simple that these tilings are often not even counted
among the platonic solids!

The more interesting shapes appear whenn = 3 and n = 4.

Exercise 20.7. Prove that there is exactly one quadrilateral that can tile the sphere.
How many fit around each corner? How many quadrilaterals does it take to cover
the sphere?

Which platonic solid does this correspond to?

Exercise 20.8. There are three different equilateral triangles that can be used to tile
the sphere. Find them! For each triangle:

« How many fit around each vertex?
« How many are needed to cover the sphere?
« What platonic solid does this correspond to?

20.5. TRIGONOMETRY

We've already gotten an incredible amount of information out of just knowing how
to relate angles to area of spherical triangles. But there is much more to be gained
from studying the quantitative relationships between angles and lengths as well. This
is the study of spherical trigonometry!

We will not dive too deeply into this material in this course, as it is a huge topic dating
all the way back to the greeks, and navigation by the stars! Instead we aim to just
give a taste.

As in Euclidean space, its easiest to start with as simple of triangles as possible. In E?
these were right triangles, as having a right angle makes a lot of things easier. In the
sphere - we can do one better: well, really two better - there are triangles which have
three right angles!

To see these exist - you can make one by starting with a right angle at the north
pole, and following both geodesics down to the equator, then stopping and using the
segment of the equator connecting the endpoints as the third side. The top angle
was right by construction, and these next two are also right angles, as they are the
intersection of the equator with geodesics through the north pole (as you showed on
your last homework assignment).
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20.5. Trigonometry

Figure 20.13.: A triangle with three right angles on the sphere.

However, there is not a very interesting theory of the trigonometry of three-right
angled triangles: it turns out that up to isometry, this example above is the only
one.

2

Proposition 20.4. All triply right triangles on © are isometric to one another.

Proof.

O

Thus we completely understand these right triangles: they all have angles 7/2 (o
course!), but they also have side lengths 7 /2, and they have area $A = 3% -1 = %:
every geometric measurement here is equal to /2!

Figure 20.14.: All measurements of a triply right triangle are 7 /2.
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The next simplest case is that of doubly-right triangles. Let’s call the third angle of
such a triangle . These are also quite restricted: take the side opposite a which
contains the two right angles, and move it to a segment of the equator by isometries.
Now, the other two sides are geodesics which make right angles with the equator:
they intersect at the north pole! So, our triangle has two sides of length /2.

2

N|*
= |

[ 4

Figure 20.15.: The trigonometry of a doubly-right triangle.

Now that we know this, the area is immediate: this is half of a bigon with angle «, so
its area is 2(2a) = a. We can also quickly determine the third side length: the angle
at N is @, and so the arclength along the equator (which is a unit circle) is also a.

20.5.1. RigHT TRIANGLES

Things get both more interesting, and more complicated in the case of triangles with
a single right angle. The fundamental trigonometric relationship for a right triangle
is how the lenght of its hypotenuse depends on the lengths of its legs. In Euclidean
space, this is the famous Pythagorean theroem, but in spherical geometry it takes on
another form.

Theorem 20.4 (Spherical Pythagorean Theorem). Given a right triangle on % with
side lengths a,b and hypotenuse c, these three lengths satisfy the equation

cos(c) = cos(a) cos(b)
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Figure 20.16.: Right triangles on ? have their own analog of the pythagorean theorem,
equating the cosine of the hypotenuse to the product of the cosines of
the other two sides.

Exercise 20.9 (Deriving The Pythagorean Theorem). Prove that the formula given
above really does hold for the legs and hypotenuse of a right triangle on 2, using the
distance formula that we’ve already calculated:

cosdist(p,q) = p-q

Hint: move your triangle so the right angle is at the north pole, and the legs are along
the great circles on the xz and yz plane. Now you can write down exactly what the other
two vertices are since you know they are distance a and b along these geodesics from NK

On a sphere of radius R, a similar formula exists: here to be able to use arguments
involving angles we need to divide all the distances by the sphere’s radius, but after-
wards an argument analogous to the above exercise yields

(7) =< (f)eos(3)

cos| =) =cos(=)cos|=

R R R

Its often more useful to rewrite this result in terms of the curvature k = 1/R?

Theorem 20.5 (Pythagorean Theroem of Curvature ). On the sphere of curvaturek,
the two legs a,b and the hypotenuse ¢ of a right triangle satisfy

cos (c\/E) = cos (a\/E) cos (b\/E)

As a sphere gets larger and larger in radius, it better approximates the Euclidean
plane. We might even want to say something like in the limit R — oo (so, k — 0)
the spherical geometry becomes euclidean. But how could we make such a statement
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precise? One way is to study what happens to the theorems of spherical geometry as
k — 0; and show that they become their Euclidean counterparts. The exercise below
is our first encounter with this big idea:

Exercise 20.10 (Euclidean Geometry as the Limit of Shrinking Curvature). Consider
a triangle with side lengths a, b, ¢ in spherical geometry of curvature k. As x — 0, the
arguments of the cosines in the Pythagorean theorem become very small numbers, so
it makes sense to approximate approximate these with the first terms of their Taylor
series.

Compute the Taylor series of both sides of

cos (c\/E) = cos (a\/E) cos (b\/E)

in the limit x — 0, we can ignore all but the first nontrivial terms. Show here that only
keeping up to the quadratic terms on each side recovers the Euclidean Pythagorean
theroem, ¢? = a? + b2,

Like in the plane, we might next hope to discover relationships between the sides of
a spherical right triangle and its angle measures. And, indeed we can!

(18

(&

Figure 20.17.: A right triangle with angles «, f and opposite sides a, b.

The corresponding laws of spherical trigonometry are as follows:

Theorem 20.6 (Spherical Trigonometric Relations). For a right triangle with angles
a, B, corresponding opposite sides a, b and hypotenuse c the following relations hold:

. sina . sinb
sina = — sin f = —
sinc sinc
tanb tana
cosa = cosff =
tanc tanc
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Its instructive to compare these to their Euclidean counterparts: where the sina =
a/c and cosa = b/c for instance. The spherical versions have the same ratios, but the
lengths are showing up inside trigonometric functions themselves!

These can be derived (though we will not, for the sake of time) using the geometry of
planes in E? - since great circles on the sphere are just intersections of planes through
the origin with the sphere.

Figure 20.18.: The angles of a spherical triangle are angles between planes in E?,
which lets us use Euclidean trigonometry to derive spherical trigono-
metric relationships.

Here’s a nice derivation, which finds the angles between planes (and thus the angles
between great circles) by finding the angles between their normal vectors.

One of the most biggest differences between spherical trigonometry and its Euclidean
counterpart is that its possible to derive formulas for the length of a triangles’ sides
in terms of only the angle information! This is impossible in Euclidean space because
of the existence of similarities: there are plenty of pairs of triangles that have all the
same angles but wildly different side lengths! No so in the geometry of the sphere.

Exercise 20.11. Using the trigonometric identities in Theorem 32.4 together with
the spherical pythagorean theorem Theorem 32.2, show that the side length a of a
right triangle can be computed knowing only the opposite angle & and the adjacent
angle f as

Hint: start with the formula for cosa. Write out the tangents in terms of sines and
cosines, then apply the pythagorean theorem to expand a term. Finally, use the definition
of sin 8 to regroup some terms.
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20. Polygons

Formulas such as this are incredibly useful for calculating the side lengths of polygons,
by dividing them into triangles and using facts that are known about their angles.

Exercise 20.12 (Spherical Trigonometry). Use spherical trigonometry to figure out
the side lengths of the pentagon you discovered in the first exercise.

Hint: can you further divide the five triangles you used before, into ten right triangles
inside the pentagon?
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Z21. CARTOGRAPHY

The sphere is a 2-dimensional object (its inside is three dimensional, but remember
the geometry that concerns us is only the surface), but so far we have been studying
it using the three coordinates of Euclidean 3-space in which it lives. This is sometimes
incredibly convenient - it let us describe the geodesics of the sphere in a simple way
as intersections of  with planes, for example. But in other respects it causes extra
complication: functions now have three variables, meaning their derivatives are 3x3
matrices (containing 9 numbers), when they we should only require 2 x 2 matrices
(four numbers, less than half!) if we could find a way to really work with the sphere
intrinsically as a 2D object.

While the number of variables alone certainly increases complexity, worse computa-
tional woes are caused by the fact that the cartesian x, y, z of E3 just aren’t a good fit
for the sphere they are well adapted to describe straight objects like lines and planes,
but the sphere bends in all three directions, making it so that even using symmetry
we can’t move things around until something turns into a 1-dimensional problem (the
best we can do is move something to a great circle that lies in a coordinate plane, like
the equator, which sets one variable to zero).

This makes certain computations prohibitively difficult: you may recall that so far out
of the three properties we claimed equivalently define geodesics, (length-minimizing,
zero acceleration, and fixed by symmetries), we have actually only proven the latter
two to be equivalent. The reason is simply that dealing with length integrals of the
form

b

J JX@F +y @ + 22 dt

lead to some pretty long calculations, and massively increase the complexity of ac-
tually doing a the calculation, leading to some pretty unenlightening pages of inte-
grals.

But the good news is, there’s another perspective on spherical geometry which ad-
dresses these shortcomings of the E3-based-approach.

« Its naturally intrinsically 2-dimensional, dealing only with 2D vectors and 2 x 2
matrices.

« It allows (some) geodesics to be described in a simple way, making various
length integrals more tractable.
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21. Cartography

« It can be drawn on a chalkboard or in a notebook, so I don’t have to lug a
physical sphere up and down to the fourth floor for each class!

And the best feature of this new approach to geometry is that we are already familiar
with it - humans have been using it to represent spheres since antiquity. It’s the study
of maps.

In this chapter we will look at some historical examples of maps, try to discover the
underlying mathematical concepts that tie them all together, and then look at one
(particularly simple) map as an example, to see how calculations are done.

21.1. ExAmPLES

The idea to try and accurately portray regions of the spherical earth on a portion of
the Euclidean plane dates back to antiquity, and in the 2nd century CE Ptolemy wrote
a book - Geographica containing a prescription of coordinates for map-making, and a
map of the known world (the Mediterranean basin).

Figure 21.1.: Ptolemy’s world map (a redrawing in the 15th century from the original
2nd century coordinates).

Over the intervening centuries many hundreds of different map-making styles have
been created, with each map specifically designed to serve certain purposes best. Per-
haps the most famous map is the Mercator projection, designed in 1569 by Gerardus
Mercator (whose real name was Gerhard Kremer):
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Figure 21.2.: The Mercator projection.

This map was originally designed to simplify navigation by ship: it has the very useful
property that any angle you measure on the map accurately reflects the true angle
value on the globe (more about this, later).

While this map became famous for preserving angles, it is also infamous for not accu-
rately representing areas. In reality Africa is a gigantic continent (the United States
approximately fits just into the Sahara Desert!), but here it appears to be about the
same size as Greenland: an island which is actually fourteen times smaller. To appre-
ciate the amount of distortion here, we can look at an overlay of each country with
an accurately-sized version of itself.

Figure 21.3.: The Mercator projection versus the true size of countries.

To interact with such a graphic in real time, visit the website https://www.thetruesize.com/,
which allows you to choose a country to drag around the mercator projection, and
see its true size relative to other countries on the map!
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21. Cartography

Of course, its natural that there’s distortion to the shape and size of regions on the
map: we are trying to flatten the curved geometry of the sphere into a region of
the plane! After we’ve developed a bit more mathematical material, we will prove a
theorem to this effect. To help visualize the distortions of map, French mathematician
Nicolas Auguste Tissot introduced the drawing of small disks on a map - representing
the images of small uniformly sized circles on the earth. Such a shape is now known
in map-making as a Tissot’s Indicatrix (plural: Tissot’s Indicatrices).

o 6.0

b ®© & 6.0 & ¢ 0 0 O O O |(
o 0 & -0 ¢ o o o o o

) © ¢ & o 6 6 o 0 0 o o
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Figure 21.4.: Tissot’s Indicatrices on the Mercator Map: each of these orange disks is
the same size and shape on the globe.

The pairing of a map with Tissot’s Indicatrices gives a helpful way to both visualize
the earth while simultaneously being aware of the distortion incurred by this projec-
tion. We will adopt this as good style throughout the rest of the text, and anytime
we draw a new map for the first time, we will accompany it with Tissots Indicratices
(though once we start into the mathematics, we will leave this mapmaker terminology
behind and start calling them map disks, or infinitesimal disks).

A natural question after seeing the Mercator map is, can you find a map that doesn’t
mess up areas so much? And indeed, you can! The map projection below is attributed
to John Lambert in 1772 and is usually called the Lambert Cylindrical Projection, but
the key idea traces back to Archimedes!

The Archimedes/Lambert map preserves the area of all regions, but it does so at its
own cost: now angles are distorted! Recall that each of Tissots Indicatrices represents
a small perfect circle on the globe - so the fact that these are being represented as
thinner and thinner ovals near the poles means the map is stretching much more in
one direction than in the other.

There are all sorts of area-preserving maps like this. The Archimedes/Lambert projec-
tion leaves the area near the equator relatively undistorted, but stretches horizontally
near the poles. Instead, the Smyth projection manages to conserve area by stretching
vertically inside the tropics, and horizontally outside:
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Figure 21.5.: The Archimedes/Lambert Cylindrical Projection map preserves area, but
distorts shape and angle as seen by Tissots indicratices.

Figure 21.6.: The Smyth Projection is area preserving, stretching equatorial regions
vertically and polar regions horizontally.

This vertical stretching makes a map wtih smaller aspect ratio, and this trend can be
continued: the Tobler projection stretches most of the earth vertically and only the
arctic circle horizontally, to make a map which is a perfect square:

293



21. Cartography
[ 9000000000 0

T OO0 00000eee

Figure 21.7.: The Tobler Projection

There are also other map styles which choose to preserve angles (like Mercator), such
as the Lambert Cone Projection

Figure 21.8.: The Lambert Cone Projection

or the Pierce Projection which does unequally display area, but attempts to arrange it
so the big distortions happen out at sea, and do not affect the landmasses as much.
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Figure 21.9.: The Pierce projection

Another map in this category is stereographic projection, which will be the most im-
portant map of all mathematically (see the future chapter by the same name). Hav-
ing drawn Tissots Indicatrices, you can easily tell these maps scale distances non-
uniformly over the globe, but at each point scale all distances by the same amount,
as circles are sent to circles!

Figure 21.10.: Stereographic projection

Other maps may try to preserve certain distances, instead of lengths or angles. The
Azimuthal Equidistant projection shows the correct distance from the north pole to any
point on the map, while distorting both angles and areas. One particularly egregious
distortion: the south pole is mapped to an entire ring (a circle of constant distance
from the north pole), an unfortunate feature causing some people on the internet to
take this map literally, and claim there is a great ice wall surrounding our disk shaped
world.

So far, all the maps we’ve looked at have tried to depict the earth in some reasonable
shaped region of the plane, and just live with the resulting distortion. But one can
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Figure 21.11.: The Azimuthal Equidistant projection: a Flat Earther’s favorite map.

instead try to as best preserve angle and area as possible, and instead distort the shape
of the map itself. Notable maps in this family include the tetrahedral projection,
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Figure 21.12.: The Tetrahedral projection. Fold the sides of the triangle upwards until
the three corners meet at the top, to form a regular tetrahedron.

as well as the Waterman projection, based on a truncated octahedron

Figure 21.13.: Waterman Projection
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or the even wilder Dymaxion projection

& 4 K

Figure 21.14.: Dymaxion Projection

21.2. FOUNDATIONS

Alright - so we’ve now seen a bunch of maps, and spent some time thinking about
how to interpret them. But how do we make this subject mathematical? To do mathe-
matics we need definitions, and so the first thing we have to do is figure out abstractly,
what is a map. What features are in common to all of the examples above?

One thing they all have in common is that they are all represented by some region
in the Euclidean plane. The other fundamental commonality is that each point in
that region represents some unique point of the sphere. Mathematically, pairings of
points of one space uniquely with points of another space are modeled by a certain
type of function: a bijection. So a map is a function!

Definition 21.1 (Map). A map is a region R C 2 of the sphere, and a subset M C E?
of the Euclidean plane, together with a bijection ¢ : R — M. We call this map a chart,
and we call the image of M = ¢(R) the map of R via the chart ¢.

Figure 21.15.: A map M, its chart ¢ and parameterization ¢.

297



21. Cartography

So, charts are functions that take pieces of the sphere and flatten them out onto pieces
of the plane. But charts are (by definition) invertible, and so their inverse is a function
which takes a region in the plane and presses it onto the sphere. Going this direction
is also quite useful, so we’ll give these a name, and call them parameterizations.

Definition 21.2 (Parameterization). A parameterization of a region R C ? is an in-
vertible function i : M — 2 from some map M C EZ onto R C 2,

The inverse of any chart is a parameterization, and the inverse of any parameteriza-
tion is a chart. For this course, we will restrict our study to maps for which both the
chart and parameterization are continuous and differentiable, so we can do geome-
try with infinitesimal vectors! In mathematics more generally, such maps are called
diffeomorphisms.

Because the earth is a sphere and the plane is...not a sphere, its actually impossible
to make a map which depicts every single point of the earth continuously. (This is
readily believable, if you try to imagine continuously flattening a sphere onto the
plane so no two points overlap, but its formal proof requires the subject of topology)
Oftentimes, we are able to depict most of the earth (say, except for single lines or
points where we cut it), and this causes no major issues. But if you insist on having
a map of every point on the sphere, you need more than one map. Mathematicians
call such a collection an atlas.

Definition 21.3 (Atlas). An atlas is a collection of maps such that each point p € 2
is in the domain of the chart of at least one of the maps.

Figure 21.16.: An atlas of charts covers the entire sphere.

We will not have a need to consider atlases in this brief chapter, but they play a large
role in the theoretical foundations of mathematical map-making: the subject known
as Riemannian geometry.

Here, our goals are straightforward: given a map M with chart ¢ and parameterization
¢, we want to be able to compute true things about the sphere, using only the two
dimensional map M. To do so, we’ll treat ¢ and ¢ as translation devices taking us
between the map and the actual sphere, and calculus to get quantitative results.
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21.3. GETTING QUANTITATIVE

The goal of a map is to compute in M but learn about 2. We want to take a curve in M,
and figure out how long the curve it represents on the sphere is. If two curves in in
our map intersect (say, the path of two roads) we want to figure out what angle they
intersect at on the sphere, while only measuring things using angles and vectors in
M. And so on...

Figure 21.17.: True geometric quantities are on the sphere (left), but we want to com-
pute them using a map (right).

21.3.1. LENGTHS

Probably unsurprisingly at this point in the course, the solution to all these problems
is to zoom in, and use calculus to answer these things. This lets us replace the problem
of curve lengths with infinitesimal lengths.

Proposition 21.1. Ify : [a,b] > M is a curve drawn in a map M, then its map-length
(the length of the curve it represents on the sphere) can be computed as

b
maplength(y) = J IDYy oy’ (Dldt
a

Proof. This is just a direct computation with the chain rule! If y is a curve in M, then
we can use the parameterization ¢/ to move it onto 2, so we get the true curve y/(y(t))
on the sphere. Now, we can compute the length of this - which is what we actually
want!
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maplength(®) : = length(y - y)

,dt

b
=f [€2¢76)]
b
= J [DYy oy’ @] dt
O

Thus, the fundamental quantity we need to be able to compute is the map-length of
an individual vector: given a vector v € T, M, find out how long of a vector it really
represents on the sphere.

7

)

Figure 21.18.: The map-length of a vector is defined as the length of the vector it rep-
resents on the sphere.

Definition 21.4. Let M be a map of a region of the sphere with parameterization
Y M—2Ifve T,M then the map-length of v is given by

Wlnap = 1D¥p(v)lgs

Once we can compute infinitesimal lengths like this, not only have we solved the
problem of finding the length of a curve on a map, but we can also draw the Tissot
Indicatrices! Tissot imagined these as small disks at each point, and we can model
them precisely as infinitesimal disk in the tangent space.

Definition 21.5 (Map Disk). At each point p € M, the map disk is the set of all
tangent vectors v of maplength less than or equal to 1. We will denote this disk

]ngnap (p):

Dkap(p) = {v € TyM | lap < 1}
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Figure 21.19.: The map-disk is the region in the tangent space T;,M which is mapped
by the parameterization to a unit (infinitesimal) disk on the sphere.

21.3.2. ANGLES

We can similarly compute angles in a map, first use the parameterization to take us
back to the sphere, and then measure the ‘true’ angle value there.

Proposition 21.2 (Map Angle). Let M be a map of some region of the sphere, with
parameterization . If v, w are two tangent vectors based at p € M, their map angle is
given by

(Dypv) - (Dl#pW))

0 = arccos
map ( DY pvlIDYpwi

Proof. This is just the Euclidean formula for angles,

( ‘/ .W >
0 = arccos

on the (EUclidean) tangent space to 2 in E3, applied to the vectors V = Dy,v and
W = Dy,w, which are the result of moving our vectors from the map to the sphere
with ¢ O
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Figure 21.20.: The map-angle between two vectors in M is the angle between the vec-
tors they represent on the sphere.

21.3.3. AREAs

Finally, how do we calculate map area? Again - we can think infinitesimally, and ask
what happens to infinitesimal areas, and then integrate the result. An infinitesmial
aread dA in the Euclidean plane can be thought of as an infinitesimal unit square
with sides dx = (1,0) € T,M and dy = (0,1) € T,M along the x and y directions
respectively.

Figure 21.21.: Infinitesimal area on the plane is easiest to measure when using the
orthonormal basis vectors in the x and y directions: in this case dAg2 =
dxdy.

But such a unit square might not represent a unit area on the sphere! Think about the
mercator projection: if this little square were near the north or south pole, mapping it
onto the sphere would shrink it a lot (as projecting from the earth to the map increases
size near the poles), so this square would actually represent a small area. (Indeed, we
will see later that the area of an infinitesimal unit square in the Mercator projection
at latitude @ is actually cos? §, which is very small near the poles = :I:%)
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To calculate the infinitesimal map area (d A)yp, We need to push the unit basis vectors
e; = (1,0) and e; = (0,1) in T, M to the sphere using ¢/, and then measure the area

that their images span in the tangent space T¢(p)2.

Figure 21.22.: The infinitesimal area dAp,p on the plane is measured by taking an
infinitesimal square, sending it to the sphere via the parameterization
¢, and then measuring the area of the resulting parallelogram.

Such an area is rather annoying to measure in general, as the vectors Dy/,e; and Dy/pe,
are both vectors with three coordinates. We know how to find the area spanned by
two vectors in the plane, via the determinant (which we derived on homework way
back in the calculus chapter!)

Definition 21.6. Let M be a map of some region of the sphere with parameterization
i, and e; = (1,0), e, = (0,1) the unit basis vectors in E2. The map-area at a point
peT,Mis

(d A)map = I(DYper) x (DYper)l dixdy

Luckily, we will not often need to utilize the full generality of this definition. We will
call a parameterization rectangular if it sends the x and y directions on M to pairs of
orthogonal directions on 2. For these maps, we can avoid the use of the cross product
all together:

Proposition 21.3. Let M be a map with rectangular parameterization . Then the
infinitesimal area is given by

(dA)map = [DYpe; [IDYpez| dxdy

Proof. For maps with rectangular parameterizations, Dy,e; and Dye; are orthogonal
to each other, and span a small rectangle in Tlﬁ(p)z.

Because the area of a rectangle is hust base times height - we can simply transfer e,
and e, to the sphere via ¢/, measure their lengths, and take the product:
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e; = Dype; ez = Dyjpes
(dA)map = [Dyperl|Dypez| dxdy
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22. EXAMPLES

In this chapter we will apply some of the theory we developed to work with some well-
known map projections used for depicting the earth. This is a slight digression from
the logical flow of our text, as none of this work is strictly needed for anything that
follows (and those interested in the purely mathematical story can move immediately
to the next chapter, stereographic projection, where we apply these same techniques
to the map we will use the most).

However, taking a brief look at examples serves two purposes: one, it will help us
become more comfortable with the theory of maps, as we will do several explicit
computations:

« We will calculate the map-length of a curve in the Orthographic projection.

« We will calculate the map-area of regions in Archimedes map, and show it is
area preserving,.

« We will compute angles in the Mercator map, and show it is angle preserving

And two; the study of maps is a beautiful application of mathematics to the wider
human world - we might as well take a look - just for cultural reasons - while we are
so nearby:.

22.1. ORTHOGRAPHIC PROJECTION

To write down a map we need to give its chart: a map ¢ from some region in 2 onto
a region of the plane. And perhaps the simplest formula taking points in E* (where
the sphere lives) to points of E? is just deletion of a coordinate:

6y, 2) = (x,y)

We can picture such a map as the vertical orthogonal projection of space onto the xy
plane, and the result as the shadow of an object under a vertical light source
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Figure 22.1.: Orthographic projection maps one hemisphere of the sphere onto the
unit disk in the plane.

This cannot give a map of the entire earth at once, as each vertical line that intersects
the sphere off the equator hits it in two points (x, y,z) and (x,y, —z). However, if
we restrict ourselves to one hemisphere, vertical projection does define a bijection
between that hemisphere and the unit disk in the plane.

Figure 22.2.: Images of earth from far away in space are close to orthographic projec-
tions: like this one from the Discovr spacecraft 1 million miles away.
True orthographic projection would be the view “from infinitely far
away” where lines of sight would be parallel.

Definition 22.1 (Orthographic Map). Let the region R C 2 be the northern hemi-
sphere R = {(x,y,z) € 2 | z > 0}, and M be the unit disk in the Euclidean plane
M = {(x,y) € E? | x? + y? < 1}. Then the orthographic projection of R onto M is given
by the chart ¢ and its inverse parameterization i,

#(x,y,2) = (x,y)

Y(x,y) = (x,y, m)
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Lty

Figure 22.3.: The orthographic map projection of a hemisphere onto a disk.

Before delving into the quantitative calculus, let’s try to develop a bit of a qualitative
understanding of this map. Here’s two facts we can see directly from its definition:

« Geodesics through the north pole N on 2 are mapped to straight lines through
the origin O in the map.

« Circles about the north pole N are sent to Euclidean circles about the origin O
in the map.

To see the first point, note that (1) geodesics on the sphere are great circles, which are
the intersection of 2 with planes through the origin. Thus (2), geodesics containing
the north pole N correspond to vertical planes (containing the z-axis), and so (3) the
projection of a vertical plane onto the xy plane is just a line.

To see the second point, recall that the circle of radius r about N is described a Eu-
clidean circle in the horizontal plane z = cosr. The vertical projection deletes the z
coordinate but leaves the x and y unchanged, so these circles map directly to circles
in the xy plane.

7>\
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Figure 22.4.: Circles on the sphere about N are circles in horizontal Euclidean planes.
These project horizontally to circles in the map.

This has the consequence that the equator of the sphere also maps to a circle on the
plane - its the unit circle bounding our map M. So, in M we have some geodesics
represented by straight lines, and one geodesic represented by a circle!
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Remark 22.1. This implies that other geodesics of the sphere necessarily are repre-
sented by some curves that interpolate between straight lines and circles: not all
geodesics are going to look like easy-to-understand curves in our map! That’s one of
the distortions we will have to learn to live with.

To get any quantitative understanding of this map, the first step is to take the deriva-
tive of the parameterization i:

X
Y(x,y) = y
1—x%— 2
1 0
py=| 5 5

Ji=x2=y?  1-x?—y?

Remark 22.2. When working with such a map, its often easiest to recall that z =

J1—x% — % and just write ‘z” anytime this expression occurs, to save mental space.
Thus, we would write

1 0
Dy=[0 1
=
z z

This derivative matrix is the key to all further calculation. From it we can directly
compute map-lengths of vectors and curves, map-angles, and map-areas following
the general theory.

Example 22.1 (Orthographic Map-Length of (1,0)). If ¢; = (1,0) is based at p =
(x, y) in the orthographic map M, its map-length is

1—y2
2

1,0 =, |—
K1, Oy =\ 7=

To see this, notice that pr(l, 0) is simply the first column of the derivative matrix,
and then we need only compute its length in E3:
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Knowing the infinitesimal lengths in the x direction lets us compute the total length
of the horizontal curve y(¢) = (¢,0) in our map. In M this is just the diameter of the
disk, so its length appears to be 2: but we know this isn’t right! The diameter of the
disk represents half of a great circle going from the equator to the north pole and back,
so its length should be 7. Let’s do the calculation to confirm:

Exercise 22.1. The map-length of the curve y(t) = (£,0) from ¢ = —1 to t = 1 in the
orthographic projection is 7.

To see this, recall that the map length of y is given by integrating the infinitesimal
map-lengths of its tangent vectors:

1
lengthyay 1) = | 11l

Because y(t) = (t,0) its immediate to see y’(t) = (1,0) for all time, and using the
above exercise then we see at the point (x, y) = y(t) = (¢,0), the map length of (1, 0)
is

1-02 1

1-12-02  [{_p

Integrating this gives a familiar expression: we saw this exact integral in the defini-

. . . pe . 1
tion of the arc cosine function (Proposition 14.2)! Since arccos(x) = |, ﬁdt, we

see the expression we have come to is exactly arccos(—1), which by definition is the
arclength along the top half of the unit circle (ie all the way from x = 1 to x = —1).
Thus

dt

1, 1_t2

Beyond applying this just to the basis vector (1,0) we can us the same technique to
find the length of any vector in T, M:

=arccos(—1) =7x

1
Iengthmap( )= J
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Example 22.2 (Orthographic Map Infinitesimal Lengths). If v = (a,b) is based at
p = (x,y) in the unit disk M, its map-length in the orthogonal projection is

"V"map =J

We calculate this by applyign Dy, to v, and then finding the length in E3:

1 0 a

Dyp(ab)y=al 0 |+b| 1 |=( &
—x ol —ax—by
z z z

Computing the length, we get

(—ax — by)?

z

2
_ az+bz+(M)
l—xz—y2

Knowing the map-length of an arbitrary vector on T, M lets us precisely describe the
map-disks:

DY vl = \/az + b2+

Example 22.3 (Orthographic Map Disks). At the point p = (x, y), the map-disk is
the set of all vectors (a, b) € T,M where

2
+b
am,u(u) <1
1—)(2—)/2

At the center of our map where (x, y) = (0,0), this equation for the map-disk reduces
to the equation for the standard round unit disk a® +b% = 1. This means at the origin,
we expect to see essentially no distortion in either size or angle! However, as soon as x
or y are nonzero, things quickly change. Consider the point (x, y) = (0,1/2). What’s
the map-disk here? Just plugging in gives

and after a bit of simplification, we find

a2+gb2<1
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This is an ellipse! Thus, we see at (0, 1/2) the map is not distorting distance in the x
direction (the coefficient of a is still 1) but it is distorting distance in the y direction.

Figure 22.5.: Map Disks of the orthographic projection

Since it’s affecting the two directions unequally, we expect that it will not be preserv-
ing angles very well, so let’s confirm.

Example 22.4 (Orthographic Map Angle). The vectors (1,0) and (0, 1) are not map-
orthogonal, even though the look orthogonal in the Euclidean plane where we drew
the map!

To see this, all we need to do is compute the map-dot-product between (1, 0) and (0, 1)
and see that its nonzero. With the derivative of our parameterization already in hand,
this is quick work:

Dy,(1,0) =(1,0,—x/z)
Dy(0,1) = (0,1, -y/z)

These are the two true vectors that (1,0) and (0, 1) on our map represent, so the map
dot product is equal to their actual dot product on 2:

Xy

Xy
1,0,—x/z)-(0,1,-y/z) = — = ————
(1.0.-%/2) (0.1 2y/2) = 5 = 5

Thus, whenever x and y are both nonzero, the vetors (1,0) and (0, 1) don’t actually
point in orthogonal directions on our map!

Exercise 22.2. Can you find the coordinates (x, y) of a point on the map where the
vectors (1, 0) and (0, 1) only make a 45-degree angle with one another?
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Hint: can you make the problem easier for yourself by restricting x and y to lie on some
line, so the problem ends up having one variable instead of two?

You can see how this would make such a map difficult to use for navigation: it would
look like the map is telling you to turn 90 degrees but in reality you should only turn
half that!

22.2. ARCHIMEDES' MAP

In Archimedes’ most cherished work The Sphere and the Cylinder, he proved that
the surface area of the sphere and the cylinder agreed by showing that horizontally
projecting the surface of the sphere onto the cylinder preserved infinitesimal areas,
and thus (via integration) the total area. This suggests a means of creating a map of
the earth which displays the true areas for each region: first project horizontally onto
the surrounding cylinder, then unroll the cylinder onto the plane.

N ”////////o

Figure 22.6.: Defining Archimedes’ Map

For step 1, what happens when we horizontally map a point (x, y, z) € 2 to the cylin-
der? Well, its height or z coordinate does not change, and the xy coordinates do not
chnage direction, only length. That means that there must simply be some scalar s
such that

(x,¥,2) = (sx,5y,2)

How do we find this scaling factor s? Well, we know at the end we want the point to
lie on the cylinder, so that its x and y coordinates lie on the unit circle. This means
we need

1

(sx)+(syP =1 = s=

We can then use the fact that (x, y, z) originally lies on the sphere, so that x?+y%+2z% =

1 to see we can replace this with 1_17 if we wish, to get
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(x,y,2) ~» ( x 7 ,Z)
1—22 1—22

Now, we just need to unroll the cylinder onto the plane: this means we continue to
leave the height, or z direction alone, but we wish to find the angle 6 which the x and
y coordinates make on the unit circle. Because the tangent of this angle is opposite
over adjacent, we can get an explicit formula:

||II[]
<:E§?— 0
= -

Figure 22.7.: The angle 0 is defined by looking down on the cylinder with respect to
the x axis: its tangent is y/x.
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Definition 22.2 (Archimedes’ Map). Let R C 2 be everything except the north and
south poles, and let M C E2 be the rectangle M = {(0,h) | -7 <0< 7, -1 <h< 1}
We define Archimedes’ chart as

¢(x.y,2) = (0,h) =

~—

y
arctan —, z

x
and its inverse, Archimedes’ parameterization

90, h) = (V1 - h? cos 0,1 — h? sin, h)

In cartography, this map is not named after Archimedes but rather the 17th century
mapmaker Lambert, and called the Lambert Cylindrical projection, or the Lambert
Equal-Area projection.
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22. Examples

Figure 22.8.: Archimedes map, horizontally projecting the sphere onto the cylinder

Figure 22.9.: Archimedes map unrolled onto a rectangle in the plane.

While it is natural to us earthlings to project the earth onto a cylinder whose axis
passes through the north and south poles, it is by no means necessary: the sphere is
homogeneous after all! So there are many unfamiliar maps that can be produced by
this technique, sharing all the same mathematical properties. Here we illustrate just
one option, unrolling along an axis through the equator.

Figure 22.10.: Projecting onto a different bounding cylinder.
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22.2. Archimedes’ Map

Figure 22.11.: The resulting map of the earth!

To understand what Archimedes map does to regions of the sphere, a useful spot
to start is to calculate its map-disks (Tissot’s Indicatrices) and see what shape they
are!

Theorem 22.1 (Archimedes Map Disks). At the point p = (0,h) on the Archimedes
map, the map disk of unit radius is given by the set of all vectors (a,b) € T,M with

2

a?(1—h?) + <1

1—h?

Proof. We calculate this by just applying Dy, to the vector {(a,b), then finding the
resulting length-squared in E3, and simplifying a lot. O

Exercise 22.3. Do this calculation!

Because essentially all calculations require us to know infinitesimal information
about the parameterization (translating vectors on the map to their true counterparts
on the sphere), we begin with a calculation of Dy :

N1 —h?cosf 9p\1—h?cosO
Dy =| gpJ1—h2sin® N1 —h2sind

dph aph

—sinfy1 — k2 —hcos?

1-h?
_ —hsin6
= [1 _n2
cosf h N
0 1
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22. Examples

Figure 22.12.: Map Disks on Archimedes’ Map

The map-disks are ellipses, meaning that angles in general are not preserved. How-
ever, we can calculate the area of these map-disks to understand better the area dis-
tortion (or lack thereof) on the map. The ellipses we found turn out to be lined up
nicely along the two axes of E2, much like the ellipses whose formulas we first un-
covered in Definition 13.4. Thus, their areas are computable as in Exercise 15.4: its
equal to rab where a and b are the ‘radii’ of the ellipse along the x and y direction.

Theorem 22.2 (Archimedes Map is Area Preserving). At every point p € M the map-
disk has area . Since the map disk represents the infinitesimal vector which map to the
unit disk tangent to the sphere (which also has area ), the parameterization does not
distort infinitesimal area.

Proof. If an ellipse has radii r; along the x axis and r, along the y axis, we saw its area
is zryry, which we could compute by stretching the unit circle in Exercise 15.4. The
formula for such an ellipse is

2 2

X
—2+y—2£1
noon

JllT — and r, = m These are reciprocals of one

So in our case we have r; =
another, so rjr, = 1 and

A=nanr=m

But this is the area of the unit disk! So, at each point p of the map, the mapdisks
(Euclidean) area accurately represents its true area on the sphere. The map does not
distort infinitesimal areas. O

Because we are still learning how to compute effectively with maps, we’ll give a sec-
ond proof of this fact, where we do not bother working out the details of our map
disks, but rather just directly look at infinitesimal lengths are areas, figuring out what
happens to an infinitesimal unit square.
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22.2. Archimedes’ Map

Exercise 22.4. Give a second proof that Archimedes map is area-preserving, that
looks at infinitesimal squares instead of ellipses. Show that at each point p € M the
vectors (1, 0) and (0, 1) are sent by ¢ to orthogonal vectors on the sphere. Find their
lengths on the sphere (ie the map-lengths), and use this data to find the area of the
infinitesimal rectangle they form.

Now only does this immediately imply archimedes overall result that the two areas
are equal (each area is by definition the integral of its infinitesimal areas, and we just
showed all the infinitesimal areas are equal), but it also shows that the area of any
region on the map accurately portrays the true area of the region it represents on the
sphere.

Theorem 22.3. Let R C 2 be a region on the sphere, and M = ¢(R) C E? its map under
Archimedes chart. Then

area(R) = area(M)

Proof. Because the chart and parameterization are inverses, we could just as well call
¢(R) = M the map, and then the original region is /(M) = R. We compute the area
of R as an integral, and use i to write it as an integral over M:

N e

But now we know that dAy,,, = dAgz, that’s what we've calculated! So we can sub
this out, and then realize the resulting integral is just the definition of the Euclidean
area of M in the plane:

= J'J'M dAg: = area(M)

However, its important not to forget what we learned along the way: the map-disks
for Archimedes map form extremely distorted ellipses as one approaches the poles:
with horizontal length stretching near infinite and vertical height crushing to zero.
This map massively distorts the shapes of regions, distances between points and an-
gles between curves in its attempt to preserve area. Like the orthographic map before
it, this makes Archimedes’ map unsuitable for navigational tasks, where figuring out
accurately what direction you must go to reach your desired destination is of utmost
importance.
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22.3. EQURECTANGULAR PROJECTION

There is an entire collection of maps which are defined as modifications of
Archimedes’ original idea, these days called cylindrical projections as they start by
projecting onto a cylinder. Perhaps the two most common of these are the Mercator
projection (discussed in the next chapter as a potential final project opportunity), and
the Equirectangular projection, which I will only briefly mention here (for anyone
who is doing a final project on Maps and would like another, easy-to-compute-with
and yet still real-world example).

The problem the Equirectangular projection tries to solve is the vertical distortion of
Archimedes’ map. Archimedes made the vertical height on the map equal the vertical
height of the sphere at that point: this clever move ensured area was preserved, but
what if we wanted the vertical height on the map to actually be related to the north-
south distance? Archimedes’ map fails badly at this, as we see in the picture above.

What we want from our new map projection is that it

« Continues to be a cylindrical projection
« Distance along the (vertical) h axis of the map accurately reflects the actual
geodesic distance along lines of longitude on the sphere.

Because we are still projecting onto a cylinder, the chart for such a map is still going
to have 6 = arctan(y/x). But as arclength is angle, the height (distance from the
equator) will need to be the angle ¢ that a point on the sphere makes with the xy
plane:

Definition 22.3. The chart for the equirectangular projection is defined on the re-
gion R C 2 of the sphere containing all points except the north and south poles, and
maps onto the rectangle

M={0,9) €E? | —n<0<m —n/2<¢p<m/2}
by the chart function
d(x,y,2) = (arctan %, arcsin z)
Exercise 22.5. Derive the parameterization for the Equirectangular projection.

318



22.3. Equirectangular Projection

Figure 22.13.: The equirectangular projection maps the earth onto a cylinder of height
m: the distance from the north to south pole.

Figure 22.14.: Unrolled into the plane, the Equirectangular map is a rectangle twice
as wide as tall.

Exercise 22.6. Spherical coordinates in mathematics and physics are almost the
same as the equirectangular projection: the only difference being a convention on
where to measure the angle ¢ from. Here we’ve measured it from the equator, so that
it accurately captures latitude on the earth. But in spherical coordinates it is usually
measured from the north pole.

Write down the chart and parameterization for spherical coordinates, and see that it
is what you are taught in multivariable calculus!

Because this map captures distance accurately along the equator, as well as north-
south distance along lines of longitude, it is an easy map to work with, and has become
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the default map in many contexts.

Exercise 22.7. Find the important map-quantities in the equirectangular projection:

320

Find the map-length of a vector v = (a, b) based at (0, ) € M.

Find the equation for the map-disk at (6, ¢). Show that it’s an ellipse: what do
its vertical radius and horizontal radius tell you about the map?

Does this map preserve angle?

Find the map-area: since horizontal and vertical lines in M map to orthogonal
curves on 2 (latitude and longitude), infinitesimal squares on M are taken to
infinitesimal rectangles on 2. Does this map preserve area?

Figure 22.15.: Map Disks on the equirectangular projection.



23. MERCATOR

The Mercator projection is the classic map

Figure 23.1.: The original Mercator map: check out California!

One means of building Mercator’s map is to begin with Archimedes’, and and perform
some modifications. We will follow this, and will attempt to change as little from the
previous map as possible: indeed we will attempt to construct this new map also by
first projecting the sphere onto its bounding cylinder, and then unrolling that cylinder
onto the plane.
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23. Mercator
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Figure 23.2.: The Mercator projection (an all cylindrical projections) are Archimedes
map followed by some sort of vertical stretch.

The only choice we made in the above derivation of Archimedes’s map was that the
projection was horizontal, or that the height h on the map was equal to the original
z coordinate. Here, we must do something else (lest we end up with the same map!)
so we let h be a function of z: this is equivalent to first doing Archimedes map, then
stretching the vertical axis of the cylinder by a function H. Different choices of H(z)
will describe different cylindrical projections, and our goal here is to find a good choice
for H.

Definition 23.1 (A General Cylindrical Projection). Let H(z) be any height function
taking the latitudes of the unit sphere z € [—1, 1] to some height h along the cylinder.
Then the cylindrical projection corresponding to H is given by

x Yy
X,y,2) & , ,H(z
(x.7.2) (1—x2—y2 1—x%—y> ())

There are all sorts of maps you can make by choosing different functions H here (and
then unrolling the resulting cylinder onto the plane). But most of them will distort
angles: they’ll take infinitesimal squares on the map to infinitesimal rectangles on
the sphere, and vice versa (like Archimedes’ example). Only one will take squares to
squares at every single point - and this is what Mercator was after!

Here was his idea: we know how much the circle starting at height z has to get
stretched horizontally - because we are projecting it onto the cylinder of radius 1. At
height z, the radius of the circular slice of the sphere x* + y? + z2 = 1 must be

r:\lxz—i-yzz 1-— 22
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Thus its circumference is 27/1 — 22, and it is going to get stretched to the unit circle,
1
V1-22

horizontally. This means that vertically, we must ensure it is also scaling by \/%!
4

with circumference 2z. So, we know that our map is scaling by a factor of

But the vertical direction involves two stretches: first we need to think about the
effect of horizontal projection onto the cylinder, and then second, we need to tack on
the vertical stretch induced by H.

The first of these is something we can already compute using our knowledge of
Archimedes map! At a point p on Archimedes’ map, the vertical vector (0, 1) points
along this cylinder. Its map-length is

—h Cos 0

,hl

Where we found the vector as the second column of Dy for Archimedes map. Com-
puting this length with the 3D pythagorean theorem (which measures the true length
on the sphere, as the tangent spaces to Z use the Euclidean dot product), we see

h? 1

0,1 =1+ ——= =

10, Dlnep o

This means a vector of Euclidean Length 1 on the map gets sent to a vector of length
1/4/1 — k2 on the sphere, so when going from the map to the sphere the length of a
vector is divided by \/1 — k2. This means inversely, projecting from the sphere to the

map multiplies the true length of a vector by \/1 — z% (where we use z on the sphere
and h on the plane/cylinder, just to keep things separate).

Exercise 23.1. Check all this!

N

Figure 23.3.: At height z, the horizontal projection of a vector changes its length by a

factor of \1 — z2.
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23. Mercator

Now we’re ready to think about the stretch H we need. Going from the sphere to the

cylinder stretched the vertical direction by y/1 — h?, and we want the end result to be
2

that the map gets stretched instead by 1/vV1 -z

That is, our function H(z) must have the property that it stretches by \/% to undo
—Z

the horizontal projection, and then stretches again by 1/4/1 — z2 to get where we want.
This means

1 1 1

V1 =221 - 22 C1-22

This is a differential equation for our function H which we can solve via integration!
(Hey, remember me? Integration by Partial Fractions?)

S| ,1+z
H(z) = dz =1
@ L 1—22 z=78 1—z

Definition 23.2 (Mercator’s Map). Let R C 2 be all the points of the sphere except
the north and south poles, and let M C E? be the entire vertical strip M = {(6,h) |
-1 <0 < 7, —00 < h > oo}. Then Mercator’s map has chart

o(x,y,2) = (tan X,log. ’ 1 +z)
X 1-2z

H'(z) =

I

Figure 23.4.: Mercator’s map projection projecting the Earth onto a cylinder and then
unrolling onto a sphere.
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Exercise 23.2. Find the parameterization for the mercator map. Hini: first calculate

the inverse function of h = log(\/(1 + z)/(1 — z)) and show it is

e2h _ g—2h

z=——
e2h 4 g—2h

Now we know the z component of the parameterization, and we know the x, y com-
ponents together are going to be some multiple of (cos 6, sin §). But which multiple?
Well, we do know that (x, y, z) must lie on the sphere! And that determines every-
thing:

Exercise 23.3. Show that if the point

2h —2h
., e —e
(x,y,2) = (k cos B, ksin6, h = )

lies on the unit sphere, then

2

k=—2
o2h 4 g-2h

Putting these two exercises together, we have successfully computed the parameter-
ization to the Mercator projection!

Theorem 23.1. The parameterization for the mercator projection is the map
Y (=, ) x (—00,00) — 2

2cos@ 2sin M —e72h
Y(0.h) = 2h —2h’ ,2h —2h’ ,2h —2h
e’ +e el +e et +e

:< cosf sinf
coshh’ cosh’

tanh h)

Where in the second line I have written these combinations of exponentials in their
equivalent form using hyperbolic trigonometric functions. We will meet these func-
tions in a different context very soon!
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23. Mercator

Figure 23.5.: Different unfamiliar views of the Mercator projection, arising from
choosing points other than the north and south pole to become the axis
of the cylinder.

The fact that Mercator’s map sends preserves angles is a huge advantage not only for
navigation, but also for calculation. Since it sends infinitesimal squares to infinitesi-
mal squares, it scales all lengths by the same scaling factor, which we can find by

Exercise 23.4. Show that at any point (6, h) in the mercator map, the map length of
a vector v = (a, b) is just its Euclidean length divided by cosh(h):

\Ja% +b?

1
Vv = —|v = —_
I "map coshh" I cosh i
Hint: since all vectors are scaled the same, can you find the map length of (1,0)?

Being able to measure the infinitesimal length of any vector lets us write down the
map-disks for the mercator projection, and also lets us compute the infinitesimal area
element:

Exercise 23.5. Explain why the map-area is can be calculated by

;dxdy

dA ., = 5
cosh”(h)

map

Hint: think about what it does to an infinitesimal unit square

Exercise 23.6. At a point p = (6, h), write down an equation that determines when
a tangent vector v = (a,b) € Tp]E2 is in the map-disk at that point. Explain why the
map-disk is a circle: what’s its Euclidean radius?
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23.0.1. AvrrLicaTiON: GEODESICS

There is one important result about the sphere that has eluded us this entire time.
In the plane, we saw that there were three different notions of line that defined the
same curves: distance minimizing, straight, and fixed by isometries. For the sphere,
we wrote down the same three conditions, and said we would prove them equivalent
here as well. But what did we actually do?

We first discovered great circles as they were fixed by isometries, and then we proved
that these curves were also straight, using the correct definition of acceleration on
the sphere. Ever since, we’ve been using them to define our distance - but we never
actually proved they are distance minimizing! I promised we would do that at a future
time (in a non-circular way) when we had developed more tools to help us, so we
could avoid some nasty integrals in 3D space.

And now is that time! One of the superpowers of using maps is it lets us take the
sphere which was originally a curved surface in three dimensions, and accurately
represent it by regions in the 2-dimensional plane. And calculus on the plane is much
easier than calculus on a surface in three dimensions. This lets us mimic quite closely
the original proof we gave in Euclidean geometry that lines were distance-minimizing
(Theorem 12.1).

Here using the Mercator map, we will focus on a line of longitude, which is a vertical
line on the map. We know these great circles are both straight and fixed by symme-
tries, so our goal now is to show they are length minimizing (at least, when they go
less than half way around the sphere)

Theorem 23.2. Let L € R. Then the curve y(t) = (0,t) fort € [0,L] in E? is Mercator
map-length minimizing: it represents a curve of shortest length between its endpoints
on the sphere.

Proof. Let a(t) = (x(t),t) be a curve between (0,0) and (0, L) in the Mercator map,
for t € [0,L]. We will show that the map-length of « is greater than or equal to the
map-length of the straight line y(¢) = (0,¢).

PICTURE

First, let’s write down the infinitesimal length of : the tangent vector is ¢’ = (x”, 1)
so

| lap = ——
cosh(t)

The integral of these infinitesimal lengths gives the overall length:

b
— 1 72
lengthmap(a) = L cosht\/(x )2+ 1dt
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23. Mercator

Now lets do the same for y” = (0, 1) at the point y(¢) = (0,¢): its infinitesimal length
is

, 1 2 2 1
= — Jo2+12=
Iy "map cosht cosht

And so its total length is

L

1
length =
eng map(Y) _[0 cosht

Remembering that cosh(t) = (¢! +€7%)/2, its possible to actually do this integral! But
we will not need its value here. Instead, all we need to show is that our arbitrary
curve « is longer than this.

And this is clearly true! Since (x”)? is a nonnegative number, we know that for all ¢

x')P+1>1

The same equality remains true after taking the square root, and after dividing by
cosh(t), so at each point of the map

o’ "map > [y’ "map

Integrating this we see that

lengthmap (a) 2 lengthmap ¥)

so y, the great circle, is the shortest among all curves of this form! O

The careful reader will notice that this proof is not quite technically complete: we
showed that the great circle is the shortest of all curves of the form (x(¢), ¢): but what
about all general curves (x(t), y(¢))? Can you extend the argument to this case? Hint:
U-sub!

Exercise 23.7. The careful reader will notice that this proof is not quite technically
complete: we showed that the great circle is the shortest of all curves of the form
(x(t),t): but what about all general curves? Can you extend the argument to this
case, and show if a(t) = (x(¢), y(t)) for t € [a,b] with a(a) = (0,0) and a(b) = (0,L),
then length,,,(a) > length,,,(y)?

Hint: look back at the Euclidean proof where we did this: Theorem 12.1. Can you prove
that

’

b
lengthy,,, () > J 4

dt
q coshy

and then perform a u-sub to relate this to the length of the great circley?
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23.1. The Mapmaker’s Dilemma

This finishes off the final fact we needed to complete our study of the geometry of
the sphere. Congratulations!

Exercise 23.8. Show that

J ! dx = 2arctan(e®) + C
cosh x

Hint: write cosh x in terms of its definition in exponentials, multiply the top and bottom
of the resulting fraction by e* and do a u-sub to get an integral related to arctan.

23.1. Tue Marmaker's DILEMMA

We’ve now gotten rather comfortable computing true quantities about spherical ge-
ometry using a map and calculus. Since all of our maps have distorted the sphere in
some pretty serious ways, its pretty important to have these abilities as you cant just
trust your eyes!

Of course some maps did better than others: orthographic projection messed up ba-
sically every quantity we could think of, whereas Archimedes map managed to ac-
curately portray area and Mercator’s accurately represented angles. But none of our
maps accurately represented both area and angle at the same time.

Indeed - while we did not check it, all the maps in the Cartography chapter have
this property: some of them preserve area, some of them preserve angle, but none of
them do so simultaneously. But this doesn’t mean its impossible to make such a map
- there’s an infinite variety of things that we haven’t tried (and an infinite number
of possible maps that no human has ever drawn) - perhaps one of them is able to
preserve two quantities of the sphere at once? After all, some of the maps we did see
in the previous chapter did a pretty good job of approximately preserving both (and
shifting some of the complexity to the shape of the mapping region M). Who is to
say that someday a supercomputer running Al mapping software wont discover an
absolutely absurdly complicated domain M in the plane, and a map of 2 drawn in M
which manages to accurately represent both?

Math, that’s who says this will never happen.

Theorem 23.3 (The Mapmaker’s Dilemma). It is impossible to make a map which
simultaneously accurately represents both angles and areas.

Proof. Assume for the sake of contradiction that there is such a map M, defined on
some region R of the sphere, and let ¢ be its parameterization. If this map preserves
angles then ¢/ sends infinitesimal squares of M to infinitesimal squares on the sphere.
But if it also preserves area it must send a square with side length s (and thus area s?)
to another infinitesimal square of area s? (and thus side length s).
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23. Mercator

This means that our map must preserve all infinitesimal lengths! Choose any point
p € M and any vector v € T,M, and build a square with v as one side (if v = (a,b)
we can use the orthogonal vector (—b, a) of the same length as the other side defining
the square). Now Dy, maps this to another square whose side lengths are the same,
so [Dypv] = v]!

But a map that preserves infinitesimal distances is an isometry - and this is going
to spell trouble. In particular, we know that isometries send geodesics to geodesics,
circles to circles, and preserve the length of all curves. Because of this, as we saw in
the chapter on curvature, isometries preserve the value of all the terms showing up
in the limit that defines curvature: and any two points related by an isometry must
have the same curvature.

But ¢ relates points of the plane to points of the sphere! So this implies that the
sphere and the plane have the same curvature, which is a contradiction: we know
the plane’s curvature is 0 and the sphere’s curvature is 1. O

During the proof of this we noticed another, easier dilemma: its impossible to make
a map that preserves distances!

Theorem 23.4 (The Mapmaker’s Dilemma, Distance). It is impossible to make a map
which accurately shows the distance between any pair of points on the sphere.

Proof. Such a map would then preserve infinitesimal distances, and thus be an isome-
try. But this would again preserve the curvature, which implies a contradiction: that
the sphere and the plane have the same curvature! O

This is a pretty amazing result: proving nonexistence theorems are hard, as you have
to somehow rule out all of the possible examples, even the ones you can’t imagine.
Proving such a theorem often requires finding some deep mathematical property that
can tell things apart, some sort of invariant. And for us, that invariant is curvature.

You can see the mapmaker’s dilemma as in some sense a capstone of this entire section
of the course: if you dig deep enough almost everything we have done since the
introduction of calculus goes into its proof in some way or another.

From one perspective, it essentially finishes off the entire theory of mapmaking, an-
swering the fundamental question. But from another, it tells us useful pragmatic
information about how to move on: don’t worry about making your map look accu-
rate, our theorem warns us you don’t need to look at it to compute, anyway! That’s
what calculus is for. Just make it easy to work with. There’s no best map, but there may
be a good map for your specific desires or purpose, just build that one.

And build such a map, we will!
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24. STEREOGRAPHIC

In the wake of our proof of the mapmaker’s dilemma, we rise once more to build a
map: this time no longer worried about trying to make it optimal in every regard, but
just mathematically simple, and easy to interpret.

One very natural contender for such a map is stereographic projection first invented by
the Greeks to make a star chart, representing the spherical sky on a flat piece of paper.
As we’ve come to expect of Greek mathematics, this map has a geometric definition

Definition 24.1 (Stereographic Projection). Given the unit sphere 2 in E?, the stere-
ographic projection of a point p € ? is the point o(p) € E? such that the straight line
in E® connecting p to the north pole N = (0,0, 1) intersects the xy plane in the point

(a(p),0).

—

Figure 24.1.: Stereographic projection maps the sphere to the plane as though there
were a light source at the north pole, casting shadows.

This is much easier to see in three dimensions with an animation than a drawing-by-
hand, so here’s one to help (though, in both of these animations I have moved the
sphere above the plane: this doesn’t change the math in any essential way but makes
things easier to see what is going on)
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24. Stereographic

Figure 24.2.: Stereographic projection as a light source at the north pole casting a
shadow onto the plane.

Stereographic projection acts like finding a shadow, from a light source at the top of
the sphere.

From this picture, we can derive an algebraic formula describing this projection (note
that while we have visualized it above as though the sphere is above the plane, the
algebra is a bit easier if you assume the plane intersects the sphere in the equator, as
in the hand-drawn image above).

Proposition 24.1 (Stereographic Projection Formula). Stereographic projection pro-
vides a map of the sphere (except for the north pole), onto the entire Euclidean plane. Its
chart is

Hey D)=y = (2 L)

1-2"1-2

and the parameterization

1//(XY):(xyz):< 2X 2Y X2+Y2—1)

X24+Y2+1 X24+Y2+1 X2+Y2+1

Proof. We compute the chart, and leave the process of finding its inverse as an exer-
cise. In fact, we can simplify things further by noting that the result must be some
multiple of (x, ), as the line connecting (x, y, z) to (0,0, 1) in E3is(0,0,1)+t(x, y,z—1)
which projects to (¢x,ty) in the plane.

Thus, we can look at the 1D version of the problem, which is the projection of a circle
onto the real line through its center, to figure out the scaling factor.
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Figure 24.3.: A 1D slice of stereographic projection.

And now we have a problem purely in Euclidean plane geometry, where two similar
triangles make an appearance. The result of the mapping takes our point (x, z) to a
point distance L along the real line, so the right triangle with sides L and 1 is similar
to the triangle with sides L — x and z:

Figure 24.4.: Finding the projection point amounts to a calculation with similar trian-
gles.

Equating the ratios of the sides gives

which simplifies to L = é Thus, in general we have

#x v = (2= =)

1—-2z 1-z

Exercise 24.1. Derive the formula for the parameterization associated to stereo-
graphic projection, by (1) like above, first focusing on 1 dimension, and then (2) start-
ing with a point X along the line, solving for the intersection of the line connecting
it with N and the sphere.
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24. Stereographic

(o,N)
Vix)

U : o
X12=\

Figure 24.5.: The parameterization of stereographic projection, in a slice.

Figure 24.6.: Stereographic projection of the earth onto the plane.

This map is very simple algebraically: both the chart and parameterization are given
by rational functions (quotients of polynomials). But its also simple geometrically in
several particularly nice way, which we explore in the section below.

Figure 24.7.: Stereographic projection from a point near the north pole.
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24.1. Geometry of the Map

Figure 24.8.: Stereographic projection from a point in eurasia.

Figure 24.9.: Stereographic projection from a point in the pacific ocean far from any
land.

24.1. GQEOMETRY OF THE MAP

Example 24.1 (Equator sent to Unit Circle). Stereographic projection sends the equa-
tor of  to the unit circle of E2.

We can see this geometrically, as the unit circle already lies in the plane (x, y,0) so
by definition stereographic projection doesn’t do anything to it! And, we can see it
algebraically, by noting that the z coordinate of points on the equator is already zero,
so

$x.3.0) = (5. 755) = ()

But this behavior extends beyond the equator to all lines of latitude of the sphere:
they are all mapped to circles about the origin in E?!
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24. Stereographic

Example 24.2 (Latitudes sent to Circles). Let C be a circle on 2, centered on the south
pole S. Then stereographic projection maps C to a circle in E? centered at the origin
O.

To see this, note that the circles of 2 centered at one of the poles are contained within a
horizontal plane, so the z-coordinate of all points in C is constant. Thus after applying
¢ we get

$x.y.2) = (=) = k)

Where k = 1/(1—z) is a constant for all points x, y. Thus the result is just a similarity
applied to the original curve C, which was a circle - and similarities take circles to
circles!

Figure 24.10.: Stereographic projection sends circles about S on ? to circles about O
in E2.

If we want to be even more precise, we could figure out exactly which circles in the
plane they map to.

Exercise 24.2. Let C be the circle of radius r about the south pole S of 2. Show that
under stereographic projection the circle this maps to in E? has Euclidean radius

sinr
1+ cosr

Hint: Show the circle centered at S of radius r lies in the plane z = — cosr...then apply
stereographic projection.

The other curves we can understand well are the great circles through the poles.

Example 24.3 (Great Circles through Projection Map to Lines). Each great circle
through the poles of 2 projects to a line through the origin.
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24.1. Geometry of the Map

To see this, we recall that great circles are all contained in a plane through the origin,
and so a great circle through the poles is contained in a vertical plane. But the defi-
nition of stereographic projection involves drawing lines between N and points, and
for points in a vertical plane, these lines also lie in that same vertical plane! Thus,
the projection of this vertical plane is just its intersection with the horizontal plane,
which is a straight line through the origin.

Figure 24.11.: Stereographic projection sends geodesics through the poles in ? to
geodesics (lines) through O in E?

This gives a nice grid on the plane

Figure 24.12.: The latitude/longitude grid on the sphere, stereographically projected
onto the plane.
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24. Stereographic
24.1.1. GeneraLizep CIRCLES

We saw already that great circles through the north pole get mapped to straight lines
through the origin int the plane. But this does not mean that all geodesics map to
lines, as the equator maps to the unit circle!

But its just just geodesics that map to circles either, we saw that circles around the
north and south pole also map to circles in the map. It seems that circles and lines
(geodesics) on the sphere are sent to circles and lines on the plane, but they might get
mixed up. What a weird property! And one that’s hard to state. So let’s introduce a
nice piece of terminology.

Figure 24.13.: Some circles project to circles, others to lines.

Definition 24.2 (Generalized Circle). A generalized circle on the plane is a curve that
is either (1) a Euclidean circle, or (2) a Euclidean straight line.

O

Figure 24.14.: Generalized circles in the Euclidean plane are the collection of all circles
and lines.

Theorem 24.1 (Stereographic Projection Preserves Generalized Circles). Stere-
ographic projection sends any circle on the sphere to a generalized circle on the
plane.
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24.1. Geometry of the Map

Proof. A circle on 2 is the intersection of the sphere with a plane (when this plane
is through the origin, its a great circle, which is also a geodesic). So we are really
interested in showing that stereographic projection maps the spots where a plane
intersects the sphere to a circle in the plane.

This can be done geometrically, or by an algebraic computation. Here I'll give the
algebra, and below I'll link to a beautiful visualization of the geometric proof. A
plane in E? is described by an equation of the form

ax+by+cz=d

But we can use i to express these x, y, z on the sphere in terms of (X, Y) on the plane:

2X 2Y X2+Y2—1)
X2 +Y2+1 X24+Y2+1 X2+Y2+1

Y(XY) = (x.y,2) = (
Plugging these in, we see

2X 2Y X24+v2-1
a +b c =
X24+Y2+1 X2+Y24+1  X24Y2+1

This looks bad with all the fractions, but we can clear denominators to get

2aX +2bY +c(X? + Y2 - 1) =d(X? +Y? + 1)
This still looks pretty bad, but its not really! Let’s collect all the terms with x’s and
¥’s on one side, and group things with similar constants together.

Cc—d(X?+Y) +2aX +2bY =d +¢

This is a quadratic equation where X? and Y2 have the same coefficient! That means,
this is a circle! (We just need to complete the square if we want to know its center
and radius....)
Except....when that coefficient is equal to zero (when ¢ = d). Then there are no X2 or

Y? terms, and its a linear equation! So intersections of planes with the sphere either
map to circles in the plane or to lines in the plane, as required. O
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24. Stereographic
24.2. INaNITESMAL GEOMETRY

Our main goal of infinitesimal geometry is to show that stereographic projection is
conformal: that angles are preserved, and all infinitesimal quantities are controlled
by a single scaling factor.

Of course, one means of doing this is brute force calculus: just differentiate the
parametrization and compute its action on infinitesimal squares. But with a map as
nice as stereographic projection, one can avoid getting so messy with formulas and
instead reason more geometrically as well. We shall pursue the geometric approach
in this section, though I recommend you work out the calculus-only argument for
practice.

The first thing we notice, from our dealings with lines of latitude and longitude above
is that these originally orthogonal curves on the sphere are sent to two families of
orthogonal curves in the plane. This implies that infinitesimal squares lined up with
latitude and longitude to infinitesimal rectangles lined up with circles about 0 and
lines through 0, and vice versa.

L

Figure 24.15.: Lines of longitude and latitude project to orthogonal curves on the
plane.

To show that the overall map is conformal then, all we need to show is that such an
infinitesimal square is stretched the same amount in each of these directions.

Proposition 24.2 (Infinitesimal Angle Length). At a point distance r from the south
pole on 2, the infinitesimal stretch along the circle of latitude containing this point is

1
1+ cosr

Proof. A circle of radius r on the sphere has circumference 27 sinr. This projects to

sinr sinr

a circle on the plane of Euclidean radius , and hence circumference 2 .
1+cosr 1+cosr

The ratio of lengths is the scaling factor: how much the length of the circle was
increased or decreased by projection:
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24.2. Infinitesimal Geometry

sinr
1+cosr _ 1
2 sinr 1+ cosr

O

Proposition 24.3 (Infinitesimal Radial Length). At a point distance r from the south
pole on 2, the infinitesimal stretch along the line of longitude containing this point is

_1
1+ cosr

Proof. Here we need only take the derivative along any geodesic through S. One
such geodesic is the great circle in the xz plane y(¢t) = (sint, 0, — cost) which passes
through (0,0, —1) = S at t = 0. This maps under stereographic projection to

sint
1+ cost

P(y(1) =

Whose derivative measures the expansion rate of the geodesic as it is mapped onto
the plane:

cost(1 + cost) — sint(— sint)
(1+ cost)?

D(¢poy) =

_ cost + cos®t + sin’ ¢
(1 + cost)?

_ 1+cost

"~ (1 + cost)?

-1

1+ cost

1' )

_ )
D¢°ﬂt)
Figure 24.16.: Derivative in the radial direction.
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24. Stereographic

Thus at distance r away from the center (so t = r as the unit circle is a unit-speed
curve), the rate of stretching rate is

1+ cosr
O

The two thereoms above tell us that at any point of the sphere, the latitude and lon-
gitude directions are both stretched by the same factor! This means that infinitesimal
squares in sz are mapped to infinitesimal squares

Theorem 24.2 (Stereographic Projection is Conformal). Stereographic projection pre-
serves angles: it sends infinitesimal squares to infinitesimal squares.

Proof. At any point p, the stereographic projection chart the curve of longitude and
latitude through p to orthogonal curves on the plane. It stretches each of these curves
by the same factor, 1/(1+ cosr), meaning that it takes a unit square in sz to a square
of side length 1/(1 + cosr) in Ty(pyM.

Thus, ¢ takes infinitesimal squares to other infinitesimal squares! This means (by
the discussion in the angle chapter) that ¢ preserves all angles, so ¢ is a conformal

map. O

W

LN -
e L

Figure 24.17.: Stereographic projection takes infinitesimal squares in the tangent
space to other infinitesimal squares: that is, it preserves angle.

Now that we know that stereographic projection is conformal, we know it stretches
all vectors by the same amount at a given point. Our calculations above confirmed
this fact using the chart, but most interesting calculations we will want to do need
the parameterization.

Exercise 24.3 (Stereographic Map-Coordinates). The fact that stereographic projec-
tion is conformal means that at a given point p = (X,Y) in E?, the parameterization
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24.2. Infinitesimal Geometry

Yy must stretch all vectors by the same amount. By applying Dy to a vector, calculate

this amount and show it to be )

1+X2+7Y2

Because all vectors are stretched in the same way, we can write down the map dot
product easily: after a little calculation we see it is just a multiple of the Euclidean dot
product on the plane!

Theorem 24.3 (Stereographic Dot Product). Let p = (X,Y) be a point in the plane,
andv = (v;,w), and w = (wy, wy) be two vectors in Tp]EZ. Their map dot product is

4
(v Wnap = (Dypv) - (Dypw) = m(v W)

Proof. Lete; = (1,0) and e; = (0, 1) to help with notation. Then we can write v as a
linear combination of this basis:

v = {v,v) = v(1,0) + 150, 1) = vie; + ney

and similarly for w. Next, using the fact that the derivative is a linear map (its a
matrix, after all) we can distribute, and pull out the scalars v; and w;:

Dyp(v) = Dypp(vi€; + ve2)
= Dyp(viey + Dyp(vaez)
= v Dy,(e1) + v Dyp(er)

and again, similarly for w. Now we wish to compute the dot product, so we multiply
it all out:

(Dypv) - (DYpw) = (vi Dpey + v2DYipes) - (Wi Dyfper + wyDyfper)
= vywi(Dyper) - (Dyper) + viwa(Dyper) - (DYipe;)
+ vywi (DYpes) - (DYiper) + wiwa(Dyipez) - (DYpez)

Now we have to think a bit about what we know! Since i/ does not change angles,
and e; and e, are orthogonal, we know that Dy/,e; and Dy, are orthogonal to one
another. Thus, their dot product is equal to zero! This gets rid completely of the two
middle terms in our big expression, and so we are only left with the first term and the
last term.

343



24. Stereographic

But both of these are involve the dot product of a vector with itself: like (Dy,e;) -
(Dype). This is the definition of the squared length of that vector, but we know
exactly how stereographic projection changes lengths! Thus for both e; and e, we
know

2 2 4
(D%ei).(D%ei):<1+X2+Y2) T U+ XZ4Y2)y

Now we putting this all together, we find

4
(1+X2%2+Y2)2
_ 4
A+ X2 YRR
_ 4
A+ XZ+Y2R

(V' W)map = viwy + 0vywy + 0vowy +

5 W
(1+x% +y%)?

(viwy + vawy)

(v-w)

Definition 24.3 (Stereographic Metric). The dot product on E? given at the point
p=(XY)by
4

m(‘ﬁ“’l + vwp)

(v W)map =
Is called the stereographic metric.

Using this, we can compute any quantity we may care about on the sphere, using
only coordinates of the plane. For instance, the spherical length of a vector is just

limap = (V- imap = —————
1+X2+72

The area of an infinitesimal piece of the sphere is

4
dA =((1,0)-(0,1 dXdY = ————dXdY
((1,0) (0, 1))pnap T

etc.
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24.2. Infinitesimal Geometry

24.2.1. Tre Disk ANo HALF PLANE

One use of stereographic projection is to write down a map of the sphere, as we’ve
seen above. But it is also used a lot in mathematics as a tool to help create new and
useful functions that would otherwise be difficult to guess. It shows up in this context
in applications across geometry, complex analysis, and other fields of math because
its conformal, and so we know when building things with stereographic projection as
one of the components, it is not going to mess up any angle measures.

Here, we will look at a fundamental example of this, and will use stereographic pro-
jection to write down a conformal map which takes points in the unit disk x +y? < 1
to the upper half plane y > 0 in E2. This map becomes very important in the study
of hyperbolic geometry, where we can use it to help us relate two different maps of
the mysterious hyperbolic plane.

Here’s the idea: starting with the unit disk in the plane centered at O, we can use the
parameterization of stereographic projection to map this onto the sphere. Doing so
moves the region onto the entire southern hemisphere of ? (since the unit circle maps

to the equator):

an

Figure 24.18.: Mapping the unit disk to the lower hemisphere of 2 via the parameteri-
zation .

Now, we can rotate the sphere a quarter of a turn about the x-axis, so that the equator
becomes a line of longitude, now passing through the north and south pole, and what
was the southern hemisphere is now the positive y hemisphere: the south pole has
been moved to (0, 1,0). (How do we write down a rotation about the x axis? Well, its
going to fix the x direction so we know the first column. Then, the second and third
column will be where the y and z basis vectors go under a quarter turn)
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24. Stereographic

K 14
7))

Figure 24.19.: Rotating the sphere about the x axis by a quarter turn takes the lower
hemisphere to the hemisphere of positive y.

And finally, we can use the chart of stereographic projection to re-project this down
onto the plane. Now, the great circle bounding it passes through the north pole, so it
projects to a line: the x-axis! This divided the sphere in two, and so its image divides
the plane in two, with our positive y hemisphere becoming the positive y half-plane.

@
J

Figure 24.20.: Projecting the hemisphere of positive y to the plane with ¢ gives the
half plane with positive y.

Exercise 24.4 (Disk and Half Plane: Construction). Let D be the unit disk D =
{(x,y) | x* + y? < 1} and let U be the upper half plane U = {(x,y) | y > 0}. Let
T : D — U be the map described above. Prove that $T can be expressed as

22
T(x,y)=( 2x =Xy )

1+x2+y2 -2y 1+x2+y2 -2y

By building it step by step: applying ¢ to get the disk onto the sphere, rotating by the
correct quarter turn about the x-axis, and then applying ¢ to return to the plane.

This map is conformal - meaning that it preserves all angles! And even more than
that, it takes generalized circles to generalized circles.

Exercise 24.5 (Disk and Half Plane: Understanding). Prove that these claims are
in fact true: that our new function is conformal, and sends generalized circles to

346



24.3. The Sphere of Radius R

generalized circles. Hint: what kinds of maps is it built out of? What do each of these
maps to do angles, or to generalized circles (on the plane) / circles (on the sphere)?

Use this to “transfer” this picture of polar coordinates in the unit disk onto the plane,
via our new map.

R R RN Adeaaid

Figure 24.21.: What do these generalized circles look like when mapped to the half
plane?

24.3. Tre SrHere oF Rapius R

Throughout this chapter we have studied stereographic projection in detail, but on
the unit sphere. It is not too hard to generalize what we have done to spheres of other
radii, and while this may not sound super exciting at first, it actually turns out to be
absolutely fundamental to how we are going to discover hyperbolic space! So, it is a
rather important exercise to work this all out for yourself.

The good news is you have this entire chapter as a guide, where I've worked out many
of the details for the case of the unit sphere. The formulas will be quite similar, but
there’ll be R’s inserted in various places: so the second piece of good news is that I'll
give you the formulas that you need to derive! That way, you can check your work.

Definition 24.4. Let i, be the sphere of radius R in E3. Then the chart ¢ for stere-
ographic projection of this sphere is defined geometrically exactly as in the original
version: given a point p € 2, ¢(p) is where the line connecting p to the north pole
N = (0,0, R) intersects the xy plane.

Exercise 24.6. Show that the formulas for both the chart and the parameterization
of stereographic projection here are as follows:

Rx Ry)
v,2) =(X,Y) = )
$x. y.2) = ( ) <R—z R—-z
IRZX 2R%’Y X2+Y2—R2)
X,Y)=(x,y,2) = , )
lﬁ( ) ( y ) (X2+Y2+R2 X2+Y2+R2 X2+Y2+R2
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24. Stereographic

(It might help to look back at Proposition 24.1, and attempt Exercise 24.1).

Running through the same arguments as in the chapter above (which you don’t have
to write down), its straightforward to check that this new map is a conformal map
between % minus N, and the plane. This means its parameterization i both preserves
angles and stretches all vectors by a uniform length: we can use this fact to compute

the dot product for this map.

Exercise 24.7. Atapoint p = (X,Y) on the plane, what is the factor by which a vector
ve Tp]E2 is stretched when mapped onto % by the parameterization of stereographic
projection? Hint: we know the factor is the same for all vectors: so pick an easy vector
to calculate with and find its length!

Once you know this, follow the argument style of Theorem 24.3 to compute the map-
dot product on the plane, and show that it is equal to

aR*

®rxarypl

(v W)map =
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25. DISCOVERY

In this chapter we will embark on our final journey in the Foundations of Geometry,
and construct the third flavor of geometry: hyperbolic space.

To do so, we will draw on all of our knowledge from the course, from the Greeks,
through calculus, to spherical geometry and its expression in maps.

The discovery of hyperbolic geometry was one of the big mathematical achievements
of the previous millennium, as not only did it open our minds to the much richer
geometric world mathematicians now work in, but it also definitively answered the
most important outstanding question of the Greeks. So, it is only fitting, that in this
final chapter we look back to where we began.

25.1. Precube: THe Lecgacy oF THE GREEKS

The ancient Greeks were right to feel proud of their progress in geometry: after a
couple of centuries of deep thought they mastered the axiomatic method, and went
forth to prove hundreds upon hundreds of theorems answering almost every question
they had about the geometry of 2 and 3 dimensional space.

Almost.

The golden age of Greek mathematics closed with a few important open problems
remaining, that they posed to the generations of the future. Three of these were
questions about the specifics of greek method of constructing geometric figures using
a ruler and compass:

« Doubling the cube: given a cube, use a ruler and compass to construct a new
cube with double the volume.

« Squaring the Circle: Given a circle, use a ruler and compass to construct a
square with the same area as the circle.

« Trisecting angles: Given an arbitrary angle, use a ruler and compass to draw
two new lines which divide it evenly in thirds.

The deep knowledge of greek mathematicians becomes even more clear as we look
back at these problems as guiding lights for mathematics over the last two thousand
years. While today all have been solved, it took until the 1800’s, the answers required
an entirely new branch of mathematics, and they were all answers the greeks and
their successors never imagined:
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« Doubling the cube with a ruler and compass is impossible.
« Squaring the circle with a ruler and compass is impossible.
« Trisecting an arbitrary angle with a ruler and compass is impossible.

Unfortunately: we will not answer these three in this course. It turns out the new
idea needed to answer all three of these questions came from abstract algebra - specif-
ically, from the theory of fields, and field extensions! So while the questions are pure
geometry, their resolutions are arguments in algebra! If you are currently in abstract
algebra - please feel free to come ask me about them!

We will instead focus our attention on the much larger problem the greeks left open:
not a problem about some particular method of drawing geometric figures, but about
the nature of geometry itself.

« Prove the fifth postulate from the remaining four (or show that this is impossi-
ble).

This question was worked on for approximately two thousand years by the great-
est mathematical minds, with essentially no success until its eventual resolution 200
years ago (around 1823). It is one of the great joys of undergraduate mathematics to
be able to seriously engage with the mathematics of the intervening two thousand
years, and be able to fully understand the answers to these lasting questions, and
this course has essentially been designed to exposit this problem’s solution. So, lets

begin!

25.1.1. Disproor By COUNTEREXAMPLE

Perhaps, like the other questions of antiquity, the reason the greeks failed to prove
the fifth postulate from the other four is that this is also impossible. One way to show
a claim is impossible is by finding a counterexample, and that is the approach that we
will take here. But a counterexample to what? If the question is to “prove Postulate
V from postulates I-IV”, then a counterexample would be a geometry which satisfies
the first four axioms, but for which the fifth is false. The existence of such a geometry
would spell doom to any hope of proving the fifth in the same way that the number
4 spells doom to any hope to proving that all numbers greater than 1 are prime. It
would once and for all settle the question, and in the same style as the other greek
resolutions: it seems that when it comes to geometry, the only things the greeks
didn’t succeed at were impossible!

But while the dream of producing a counterexample is clear, the actual process for
doing so is not. While its easy to write down a geometry in our modern definition
(you just need to give me a set of points, and rules for doing calculus with infinitesimal
arc lengths and angles at each point), most everything you will write down will not
satisfy all four of the first axioms of the greeks.
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25.1. Prelude: The Legacy of the Greeks

The first and third axioms basically state that “space doesn’t have any holes, tears,
rips or edges in it”: you can always connect two points with a line segment and once

you have a line segment you can always sweep it around in a circle.
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Figure 25.1.: Spaces with holes or edges violate postulates 1 or 3.

The second axioms says something about space being infinite: we already saw that
this fails on finite spaces like the sphere. But its more particular than that - it can
also fail on some infinite spaces like the cylinder, where geodesics can be extended
indefinitely in one direction, but not in others. For axioms 2 to be satisfied in the way
the Greeks originally stated it, space needs to be “infinite in all directions”.

A more modern reading of this axiom by Bernhard Riemann in the 1800s replaces it
with a weaker statement that only says geodesics can’t come to an “edge” you have to
be able to continue forwards forever, but its OK if you retrace your steps. This allows
the sphere to be worked with more naturally in the context of axiomatic geometry.
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Figure 25.2.: Spaces with geodesics of finite total length violate Postulate 2, as origi-

nally written.

The axiom that is hard to satisfy is the fourth: all right angles are equal. Remember
that when making this precise, we realized it implies that space is both homogeneous
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and isotropic: you can move any point to any other, and you can rotate about any
point, in any direction. This axiom is the key to a lot of what we do when proving
things: we always move something to the origin, or to the north pole to simplify our
calculations, and justify it by our proofs that the sphere and plane are homogeneous.
But any little change whatsoever to the sphere or plane generally produces something
that is not homogeneous:

Figure 25.3.: Spaces that are not homogeneous and isotropic violate Axiom 4. This is
the hardest one to satisfy: even a single little bump on the infinite plane
can mess it all up.

Thus, its relatively easy to produce a geometry which satisfies axioms 1,2 and 3 but
fails 4, and its also possible (but harder) to produce a geometry which satisfies 1,3,
and 4, but fails 2 (the sphere). Unfortunately neither of these help us in our quest for
a counterexample. Even though we proved on the sphere that the parallel postulate
is false (we found a triangle with three 90 degree angles: so the angles on one side
added up to 180 yet the lines still intersected!), this does nothing towards our goal, as
it didn’t satisfy the other four to begin with!

Figure 25.4.: The sphere violates the parallel postulate, but this does not solve the
greeks problem as it also violates postulate 2.

To build our counterexample, we want to take as much inspiration from the sphere
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and the plane as possible - since these are the only two geometries that we know of
that satisfy Postulate 4. But we want our new creation to be infinite like Euclidean
space, and yet fail the parallel postulate like the sphere.

25.2. A RabpicaL Ipea

While we often speak as though we have studied two geometries so far - Euclidean and
spherical - this actually isn’t quite right. Indeed, we proved along the way that there
is actually a different sphere geometry for each radius! More precisely, we’ve studied
the Euclidean plane, and a whole 1-parameter family of spherical geometries

; radivs —?

Figure 25.5.: A spherical geometry for each radius R € (0, c0).

The sphere geometries are all closely related to one another, (by a similarity that
is not an isometry) and so their geometric formulae are all closely related as well.
This allowed us to start with careful study of the unit sphere and then expand our
knowledge to spheres of any other radius: for example, deriving the formulas for
circumference and area of circles on a sphere of radius R:

C(r) = 2nRsin (%)

A(r) = 2nR (1 — Rcos (%)) = 47R? sin® (é)

Exercise 25.1. Derive this formula for the area of a circle on the sphere of radius R:
use the fact that you found the circumference on a previous homework, and that area

is teh integral of circumference

r

A(r) = J; C(r)dr

Then apply a trigonometric identity to simplify things and get the second expression.
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The same ideas apply to other important formulas in geometry like the spherical
pythagorean theorem: you found this on the homework to be cos(c) = cos(a) cos(b)
on the unit sphere, which generalizes on the sphere of radius R to

(7)=cos(R) (%)

cos| =) =cos|=)cos(=

R R R

And the area of a spherical triangle, which is A = @ + f§ + y — 7 on the unit sphere,
and

A=R¥a+pf+y—n)

on the sphere of radius R. This continues for the spherical trigonometry of right

triangles. Consider the triangle with angles «, f, opposite sides a,b and hypotenuse

. . . sina tanb
c. On the unit sphere we had the relations sina = P and cosa = e

the sphere of radius R we have

Thus, on

a b

sin R tan R

sina = c cosa = -
sin = tan =

R R

Then rather separately, we had the geometry of the Euclidean plane, where we spent
the first half of the semester carefully confirming all of the results we knew from
earlier education:

Cgz(r) = 2nr Ape(r) = 2712
c? = a? + b?
. a b
sina = = cosa = —
c c

These formulas are different than those of the sphere, but not wholly so. Indeed -
we saw earlier a hint at the connection, by recovering the Euclidean pythagorean
theorem from the spherical one, as the radius of the sphere goes to infinity. But this
wasn’t an accident: if you take limpg_, ., in any of the spherical formulas above, you’ll
recover the Euclidean counterpart!

::{#irem-euc-triang} Here of course there’s no analog of the formula giving a triangles
area in terms of its angle sum, as in Euclidean space the angles do not determine the
size of a triangle at all!:::

Exercise 25.2 (Circle Area and the Euclidean Limit:). Let Cg(r) = 27(1— Rcos(r/R))
be the area of a circle of radius r on IZQ. Prove that as R — oo this converges to the
Euclidean formula

lim Cg(r) = 7r?

R—co
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25.2. A Radical Idea

Exercise 25.3 (Trigonometry and the Euclidean Limit). Show that in the limit R — oo,
the trigonometric formulas for spherical right triangles converge to their Euclidean
counterparts.

sin —

. a
lim — f ==
R—o0 sin — c

b
tan R b

lim = =
R—o0 tan 7 c

This is even true for the maps we’ve studied! For example you're calculating the

scaling factor for stereographic projection on the homework, and finding the map-
dot product on the plane:

4R*

TS S O

(v- W)map =

Thus, this tells us how to rescale the Euclidean dot product v - w depending on our
location (x, y) € E?2, so that the result accurately reflects teh true dot product on the
sphere. But when R — oo, this true dot product becomes the Euclidean plane!

Exercise 25.4 (Maps and the Euclidean Limit). Show that as R — oo, the scaling
factor of stereographic projection becomes a constant. Thus, the map now treats

vectors based at different points all the same - just like Euclidean geometry! (In fact,
the result is Euclidean geometry).

Because this all fits together so nicely, we might picture the geometries we have
discovered so far as forming a line (the spheres) with teh Euclidean plane off at infin-

ity.
SIS

fadivg

(o)

N\

Figure 25.6.: Euclidean geometry is the limit of spherical geometry as R — co.

This picture suggests a radical idea: as we increase the radius of the sphere, we keep
our geometry nice and homogeneous but make it larger: getting closer to satisfying
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25. Discovery

postulate 2. Once we go all the way to R = oo we reach Euclidean space, where
Postulate 2 is satisfied! What if we kept going? Can we go beyond Euclidean space,
pushing the radius past oo, and uncover new spaces, where Postulate 2 is true, but -
like the spheres - the parallel postulate is false?

R to

Figure 25.7.: If we can find a way to keep going, can we find a new geometry?

25.2.1. To INanTY AND BEYOND

Theres one obvious problem with our grand plan however: what could it possibly
mean to go beyond infinity? We can’t even go to infinity rigorously - everything
must be done in terms of limits. We want to use the formulas we’ve worked hard to
develop this semester as a guide for whatever new geometry lies on the other side,
but the formuls are no good if the first step is “plug in a number larger than co” when
in fact there are no such things.

What we need is a change in perspective. We would like to replace our discussion
of limg_,., with something we can evaluate at a finite number. And, curvature pro-
vides the key. When studying spherical geometry, we proved there was an inverse
relationship between radius and curvature: the bigger a sphere the less it was curved,
and the smaller the sphere the larger its curvature. More precisely we showed that

K = ﬁ
Thus, we can go to any of our formulas above, and directly replace any occurrences

of R? with x without changing any of the math. For example, the circumference
Cgr(r) = 2R sin(r/R) becomes

T .

q®=%mwm

where we’ve re-arranged the relationship of radius and curvature above to be able to

; - L
substitute R = *
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25.2. A Radical Idea

Exercise 25.5. Give the analogs of other spherical geometry formulas in terms of
curvature.

The euclidean limit now is no longer R — oo, but rather k — 0: and it now makes
perfect conceptual sense to ask what happens if we keep going? We should just get
k = 0, and then - pushing onwards - get negative values of k!

2 @@e

e——— —>

Figure 25.8.: Expressing things in terms of curvature takes the R = oo limit to k =
0, and the mysteries beyond infinity to the familiar world of negative
numbers.

There’s just one problem with this: it doesn’t seem to work when we look at our
formula. Indeed, when k = 0 the circumference is an indeterminate form 0/0 (since
sin(0) = 0), and when k < 0 we are trying to plug a negative number into a square
root. But this is not as serious of a problem as it seems at first. We’ve expressed this
function in one way, using the function sin which we invented for the study of circles
in Euclidean geometry. But mathematics doesn’t care how we write things down in
symbols - those are human inventions. And we can write the exact same function
using a series expansion, since right after our definition of sin we derived its series
$sinx = x — x3 /3! + x° /5! — -

Cer) = 2 (Vi = 5 + () )

NG

271( 1 33 1 55 )
= —|(Vkr— =k r’+=+ykr —-
\/E\f TAGREN

We can simplify this by noting that every single term in the parentheses contains a
Jk, and so we can safely factor one out, cancelling its counterpart in the denominator
of 2

1 1
=2 (r - —krt =K%’ — )
3! 5!

This formula is exactly equal to the formula we started with, just expressed in another
notation. BUt this other notation is much more suggestive when we are looking to be
bold, and think about what happens if we explore beyond the original k¥ > 0 regime
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25. Discovery

in which we derived it. Indeed - this formula is completely well-defined for all k! So
we may take k zero, and we recover directly Cy(r) = 2zr - Euclidean geometry!

What happens when « is negative? Well, if we look at the formula, we see that each
term is multiplied by an

Half of the terms (those with odd powers of k) change sign! This makes ALL the
signs positive!! Here we've written k = —|k| and used [k| in the formula to cancel
these signs and emphasize that everything is positive

1 1
C.(r)=2n(r+ §|K|r3 + §|K|2r5 + )

The case we will be most interested in is when we push « all the way to negative 1.
Here the circumference function is just

_ LI S
C(r)—27r(r+3!r +5!r + )

What is this new function like, qualitatively? In making all the terms the same sign,
we prevent all the cancellation that happens in the series expansion for sin and cos
that keeps them bounded in size. Instead, this function gets larger with each term
we add, in the end growing faster than any polynomial! This means if there really is
some space for which this is the circumference formula, circles here would be very
very large. Since smaller-than-Euclidean circles signifies positive curvature, bigger-
than-Euclidean circles hints that the space will have negative curvature. But we can
do better than that! We have an exact, quantitative formula for curvature involving
circle’s circumference, after all.

Exercise 25.6. Let k < 0. Prove that a space with the circumference function
1 1
27(r + =klr® + =[x|%r> + )
3! 5!

has curvature k, by computing the limit

o 32mr—C(r)
lim =————~=
r—0* 1T r3

This tells us that if we construct a space whose circumference-to-radius-function is
as above, then this space necessarily has curvature k. Doing so will create for us a
space of every possible value of negative curvature, just as varying the radius of a
sphere produces a space of every possible positive curvature. Such spaces are called
hyperbolic
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25.3. Interlude: Hyperbolic Functions

Definition 25.1 (Hyperbolic Geometry). Given a negative number «, hyperbolic ge-
ometry of curvature k is denoted H2, and is the space where at every point, the circum-
ference of circles grows as C.(r). When k = —1, we often shorten this to just hyperbolic
geometry* and denote it by H2.

Remark 25.1. It’s reasonable to wonder if this uniquely defines a space: after all, all
we have done is say how the circles (and thus, the curvature) behaves. This is a good
thing to think about, and it was resolved in 1839 by Minding’s Theorem which states
that if two spaces have the same constant curvature, then they are locally isometric
to one another.

To learn about this new hyperbolic space, we will push this technique as far as we
possibly can: starting with a formula on the sphere, and pushing it to its limit (infinite
radius, zero curvature) and beyond to the realm of negative curvature. In doing this
we’ll see the function we met above - like the sine but with all the terms positive, is
actually just the tip of the iceberg. There is a whole collection of parallel universe
trigonometry functions out there, defined analogously. And since these functions will
play a large role in our further development, now is a good time to pause and get
ourselves acquainted.

25.3. InTerLuDE: HyPerBOLIC FUNCTIONS

Definition 25.2 (Hyperbolic Sine and Cosine). The hyperbolic sine and cosine func-
tion are defined by their series expansions, which are identical to those for sin and
cos, except that the sign of all coefficients have been made positive:

3 5 7
sinh(x) = x+ =~ + X + X ..
3! 5! 7!
2 4 6
cosh(x):1+x—+x—+x_...
20 4! 6!

Remark 25.2. The function name cosh is pronounced as it is spelled, but sinh is pro-
nounced sinch in the US and shine in the UK.

To begin to develop intuition for these functions, we should take a look at their graphs.
The first major revelation is that unlike the usual trigonometric functions, neither are
periodic!

Also, they seem to grow extremely fast. How fast? We can actually quantify it by
relating these functions to exponentials. Since sinh contains all the odd terms of the
series for e* and cosh contains all the even terms, we can see that

sinh(x) + cosh(x) = *
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(a) The Hyperbolic Sine (b) The Hyperbolic Cosine

Exercise 25.7 (Hyperbolic Functions in terms of Exponentials). Show that we can
actually express the hyperbolic trigonometric functions in terms of exponentials:

X _ X x —x
sinh(x) = % cosh(x) = %

Because e * quickly becomes small, this gives us a very precise understanding of just
how quickly sinh and cosh grow. For x >> 1 we have

ex
cosh(x) =~ sinh(x) = 0

In direct analogy with regular trigonometry, starting from sinh and cosh we can build
up a family of other hyperbolic trigonometric functions: (The first two of these are
often pronounced tanch and coth. I am too scared to attempt to pronounce the second
two)

Definition 25.3 (Other Hyperbolic Functions).

sinh x cosh x
tanhx = s——— cothx = ———=
cosh x sinh x
1 1
sechx = cschs x = —
cosh x sinh x

Knowing what some of these look like as well will be important, so let’s take a minute
to think about their graphs. How should tanh behave? Well, both sinh and cosh are
growing exponentially at the same rate, so their ratio should be approximately 1 for
large inputs. And, sinh is odd whereas cosh is even, so the quotient is an odd function:
passing through 0 with horizontal asymptotes at +1!

Thus, coth(x) = 1/tanh(x) should also asymptote to +1, but always be larger in
absolute value, diverging to foo at the origin.
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25.3. Interlude: Hyperbolic Functions

(a) The Hyperbolic Tangent (b) The Hyperbolic Cotangent

(a) The Hyperbolic Secant

(b) The Hyperbolic Cosecant

The reciprocals sech and csch of cosh and sinh share similar behavior, both asymp-
toting to 0, while the hyperbolic secant stays bounded in [0, 1] and the hyperbolic
cosecant diverges at the origin.

These functions satisfy many analogous identities to the standard trigonometric ones
as well, which can be proved directly from their definition:

Exercise 25.8 (Hyperbolic Trigonometric Identities). Prove that
2 2
cosh”(x) — sinh”(x) = 1

Use this to deduce that
sechz(x) + tanhz(x) =1

These identities are the same as the Euclidean versions but with the sign switched!
Hint: the formula relating to exponentials!

Exercise 25.9. Derive this trigonometric identity:

sinh(2x) = 2 sinh(x) cosh(x)

For the hyperbolic functions it turns out that calculus is even simpler than in the
Euclidean case:
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Exercise 25.10 (Hyperboloic Trigonometric Derivatives). Prove that
d . d .
— cosh(x) = sinh(x) — sinh(x) = cosh(x)
dx dx

No minus signs to remember in hyperbolic trigonometric calculus! Use these to find
the derivative of tanh(x).

We will find these hyperbolic trigonometric functions to be extremely useful in giving
us a shortened way to write results, without carrying around infinite series. For
example, we can already simplify the circumference function:

Exercise 25.11 (Simplifying Circumference). If k < 0, show that the circumference
formula C(r) derived above can be rewritten in terms of hyperbolic trigonometry as

Cc(r) = 2 sinh( |K|r)

VIl

25.4. GeoMeTRY WITH CURVATURE —1

To daydream of a world with curvature —1, we now have a rather concrete way for-
ward to make initial guesses about its properties:

« Derive a formula for spherical geometry on the unit sphere

« Generalize that formula to spheres of radius R

« Replace the radius with the curvature

« Make sense of this formula for negative values of x: if necessary, use a series
expansion.

« Plug in k = —1 to get our conjecture for how negatively curved geometry
should behave.

« Convert back from a series to a hyperbolic trigonometric function, for a com-
pact way to write things.

We saw this process play out in full for the circumference of circles above, where after
all this work we ended up just going from 27 sin(r) to 27 sinh(r). Often, this process
does indeed just boil down to replacing the usual trigonometric functions with their
hyperbolic counterparts,

sinr +— sinhr
cosr — coshr

tanr — tanhr

But there can be other sign changes that occur as well, from factors of k, so its impor-
tant to actually run the arguments when you could be unsure.
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25.4. Geometry with Curvature —1
25.4.1. PROPERTIES

We’ve already seen what happens to circumference of a circle in negative curvature:
it grows exponentially with radius. What else can we learn about this mysterious
geometry?

Exercise 25.12. Show that when ¥ = —1 we expect a circle’s area to be related to the
radius by

A(r) = 2n(coshr — 1) = 4 sinhz(r/z)

(Here we had a switch in the first term from 1 — cosr to coshr — 1, which you may
have missed if you just tried to replace cos with cosh) This formula - like the one for
circumference before it - tells us that circles areas also increase exponentially with
radius. There really is a lot of space in negative curvature!

Exercise 25.13. What are the areas of circles of radius 1, 10 and 507
A 50 meter radius (so, 100 meter diameter) circle on earth is just large enough to fit a

football field inside: a football field is approximately 100m by 50m, so we can fit

en2
50" T _ 57
100-50 2

football fields in our circle, in Euclidean space. How many football fields area fit
inside the same radius circle in negatively curved space?

Exercise 25.14 (Hyperbolic Pizza). One way to try and develop intuition for the
strange behavior of circles is to think about the type of circles we see in daily life:
pizzas! One major factor determining how good a pizza is is its crust percentage which

we will define as

area(Crust
CrustPercent = #
area(Pizza)

In this problem we will consider pizzas which have 1 inch crusts: meaning a 10 inch
(radius) pizza has a 9inch radius center of toppings, surrounded by a 1 inch thick
circle of crust.

« Show the CrustPercent for Euclidean pizza is $$$$. From this we see that as
r — oo the crust percent drops to zero: this makes sense, if you imagine an
extremely large pizza with only a linch thick crust, it’s totally reasonable that
most of the pizza is not crust!
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« WHat is the CrustPercent for a hyperbolic pizza of radius r? Show that when r
is large, this limits to the constant
1

CrustPercent - 1 — — = 63
e

Thus crust is an inevitable part of life in hyperbolic space: even if you try to
make the pizza huge it will still be well over half crust!

Exercise 25.15 (Hyperbolic Pizza II). In this problem, we will imagine our unit to be
inches (so, the radius appearing in formulas for space of curvature —1 is measured in
inches).

You are at a pizzeria and are trying to decide if the 5 inch radius pizza they sell is
large enough for you and your friends. They also sell a six inch (radius) pizza, but it
costs twice as much. You think this is crazy! Is this a good deal, or not?

Your is feeling very hungry, and jokingly asks the pizza-maker how large of a pizza he
would need to order so that its areas is the same as an american football field (100 x50
yards). The pizza-maker says ‘I think I have room for that in my oven, coming right
up!” How big of a pizza is he going to make?

Its OK to approach this question totally numerically: the goal is just to showcase how
truly strange this new world is.

One thing we’ve already learned here - as this area formula goes to oo as the radius
does, we see that space is infinite! So, we have a good reason to believe that Postulate
2 will end up being true about this geometry, unlike what we saw for the sphere.

We can learn more about this space by trying to take our other formulas across the

divide.
Example 25.1. For the area of a triangle, starting from

A=(a+p+y)—=x

we could scale lengths by a factor of R to get onto a sphere of radius R. THis scales
areas by R? so the result is

A=R¥a+pf+y—m)
Rewriting this in terms of curvature, we see

_atfty-=x
- K

A

And now, setting x = —1, we get
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25.4. Geometry with Curvature —1

+B+y-—
A:aﬁ#:—(a+ﬁ+y—ﬂ)

=r—(a+f+y)

This formula is very striking, and quite confusing at first. Whereas circles get ex-
tremely large, here the area of a triangle (which must be a positive number) is equal
to 7 minus some other number. This means it is at most ! So, triangles in this space
seem to not be allowed to ever have area greater than 3.14. How can this be? Once
we actually build the geometry, we will come to see.

Remark 25.3. Remember - we don’t actually know this crazy space exists yet! We
are just playing around with formulas to see what we should expect, if there really
is a geometry on the other side of E2. If I were working 200+ years ago on the prob-
lem of parallels and I came across these two facts, I would think surely I should be
able to quickly find a contradiction: how can circles areas grow exponentially but all
triangles areas be less than 4?

Beyond this, we can continue by looking at the pythagorean theorem, and the
trigonometry of right triangles.

Exercise 25.16. If k < 0, show that the pythagorean theorem for a right triangle
with legs a,b and hypotenuse ¢ should be

cosh (c\/H) = cosh (a\/W) cosh (b\/H)

Thus, when k = —1 we get

cosh ¢ = coshacoshb

Example 25.2. For a right triangle with angles «, f3, legs a,b and hypotenuse ¢ con-

tinuing the formula for spherical geometry to x = —1 gives
. sinha tanh b
sina = cosa =
sinhc tanhc

and analogously for sin f3, cos
Exercise 25.17. Check this.
Exercise 25.18. Use these trigonometric rules and the pythagorean theorem for k =

—1 to discover a relationship between the tangent of an angle «, its opposite side a,
and adjacent side b:

tan o = tanha
sinh b
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25.4.2. PARALLELS

Now that we’ve seen glimpses of the possible negatively curved world beyond the
Euclidean plane, we should spend some time thinking through their implications. In
particular, we are most interested in whether or not such a space of negative curvature
will truly be the counterexample we seek: will it fail the fifth postulate?

The 5th postulate gives a condition on when two geodesics will intersect: it says if
you can measure the angle of intersection they make with a third line, and its less than
two right angles, then the two lines intersect one another at some distance along that
direction.

Figure 25.12.: Postulate 5 gives a condition on when two lines will intersect, in terms
of the angles of intersection with a third line.

Our tool to analyze this situation will be trigonometry, where we’ll reason as follows.
Choose some line and pick a point at distance d away from that line. Through this
point, any line we draw makes some angle with the vertical segment of length d,
which we can call . Our goal will be to understand how to relate this angle to the
point whre the two lines intersect (if they do at all).

Figure 25.13.: A setup for testing the truth or falsity of the parallel postulate in a
special case.

Let’s review first what happens in the Euclidean case. Here, we can use trigonometry
to express the relationship between the height d, the angle 0, and the distance L to
the point of intersection
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L
tanf = =
an .

S

Figure 25.14.: Verifying the parallel postulate is satisfied in this special case in Eu-
clidean geometry, using trigonometry.

We can then solve this for L, getting L = d tan§. This formula gives us a value for L
any time that tan 0 is defined, and so we get a point of intersection whenever 6 = 7 /2.
When 0 = 7 /2 there is no solution for L, and so there is no point of intersection. Thus,
our new line intersects the first except exactly when the sum of the two angles is 7
(each being /2), as the parallel postulate states.

What happens to this reasoning if we want to translate it to negatively curved geom-
etry? Well, we will need to figure out what the analogous relationship between 6, d
and L should be. While we don’t have any ready-made trigonometric relationship
sitting around (yet), we can derive one from what we already know, much like you
have done in spherical geometry before:

Exercise 25.19. Using the analogs of right triangle trigonometry in negative curva-
ture, show that

_tanhL

tan 0
an sinh d

Hint: write tan 6 = sin 8/cos, use the fact that we do* know what the trigonometric
formulas for sine and cosine should look like (from Example 25.2), and then we also
know the pythagorean theorem in negative curvature (Exercise 25.16) to simplify*

Like in the Euclidean case, we can solve this for L: but perhaps its easier to start by
just solving for tanh L:

tanh L = sinhd tan 8

What does this equation tell us? Well, whenever we can find an L that makes it
true that means we have found a point of intersection between our two lines. And,
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whenever there is no L which works, we know the two lines do not intersect - they
must be parallel! So, analyzing the solutions to this equation will tell us exactly when
lines in negative curvature would and would not intersect.

To analyze the possible solutions here, we need to think a bit about the behavior of
the hyperbolic-trigonometric that arise. Most importantly, the function$ tanh L has
horizontal asymptotes at +1, so it is impossible to have any solution to tanh L = x if
|x| > 1.

But wait: it seems pretty easy to make the other side of the equation bigger than 1:
both tan 6 and sinh d are functions that can grow unboundedly! Let’s do an explicit
example: if we look at a point d = 1 unit of distance away, our equation becomes

sinh(1)tanf = 1.175tan@ > 1

This happens anytime tan6 > 1/1.175 = 0.85, which is pretty easy to arrange - if
0 = 0.73 radians then tan 6 = 0.9 which will do the trick.

0N

Figure 25.15.: The parallel postulate will be false in hyperbolic geometry.

But what does this mean? This means that when d = 1, the line making angle 0.73
with the vertical never manages to intersect the original horizontal line! We have an
explicit pair of lines making total angle less than two right angles, whcih nonetheless
never intersect one another! Thus, Euclid’s fifth postulate must be false in hyperbolic
space!

We can use this same sort of reasoning quickly to see that the equivalent Playfairs
axiom is also violated here. Considering the same situation as above, we can take a
line, and a point on that line, and find many lines through that point which do not
intersect the original: any line making original angle greater than arctan(1/ sinh(1))
will do!

Figure 25.16.: Playfair’s axiom will be false in hyperbolic geometry.
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Thus, our daydreams of pushing the radius past infinity - if they can be formalized -
will indeed solve the most important problem of the greeks.
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26. MODELS

At this point we have a lot of ideas of what negatively curved, or hyperbolic space
is like, but we do not have a concrete way to work with it. This causes two major
problems:

+ We don’t have any means of discovering new facts about hyperbolic
space everything we’ve learned as come from our understanding of spherical
geometry, passed along the transition as curvature goes to —1. This is a great
approach for learning facts about hyperbolic geometry that are analogous to
the sphere, but it leaves us blind to any potential differences. And we know
there will be differences! As a concrete case where this will be important: we
know on the sphere there’s just one type of (orientation preserving) isometry:
rotations. But in the Euclidean plane there are two types: translations and ro-
tations! How many types of isometries does hyperbolic space have?

« How do we really know that hyperbolic space even exists? For both the
Euclidean plane and the sphere, we started with a definition we specified the
points of the geometry, its tangent vectors, and its infinitesimal length / inner
product. Then we built up all other results as theorems. But so far we have
no analogous construction of hyperbolic space. We have a bunch of theorems
about how distance should work, or area should work, but we don’t even have
a clear notion of what the points are we are measuring distance between! Be-
cause the implications of this discovery are enormous (namely, it resolves the
most important problem of the greeks, which was open for more than two
thousand years), we should not be satisfied with this state of affairs. Its like the
discovery of a new species deep in the jungle: its useful to have a detailed de-
scription of the creature, but this isn’t enough. If you claim to have discovered
Bigfoot, you'd better present a specimen!

In this chapter we aim to simultaneously remedy these two concerns, and produce
an explicit model of hyperbolic space.

26.1. CoNncePTUAL TROUBLES

Upon sitting down to try and rigorously define the hyperbolic geometry we’ve
glimpsed through the transition, we immediately hit a conceptual hurdle: how are
we supposed to find the right set of points and definition of infinitesimal length? For
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both the Euclidean plane and the sphere, we didn’t have to confront this problem
because we essentially already knew the right definitions to write down: we’ve all
seen many planes and spheres before in daily life. But negatively curved space? We
do see around us spaces that have some negative curvature, like a Pringle chip

=
o

i
I

,‘Tg, .
‘;‘-iﬁ':‘. 3 1/— —

(a) A pringle chip has negative curvature (b) But the curvature of a hyperboloid is not
constant: its much less curved far away

from the center.

But this is not hyperbolic space. The curvature of a pringle chip is more negative at
the center and less negative (closer to flat) the farther out you go: here’s a zoomed
out view of the pringle chip function x> + y?

But hyperbolic geometry is supposed to have curvature —1 everywhere: indeed, if
we really reach this space along a path including spheres and the Euclidean plane, it
should be both homogeneous and isotropic. A pringle chip is neither! Other shapes
familiar from the world around us are closer to having constant negative curvature,
such as the surface of a kale leaf, certain types of coral, or the wavy back of a nudi-
branch.

(@) A kale leaf is very nega- 1
tively curved. (b) Many corals also exhibit]

negative curvature.

(c) So does this slug.

Anytime evolution tries to increase the area of something beyond Euclidean
constraints, it resorts to negative curvature.

However these surfaces are all rather small: hyperbolic space is supposed to be infi-
nite! And its not quite clear upon looking at one of these surfaces how to continue
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it, and make it bigger. As the surface grows exponentially fast it wrinkles more and
more - it seems hard to believe one could continue this infinitely without the surface
self-intersecting, or worse - having a crease or points of non-differentiability (render-
ing all of our calculus based tools useless).

In fact, this is a very reasonable worry to have. This was though deeply about at the
turn of the 20th century, and it was actually proved that there is no way to do this.

Theorem 26.1 (Hilbert’s Theorem). There is no surface in E> which has the geometry
of the hyperbolic plane.

Remark 26.1. In the technical statement of the theorem, it is important that the sur-
face is described by at least second differentiable functions for the proof to go through.
But this is no serious restriction as we are already working in a world where calculus
forms the foundations of everything we do, and you need second derivatives to even
define curvature (meaning, if our surface were not described by such functions, then
the limit defining curvature would not exist at some points).

Thus, we must abandon hope of being able to work exactly as we did for the sphere,
where we found a subset 2 ¢ E? of points, found the tangent spaces, and then defined
all geometry using the euclidean dot product on these tangent spaces. Instead, we are
going to have to make use of our study of maps, and the flexibility they provide.

26.2. MAKING A MAP

So, there is no surface in E3 which has the same geometry as the hyperbolic plane.
But that’s alright - there isn’t any region in E? that has the same geometry as ? (via
The Mapmaker’s Dilemma) but we are able to completely accurately do computations
about 2 using regions of E? via a map.

In the previous part, our construction of a map went like this: we started with the
‘actual’” sphere, and wrote down a chart onto a region of the plane, and its inverse, a
parameterization ¥ taking that region to the sphere. We then used this parameteriza-
tion ¢ to make all geometric properties of the sphere computable on the map directly
(map-lengths, map-angles, map-dot-products, map-areas, etc). At the end of this pro-
cedure, we are left with a region on the plane, and a new rule on how to compute
geometric quantities in that region (different from the original Euclidean way). But,
if we follow these new map-formulas correctly, it is precisely as good as if we worked
directly on the sphere itself.

Taking this observation to its logical (but shocking) conclusion was the subject of Rie-
mann’s Habilitationsschrift, or post-doctorate research assigned by Gauss. Riemann
realized that to do geometry, maps are all you need!

375



26. Models

The Fundamental Insight of Riemannian Geometry: Any region
of the plane, together with a rule for how to perform the dot product
at each point (and thus, to compute infinitesimal lengths and angles) is
a map of some geometry - just perhaps a geometry that we have never
before seen.

Example 26.1. From Riemann’s perspective, if I were to write down the strip in the
plane |y| < 7 and explain that at the point (x, y) in this strip, the dot product of two
vectors v = (, v, V) and w = (wy, wy) is

ViWy + VoW

cosh? y

Then I am describing a true geometry. No matter what questions you asked me about
the geometry, with enough work I'd be able to do the calculations and answer them,
so this is truly indistinguishable from having the ‘real thing’ in front of me - whatever
that might mean! Indeed - Riemann’s whole point is that there is no real thing above
and beyond the map: the map is just as real as anything else!

Of course in this particular case if I sat down and started doing lots of calculations,
I would realize that this geometry has some familiar properties: all of its geodesics
have length 27, triangles angles are determined by their angle sum, and so on. This
is just the dot product that we found for the Mercator projection of the sphere!

But Riemann’s genius is to go further, and take something like the below seriously

ViWy + VoWy

cos®y

or even

(X + Dvywy + S0V,

These dot products describe some geometric spaces we have not yet encountered.
And its up to us to do math, and figure it out!

In taking this bold step, Riemann reduced the set of things needed to do geometry
down to one: just a dot product on a region in the plane, or a region in some higher
dimensional (euclidean) space. Because this dot product is the main tool we use to
find infinitesimal lengths, then lengths, then distances (and hence produce a metric),
it’s called the Riemannian metric.
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26.2. Making a Map

Definition 26.1 (Riemannian Metric). Given a region R C E? in the plane, a Rieman-
nian metric on R is a choice of formula for the dot product at each point (x,y) € R.
Any such choice is specified by three functions, G(x, y), E(x, y) and F(x, y) where we
write

(V- W)(xy) = Gx, y)viwy + Fx, y)(viwy + vowy) + F(x, y)vpwy

Remark 26.2. The two middle terms both have the same coefficient F(x, y) because
the order we take the dot product in shouldn’t matter: we wantv-w = w - v.

Thus, as we move around to different points (x, y) the definition of the dot product
is allowed to vary, representing that our map might be distorting the underlying ge-
ometry by different amounts at different points.

Exercise 26.1. Write the Riemannian metric (as a matrix) for the stereographic and
mercator projections of the sphere.

Remark 26.3. Riemann actually went further than this: recalling that it is not even
possible to cover the entire earth wtih a single chart, it would be shortsighted to define
geometry in general in terms of a single map. Instead, a space is called a manifold if
there is some atlas of charts covering it, and a Riemannian manifold if each of these
charts has a Riemannian metric.

Alright, so how do we go about finding a map, or in mathematical terminology, a
Riemannian metric for hyperbolic space? We continue pushing spherical things be-
yond infinity, of course! We can take any map we like for the sphere and run our
hyperbolization procedure on it: write it for radius R, convert to curvature, then push
tox = —1.

Because out of all the maps we studied stereographic projection certainly had the
(mathematically) nicest properties, we will start wtih this. We found the dot product
for a sphere of radius R to be, at the point p = (x, y)

4R*
(v W)map = W(V W)gz

Writing this in terms of curvature is straightforward, as only even powers of R show
up already
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45
(V . W)map = ﬁ(\) . W)]EZ (26.1)
(; +1p*)
= m(v . W)EZ (262)
= m(\/ . W)]EZ (263)
= m(v . W)]Ez (264)

This formula is exactly equivalent to what we already knew for the sphere when
k > 0, but continues to make sense when x < 0. In the case that k is negative, its
easiest to write things in terms of |x| as usual, where we get

(v W)map = ;(V - W)E2

(1 - Ixllpl2)*

This map has some interesting behavior! Its not defined on the whole plane, but only

on a subset of it: once |p| reaches a size of 1/\/@ then we get division by zero. In
particular, for the “unit sized” space x = —1 the map is only defined inside the unit
disk! Nonetheless as we will shortly seen, the geometry described by this map is
infinite. This is the so-called disk model of the hyperbolic plane.

26.3. Tre Disk MobeL

Definition 26.2 (Disk Model of H?). The disk model (also called the Poincare Disk
or the Beltrami-Poincare Disk) is given by the unit disk in the plane

{(x,y)EEz\x2+y2<l}

together with the Riemannian metric

_ 4
(v-w)pp = A= |p22 TBE (viwp + vpwp)
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Vi vy,
(V-u) ="W
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Tph*

Figure 26.3.: The definition of the Disk Model

What does this model of the hyperbolic plane look like? Well, we see immediately
that it is conformal (no surprise, since stereographic projection was as well) since the
dot product is a multiple of its Euclidean counterpart. Thus, any angles we see in the
disk will represent the true angles on the plane. But the scaling factor has completely
the opposite behavior of stereographic projection. It approaches infinity as we head
towards the boundary of the disk, which means that objects there are much bigger
than they appear. Equivalently, if you move an object towards the boundary of the
disk it should appear to shrink in size!

Figure 26.4.: The Disk Model

These strange distortions of size aside, there are many positive qualities about this
model. In some ways, having built our model of hyperbolic space inside of the Eu-
clidean plane is actually more useful than doing something else - as we can use things
we know about E? to help us deduce facts about H?: here’s a useful example, with
almost no knowledge we can deduce the circles in H? about the center of the disk
model.

First, Euclidean rotations of the plane about the origin restrict to isometries of the
Disk Model of H?: Rotation isometries of the plane do not change the distance of a
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point from the origin, and they do not affect the Euclidean dot product of two tangent
vectors. Because the hyperbolic disk dot product is just the Euclidean one rescaled
by a function of distance from the origin, it is also unchanged by a rotation, so these
rotations are hyperbolic isometries!

Knowing this, we can see that hyperbolic circles about the origin of the disk model
are Euclidean circles. Euclidean rotations of H? about the origin are isometries of the
model, so every point on the same Euclidean circle as p about O is the same hyperbolic
distance from O: this is the definition of a hyperbolic circle!

Figure 26.5.: Circles about O in the Disk model are Euclidean circles.

Note that this argument does not actually tell us the hyperbolic radius of this circle,
because we don’t yet know how to measure the hyperbolic distance in our model
from O to p. We will figure out how to do this in the next chapter, and confirm this
space really does have curvature —1.

The disk model is wonderful for depciting the hyperbolic plane, and for doing any
sort of calculations that involve rotational symmetry, as we saw above. But serveral
other computations are rather challenging in the disk model, due to the fact that the
scaling factor in front of the dot product depends on the "euclidean distance from
O. This makes some work with x and y coordinates cumbersome, as they naturally
describe affine lines and not circles in the plane.

But there is nothing tying us down to exclusively use this disk we just discovered! Its
just one map, after all. And, just like for the sphere, different maps are best suited for
different purposes. In the next section below we derive the map perhaps most used
for computations, the Half Plane Model.

26.4. Tre HALF PLANE MoODEL

The half plane, or upper half plane, or Poincare half plane model of the hyperbolic
plane is so named becasue it is a map which is drawn on the upper half space of the
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26.4. The Half Plane Model

Euclidean plane. In fact this upper half plane map is just a different perspective on
the map we already drew above, using stereographic projection!

We saw previously that stereographic projection lets us write down a conformal map
that takes the unit disk to the half plane by projecting to the sphere, rotating, and

re-projecting to the plane:
- / / /1

Figure 26.6.: Mapping the Disk to the Half Plane

Indeed, in Exercise 32.67 you actually derived the formula expressing this map, which
after a little simplification is

2x 1-(x* +y%)
w2+ (y—1)% x2 + (y—1)?

P(x,y) = (

We can similarly derive its inverse (let’s call it ¢/), which maps the upper half plane
to the disk.

x2+y2—1 —2x
X2+ (y+1)% x2 + (y+1)32

Y(x,y) = (

Remark 26.4. These maps can be described much shorter using complex arithmetic:
if we write z = x + iy for a point in the plane, then

1
#(z) = i
1-z
and its inverse ¥ is
z—1
z) = —
42 z+i

We now use this to transfer the disk model itself onto the upper half plane. The result
is going to be a conformal model of Hyperbolic space as well (the original model was
conformal, and this new model is the result of applying a conformal map to it), so we
know the dot product is just going to be some mutliple of the Euclidean version. And
all that needs to be done is calculate that scaling factor!
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Exercise 26.2 (The Scaling factor of the UHP). At a point (x, y), show that the scaling
factor for the dot product is simply # following the steps below:

« Start with a unit vector, say (1,0) based at some point (x, y) in the upper half
plane.

« Apply Dy to this vector, to move it to the disk model, based at the point /(x, y).

« Find the scaling vactor at this point, and simplify the result!

Viw, +

/ i
e

/ < ///

////,/// L

Figure 26.7.: The definition of the Half Plane Model

Definition 26.3 (Half Plane Model of H?). The points of the half plane model of
hyperbolic space are

{(, ) |y >0}

together with the Riemannian metric

Viwp + Vowy
(V : W)HP = T

Thinking again about what this map represents, we know that since its conformal we
can trust the angles we see to be accurate, but we should distrust lengths. Since the
scaling factor is going to infinity as we approach the x-axis, we know that the true
size of a shape is much larger than it appears down by the axis. This is analogous to
the what happens near the unit circle in the disk model.

As y — oo the scaling factor approaches zero, which says that the half plane model
also distorts distances the other way as we move up, away from the line y = 1 where
infinitesimal distances are correct. Objects high up in the half plane appear much
larger than they actually are, like Greenland on the Mercator map of the sphere.
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26.4. The Half Plane Model

Figure 26.8.: The Half Plane Model

It will prove very useful to us to be able to go back and forth between the disk and half
plane models of hyperbolic space. Pre-empting this, we had a homework exercise to
think through this map when it was first derived (just in the context of stereographic
projection), which we will now go through together. Say we start with this grid of
polar coordinates in the disk:

Figure 26.9.: Polar Coordinates drawn in the Disk Model

When we map to the upper half plane, we know a couple things: - By direct calcula-
tion, we can find the origin O maps to (0, 1). - The map sends generalized circles to
generalized circles, so circles about O go to generalized circles.

- But, a circle only maps to a line if it passes through the projection point. None of
these do - they’re all inside the lower hemisphere, and then rotated to be inside the
rightmost hemisphere, and the projection point is the north pole. Thus, they project
to circles:
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Q)” \\@

Pl

Figure 26.10.: Circles about O in the Disk and their images in the Half Plane

« Similarly for the lines through the origin - these go to generalized circles.

« The map is conformal, so it preserves angles. The two original families of
curves intersected orthogonally, so the new curves must as well.

« In particular, the radial lines that intersected the unit circle orthogonally now
intersect the x-axis orthogonally.

This tells us that the radial lines must go to lines/segments of circles passing through
(0, 1) and hitting the x axis orthogonally. The only line with both these properties is
the y axis, so the rest must be half-circles, whose centers are on the real axis

Figure 26.11.: Diameters of the Disk and their images in teh Half Plane

We can run a similar argument in reverse, to think about what the standard xy grid
pattern on the half plane would look like in the disk. Here we find that both families
of curves must go to arcs of circles in the disk, like below:
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— \

Figure 26.12.: A grid in the Half Plane and its image in the Disk

26.5. OTHER MAPS

We discoverd the disk model, and later the half plane model starting with the stereo-
graphic projection map. And this was a good choice - the niceness of stereographic
projection led to two particularly nice maps of hyperbolic space! But these are far
from the only maps: its possible to apply this same procedure to many maps of the
sphere, and arrive at a map of hyperbolic space.

26.5.1. MErcATOR

What happens if we take the Mercator projection and extrapolate to negative curva-
ture? The Mercator projection’s dot product is also conformal and given by a rela-
tively simple formula:

One may (correctly) guess the form this will take if we were to (1) write it out for a
sphere of radius R (2) convert this to curvature (3) push the curvature to a negative
number, using the taylor series representation and (4) convert back to trigonometric
form at x = —1: it will switch the denominator cosh(y)? for simply cos(y)?!

Exercise 26.3. Check this.

The result is a map onto the plane of geometry with curvature —1: hyperbolic geom-
etry! This map’s dot product is

Viwy + Vo Wy
v Wy = 2
cos®y

Which becomes undefined when cos y = 0, so the region where the map makes sense
around the origin is in the strip

ey s i< 2
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The dot product on this strip has scaling factor diverging to infinity towards its bound-
ary. This tells us we should expect that objects appear very small near the boundary
of the strip, compared to their actual size.

Figure 26.13.: The Band Model (Mercator)

This is often called the band model, as it is defined in the interior of a band, or horizon-
tal strip in the Euclidean plane. You may recognize the band model from our book’s
front cover!

Exercise 26.4. Which isometries are easy to see must exist in the band model?

While we will wait until the next chapter for formal verification, we can already figure
out what some of the geodesics in the band model must be. In the Mercator porjection,
the equator geodesic was represented by the line y = 0 in all curvatures - and so
once the curvature becomes negative this line is still a geodesic of our model! Other
parallel lines to it on the sphere wer not geodesics (they were lines of latitude, or
circles around the poles), and this also remains true in the Band model.

Figure 26.14.: The line y = 0 is the Equator in the mercator projection, which is a
geodesic. All other horizontal lines are latitudes - not geodesics. The
same remains true in the Band Model.
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Vertical lines in the Mercator projection are lines of longitude, which are geodesics
for spheres of every curvature. Thus, passing to negative curvature we find that all
vertical lines in the Band model still to be geodesics:

-_———— —_ et

IR RN

Figure 26.15.: Vertical lines in the Mercator projection represent lines of longitude,
which are geodesics. The same remains true in the Band Model.

Its useful to pause here and think about what a vertical strip between two such curves
on our map actually represents. On the sphere, the scaling factor 1/ cosh(y) shrank
towards zero as we moved away from the equator, meaning that the lines were actu-
ally closer than they appear.
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Figure 26.16.: Geodesics converge in positive curvature, and diverge in negative cur-
vature.

But once k = —1 and the scaling factor becomes 1/ cos(y) which gets extremely large
as y grows, meaning that these geodesics actually become much farther apart than
they appear to be. Quantitatively: the distance along a horizontal line is 1/ cos(y)
times as long as it appears! This is the first quantitative measurement where we can
confirm that geodesics indeed race away from one another in negative curvature.

Remark 26.5. Note this isn’t precisely the distance between points, as we are measur-
ing the length of a horizontal curve which is not a geodesic. To find distance we’ll
have to do some more computations in the next chapter.
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26.5.2. ARCHIMEDES?

Archimedes map of the earth was an equal area projection. So far, all of our maps of
hyperbolic space have been conformal but have massively distorted area. Can you
find an analog of Archimedes map in negative curvature, to give an area-preserving
option?
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27. GEOMETRY

Now that we have a concrete model of hyperbolic space (actually, many of them), its
time to put them to work, and prove some things about hyperbolic space. Of course
we already know a lot - we followed many geometric formulas directly through the
limiting procedure! But these formulas speak of geodesics and circles, and we don’t
know what these things look like in our models, so it’s hard to begin using these facts
to do anything! We will remedy that gap in this chapter, and in the end, prove that
hyperbolic space satisfies Euclid’s postulates 1-4 while failing the fifth.

27.1. HomocGenity & IsoTrRoPY

As we have for both the plane and the sphere, we begin our journey by investigating
the symmetries of hyperbolic space. This will be our first foray into using the two
models to inform one another, and switching back and forth whenever is convenient,
whether than being tied down to a single way of calculating.

As we saw in defining the disk model, its easy to see that rotations about its center
are isometries (though its hard to see that there are any other symmetries at all, at

first!)

Proposition 27.1 (Rotations of Disk are Isometries). Euclidean rotations of the plane
about the origin restrict to isometries of the Disk Model of HZ.

Proof. Rotation isometries of the plane do not change the distance of a point from the
origin, and they do not affect the Euclidean dot product of two tangent vectors. Be-
cause the hyperbolic disk dot product is just the Euclidean one rescaled by a function
of distance from the origin, it is also unchanged by a rotation, so these rotations are
hyperbolic isometries! O
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Figure 27.1.: Rotations about O in the Disk, and the corresponding rotations about
(0, 1) in the Half Plane.

To find more isometries, we can switch our viewpoint and take a look in the Half
Plane model. Since isometries are maps which preserve the infinitesimal dot product,
we can use the fact that the scaling factor here only depends on y to find some new
isometries of hyperbolic space.

Proposition 27.2 (Horizontal Translation is an Isometry). Any euclidean horizontal
translation (x,y) — (x + a, y) is an isometry of the upper half plane model.

Proof. Translations are Euclidean isometries, so they preserve the Euclidean dot prod-
uct. But horizontal translations also preserve the y coordinate, and hence the scaling
factor. Thus, they preserve the hyperbolic dot product as well. O

These isometries are different than those that we discovered before, as they move
the point (0, 1) (which is where the origin of the disk was sent), whereas our earlier-
discovered isometries fixed the origin (and hence would would fix (0, 1) here).

We can see what these look like in both models, using the pictures we developed
above. Vertical lines in the Half Plane correspond to circles through (0, 1) on the
boundary in the Disk Model, and our new isometries move these curves to one an-
other.
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Figure 27.2.: Horizontal translation in the Half Plane is an isometry of hyperbolic
space.

Other translations of the Half Plane are not isometries, as any map that changes the
y coordinate is going to change the scaling factor applied by the dot product:

Example 27.1. The map z(x,y) = (x,y + 1) is not an isometry of the Half Plane
model.

Let v, w be two vectors based at (x, y) in the upper half plane: then their hyperbolic
dot product is

_ ViW + Vowy
(vl = S

The derivative Dz of any translation is the identity, so Drv = v and Drw = w, but
now based at (x, y + 1) which means their new dot product is

V1w + Vo Wy

() (v = =0

This is a different number so the dot product was not preserved, and the map was not
an isometry.

We can see in this example what went wrong however: we moved vertically (increas-
ing the denominator) without changing the vectors (leaving the numerator the same).
Instead, when we

Proposition 27.3 (Homothety is an Isometry). Let A > 0. Then the Euclidean simi-
larity s(x, y) = (Ax, Ay) is an isometry of the Half Plane model of hyperbolic space.

Proof. Like the example, we just compute: here the derivative Ds is just scaling by
A, so our vectors v and w at (x,y) go to the vectors Av and Aw at (Ax, Ay). In the
new dot product, the numerator is multiplied by A (one A from each vector), and the
denominator is multiplied by A%, so they cancel out:
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/1\11 /1W1 + /1\12/1W2
(Ay)?

_ A2 (viwy + vywp)

- Azyz

= w2

((Dsv) - (Dsw))yz =

O

What does this kind of isometry look like in our two models? We understand well
what it looks like through our euclidean eyes in the Half Plane: its just a similarity
of the plane! But while it looks like points are getting farther apart here, they’re not.
This is an isometry after all, so it preserves hyperbolic distances! The fact that it
looks to be expanding is just a consequence of the fact that distances are artificially
short-looking near the bottom, and artificially long towards the top. But what about
in the disk model?

Figure 27.3.: Euclidean similarities (x, y) — (Ax, Ay) are isometries of the Half Plane
model. These act like translations, as is easier to see in the Disk.

We’ve now discovered enough isometries to prove rigorously that hyperbolic geom-
etry is both homogeneous and isotropic:

Exercise 27.1 (H? is Homogeneous). There is an isometry taking any point of hy-
perbolic space to any other.

Next, we want to use this to see that space is isotropic: that about any point, there
is a rotation by any amount. Here we may wish to switch over to the Disk Model,
brining with us the fact that we just proved space is isotropic (even though we haven’t
bothered to write down what those isometries look like in the disk). We know we can
rotate by any angle we like about O, and now we also know that its possible to move
O to any arbitrary point p. So, what do we do? We translate p to O do any rotation
we like, and then translate back of course! Conjugation saves the day.
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Corollary 27.1 (H? is Isotropic).

This is enough to see that Euclid’s Postulate 4 is true for hyperbolic space: remem-
ber that Euclid’s phrasing all right angles are equal was the original way of saying
homogeneous and isotropic.

27.2. GEODESICS

We’ve been able to track down a couple curves in the various models that certainly
must be geodesics - reasoning from watching what happens to great circles on the
sphere under our transition. But we are still lacking in two things: (1) a rigorous
proof, done in hyperbolic geometry itself, that these are in fact distance minimizing
and more importantly (2) a classification of what all the geodesics are. We remedy
this below, with computations that should feel very analogous to both the Euclidean
and spherical cases.

Proposition 27.4 (Vertical Lines are Geodesics). In the Half Plane model, the vertical
curve y(t) = (0,t) is minimizing between any two points.

(x(),t)

Figure 27.4.: Vertical segments are length-minimizing in the Half Plane.

Proof. Consider the endpoints (0,a) and (0,b), and let a(t) = (x(¢),t) be any other
curve between these for t € [a,b]. Then a’ = (x’, 1) based at (x, t) so its infinitesimal
length is

JE)?Z+1

a’|l =
o'l = ¥

We can do our usual trick, and notice that whatever x’ is, we know its square is
positive, so we certainly have
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la’] <

~ | =

But this is exactly the infinitesimal lenght of y, since y” = (0, 1). Thus we can integrate
this inequality to find

b b
Vi<le] — j uy'ndtsj lo
a a

= length(y) < length(a)
O

Given that these curves are distance minimizers, we can directly find the distance
function between vertically separated points:

Corollary 27.2 (Vertical Distance Formula). The distance between (0,a) and (0,b) is
log(b/a).

Proof. This is just an integral of the infinitesimal length of y(t) = (0,t) from ¢t = a to
t="b:

b
length(y) = J %dt = log(t)z = log(b) — log(a) = log (b)

a a

O

This tells us that all vertical lines are geodesics in the half plane model. And we can
transfer this information over to the Disk Model to learn about some of the geodesics
there. The vertical line through (0, 1) goes to a diameter of the unit disk as we can
see by direct computation, plugging in (0,t). Then, since we know the unit disk as
rotations as isometries, we can see that all diameters of the disk are geodesics.

Figure 27.5.: Proving one vertical line in the Half Plane is a geodesic implies that all
diameters of the Disk are geodesics.

Next, we can transfer this information back to the Half Plane. Consider just a hor-
izontal diameter of the disk. After transferring back, we know this must go to a
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generalized circle through (0, 1), and that it must intersect the vertical line at a right
angle. This doesn’t leave us many options: in fact, it uniquely specifies it! It must be
the top half of the unit circle.

So, this half circle is a geodesic. But as soon as we know that, we can use the fact that
horizontal translations and similarities of the plane are isometries to get that all half
circles orthogonal to the real line are geodesics, and all vertical lines as well.

D

Figure 27.6.: Knowing that diameters of the Disk are geodesics implies all half circles
are geodesics of the Half Plane.

Theorem 27.1 (Geodesics in the Half Plane Model). The geodesics in the disk model
are arcs of generalized circles which are orthogonal to the x-axis boundary.

Finally we perform one more transfer, and move all this knowledge back to the Disk
Model. We know that the transfer map preserves generalized circles, and that it is
conformal. Thus, it must take generalized circles orthogonal to the x—axis to gener-
alized circles orthogonal to the unit circle. These are the geodesics of the Disk.

A A

Figure 27.7.: Using a classification of geodesics of the Half Plane to find the geodesics
of the Disk

Theorem 27.2 (Geodesics in the Disk Model). The geodesics in the disk model are arcs
of generalized circles which are orthogonal to the unit circle boundary.

Now we can transfer this information right back to the upper half plane: since the

translation between the two models preserves angles and generalized circles, we im-
mediately conclude
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27.2.1. PARALLELS

Now that we explicitly know the geodesics, it is easy to see that this geometry fails
the parallel postulate! While we can work with either version, its slightly simpler
to consider Playfair’s formulation, as it does not require us to actually measure any
angles.

Theorem 27.3 (Playfairs Axiom is False in Hyperbolic Geometry).

Proof. This is a proof by counterexample we just need to find a a line, where at least
two other lines pass through a point not on it, and neither intersects the original line.
This is quick work now that we know the geodesics.

First, lets start with the point (0, 1). We are familiar with two geodesics through this
point: the vertical line, and the top half of the unit circle. So now, all we need is a
third geodesic that doesn’t intersect either of these! There are tons of possibilities:
let’s just take the vertical line at x = 2. O

-\ Q ] =\ ] ] z

Figure 27.8.: Playfair’s Axiom is False in Hyperbolic Geometry.

If we want to work with angles, we can also see that Euclid’s original version is false
rather immediately:

Proposition 27.5. Euclid’s parallel postulate is false for hyperbolic geometry.

Proof. Let’s work in the half plane model, and consider the vertical geodesic at x = 0.
We need only find two geodesics that cross it, and have angle sum less than 7, but
remain disjoint.

For one of them, take the top half of the unit circle. For the second, take a larger circle
with center slightly shifted horizontally, say, the circle of radius 3 centered at x = —1.
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Figure 27.9.: Euclids Fifth Postulate is False in hyperbolic geometry.

Now, because the model is conformal we can figure out what these angles are using
Euclidean geometry. But we don’t even need their exact value: the first is 7/2 and
the second is less than /2, so the sum is less than 7 yet the geodesics are disjoint.
Contradiction. O

These two examples, rather straightforward after our classification of geodesics, fin-
ish off the Greek’s largest open problem. Hyperbolic geometry satisfies Postulates
1-4 without satisfying 5, so there is no possible way to prove 5 from the first four (if
s, the fact that the first four are true in H? would logically imply the 5th must be
true in HZ, and its not).

27.3. CRRCLES

A circle is the set of equidistant pts from a point. We begin our search for circles by
formalizing a discussion we previously had, in the Disk Model.

Proposition 27.6. Hyperbolic circles in the Disk Model about O are Euclidean circles.

Proof. Let p be some point in the disk which lies at distance r from the origin. Since
Euclidean rotations of the disk about O are hyperbolic isometries, we know these
rotations do not change hyperbolic distances. Thus, any rotation of p about O is the
same distance away from O, and so (by definition) lies on the circle of radius r about
0.

But, Euclidean rotations of p about O trace out a Euclidean circle about O! Thus, the
hyperbolic circle is also a Euclidean circle. O
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Remark 27.1. Note however that the Euclidean radius is probably not r: the Euclidean
radius is always < 1 since its inside the unit disk, whereas the hyperbolic radius could
be any positive number

Like with Geodesics, we will use this information, bouncing back and forth between
the two models, to learn about all circles. Carrying this over to the upper half plane
describes the circles about (0, 1). By the circle-preserving properties of our map, we
know these are taken to euclidean circles in the Half Plane. So this is nice! But also
confusing - these circles can’t have their Euclidean centers at (0, 1), because they have
to stay within the half plane.

Q

Figure 27.10.: Circles about O in the Disk and about (0, 1) in the Half Plane are both
Euclidean circles.

So, while hyperbolic circles appear as Euclidean circles in this model, their centers
are closet to the bottom than you think: this makes sense, as distances down low are
longer than they appear, and distances up high shorter than they appear, so the center
- which is at the actual middle - appears to be shifted down.

What about circles based at other points? Luckily, we understand the isometries that
move one point to another in the Half Plane quite well: they are Euclidean trans-
lations and similarities! Each of these types of map preserves Euclidean circles, so
we see that hyperbolic circles about other points in the plane are also all Euclidean
circles, though their centers may not be where they seem.
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@ |

Figure 27.11.: Hyperbolic circles in the Half Plane Model.

Theorem 27.4 (Circles in the Half Plane Model). Hyperbolic circles in the Half Plane
model are represented by Euclidean circles, but their hyperbolic and Euclidean centers
do not coincide.

Exercise 27.2. If a circle’s (hyperbolic) center is at height £ in the half plane above
the x-axis and its radius is r, what are the Euclidean lengths of the radius pointed
downwards, and the radius pointed upwards? What'’s their ratio?

Now let’s transfer what we’ve learned back to the Disk Model. Since the transfer map
preserves generalized circles, we can completely understand what happens:

Corollary 27.3 (Circles in the Disk Model). Hyperbolic circles in the disk model are
Euclidean circles, though their hyperbolic center will not coincide with their Euclidean
center in general.

Let’s test your hyperbolic intuition at this point: can you tell (without doing compu-
tation) if the hyperbolic center should be more towards the center of the Disk model,
or more towards it’s boundary?

27.4. CURVATURE

Now that we know a bit about circles, distances, and lines we are in a good position
to be able to rigorously confirm that the curvature of our new hyperbolic world is —1.
To do so, we need to use the definition of curvature, which requires us to know the
circumference of circles, so that is where we begin.

We want to choose things to make our calculations as easy as possible: so let’s con-
sider the Disk model and look at circles centered at O. Consider the circle of Euclidean
radius a about the center of the disk. Let’s try and find its hyperbolic circumference.
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(a,0)
)(zi uzs q?.

Figure 27.12.: A circle about O in the disk, quantitatively.

We know its Euclidean circumference is 27ra, and we also know that at a distance of a
from the origin the scaling factor of the Disk Model is 2/(1 — a®). Because this is the
same scaling factor at every point along the circle, we can just multiply the Euclidean
length by this to get its hyperbolic counterpart:

4  dma

C =2ma 5

1—a B 1—a?
However, thisisn’t all that we need. Our formula is expressed in terms of the euclidean
radius a, which is a meaningless quantity in hyperbolic geometry. To find this, we

need to do some more calculus.

We do know that straight Euclidean lines through O are geodesics of the model, so to
measure the length of the radius of our circle, all we need to do is find the hyperbolic
length of y(¢) = (¢,0) on [0, a]. Calculating infinitesimal length,

, 2 2
= —2_|(1,0)p2 =
V= —l0e = —
Thus, the length we seek is

a

1
length(y) = 2 dt
ength(y) L _—

In a calculus 2 course, you may have seen this integral and immediately thought ook,
integration by partial fractions! and that’s totally do-able here: in fact it works out
rather nice! But another technique works out even nicer, now that we have put in
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the effort to learn hyperbolic trigonometric functions: we can do a hyperbolic trig
sub!

We know that sech? + tanh® = 1 so, 1— tanh? = sechz, and so substituting ¢ = tanh x
gives

J 12dt:J ! > d(tanhx):J-;zsechzxdx
1-t 1 —tanh” x sech” x

zjldx:x

Converting back to ¢, since t = tanh x we have that x = arctanht, and so the hyper-
bolic radius is

a

r = length(y) = 2arctanh x| = 2arctanh(a)

0

Now, we have the two pieces of information we need to figure out the relationship be-
tween circumference and radius: we just need to eliminate mention of the Euclidean
a:

Exercise 27.3. A hyperbolic circle of radius r has circumference 27 sinh(r).

Hint: use the fact that we know C(a) and r(a): solve for a in terms of r, substitute into
the circumference, and then use hyperbolic trigonometric identites to simplify.s

Now we already proved that if a space had this relationship between circumference
and radius, then its curvature was precisely —1. So, we're done! These maps really
do describe the space humanity missed for two thousand years!

Corollary 27.4 (H? has constant curvature —1.).

27.5. PoLYGONs

We've seen that the area of a hyperbolic triangle is determined by its angle sum. And,
more surprisingly - that its bounded above by z! Can we come to an understanding
of this?

Let’s think in the Disk Model for a bit. Since space is infinitely large it seems absurd
that a triangle can’t get very big! But this all has to do with the way geodesics behave.
Imagining a large triangle means (in our Disk model) imagining a triangle whose
three vertices are all very far away from the center, and thus appear out by the unit
circle.
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Figure 27.13.: Three far away points make for a large triangle.

To form a triangle from these points, they must be connected together with geodesics.
And we know what the geodesics are - they’re arcs of circles which are orthogonal to
the boundary. Thus, the triangle has very skinny angles as the geodesics are almost
tangent to one another. And being so skinny, these arms of the triangle can’t contain
that much area.

Figure 27.14.: Toward the boundary, geodesics are almost tangent. Thus large tri-

angles have very skinny ‘legs’, which do not contribute much to their
area.

In fact, the biggest triangle one could imagine making would have infinitely long sides,
and would consist of three geodesics going all the way out to infinity.

Remark 27.2. Of course this isn’t actually a triangle as it has no vertices! Mathemati-
cians call it an ideal triangle
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Figure 27.15.: An ideal triangle in the hyperbolic plane.

How big is an ideal triangle? To calculate, its easiest to hop over to the upper half
plane. We can choose our three points so that two of them are +1 and the other is

the projection point - off at infinity. This means our triangles geodesic sides are the
unit circle, and two parallel vertical lines

-

.\\\\

Figure 27.16.: An ideal triangle in the Half Plane model

Its area is given by a double integral of d A: using the scaling factor,

_ dxdy
32

dA

Setting up the bounds (bottom bound = unit circle, top goes to infinity) we see
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1 o)
dyd
area = H dA = J J y2x
T -1JW1-x% Y

Doing the inner integral first:

1

%2 1-—x%

r" dy _ -1
N yz y

Thus, the total area is

1
1
area = J dx
141 —x2

But this integral is quite familiar to us by this point in the course! Its the arc-length
of the top half of the unit circle (the integral that defines arccosine).

area =11

Thus we have it: all triangles in H? have area less than or equal to 7, because that’s
the area of the ideal triangle!
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28. LiIre IN CURVED SPACE

Its one thing to do geometry, the way we do in a geometry course - deriving rela-
tionships between triangles circle and geodesics. But its another thing to feel it: to
try and imagine yourself in the world you are studying, and think hard about what
that experience would be like. This is a challenging but rewarding exercise, often not
requiring much new geometry but requiring a lot of deep thought, and a lot of actual
calculation. In this final chapter, we will attempt to give a taste of what hyperbolic
space is like, relying on the material we have developed in the course.

Just like spheres come in may different sizes, so do hyperbolic spaces: so, the first
thing we must do in asking ourselves what its like is to decide which hyperbolic
space we are talking about. This question is actually interesting at all different lev-
els of curvature, as different effects become important at different curvatures. But
here in this short chapter we will fix a curvature, and work out the consequences. A
convenient way to fix the curvature is to fix the units that we measure space in, we
can specify a distance R called the radius of curvature, defined so that if we measure
everything in units of R, we will determine the curvature to be —1. (This is equivalent
to instead fixing ahead of time some units, and then considering the hyperbolic space
of curvature —1/+/R in those units.)

28.1. THE Size oF SAN FrAaNCISCO

Here we fix the radius of curvature to be approximately the radius of San Francisco,
R = 5km. This will allow us to compare the behavior of small things (like humans)
to medium things (like cities) and large things (like planets), and see how in curved
space, these different regimes behave quite differently!

In our exploration, our goal will be to ask simple questions about how the world
would be, try to deduce what sort of geometry will be relevant to solving them, do
the proper computations, and then try to interpret the result.

28.1.1. How BiG i1s THE EARTH?

Theorem 28.1 (Volume and Surface Area). The surface area of a sphere of radiusr is

SA(r) = 4r sinhz(r)
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28. Life in Curved Space

(compare this to 471’ in flat space). The volume of a sphere is the integral of surface

area:
r

V(ir) = L SA(r)dr = n(sinh(2r) — 2r)

To figure out how big the earth would be, we need to think a bit about what we mean
by this question. The earth formed from a collection of rocks in the early solar system,
so its volume is fixed by the volume of the rocks that was used to make it up. The
earths radius and surface area are geometric consequences of this: once we know the
volume of rock we simply find the sphere of that size, and that’s the earth!

Example 28.1 (Radius of the Earth). First, we look to find the true earths volume,
from its radius of 6300km, or 1250SF. The volume of the earth is

%nr3 = %7{(1250)3 = 8,181, 230, 868.7 SF>

That is, the earth is a little over eight billion cubic San Franciscos! To find the radius
of the sphere which has this same volume in hyperbolic space, we need to solve the
following equation for r:

n(sinh(2r) — 2r) = 8,181, 230, 868

This needs to be solved using numerical methods, but doing so yields a shockingly
small answer:
r =11.11.1987,SF

So, the earth is only 11 San Franciscos in radius! Remembering we took SF = 5km
this comes out to 55.98 kilometers, or 34.78 miles. In hyperbolic space, its closer to
get from SF to the Earth’s core than it is to get to the south bay!

Why is the earth so small? It all has to do with exponentials: since the volume of a
sphere grows exponentially with radius, whereas in flat space it grows quadratically.
This means there is just so much more volume as the radius grows in hyperbolic space,
that it doesn’t have to be that big to fit all the rocks that make up the earth! This
exponential property is also shared by the formula for hyperbolic surface area, which
has an amusing consequence:

Example 28.2 (Surface Area of the Earth). Given a radius of 11.19 units, we can find
the surface area of the earth by

SA = 47 sinh%(11.19) = 16, 468, 700, 000 SF2
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28.1. The Size of San Francisco

To understnad what it means that the hyperbolic earth has surface area of 16 billion
San Franciscos, we should compare this to the actual surface area of the earth we live
on. This is (using the Euclidean radius 6300km = 1249SF)

471(1249) = 19, 602, 972 SF?

The real earth is only 19 million San Franciscos! So, in hyperbolic space the Earth
has 838 times the surface area of our current planet!

This is a lot of extra real-estate! For me, one good way to conceptualize this number
is to think about what the depth of the ocean would be. Here, the average depth of
the ocean is 2300 meters; but spreading the same amount of water over 838 times
more surface area yields a depth of only 4.389 meters, or just under 15 feet!

What about the moon? In Euclidean space the moon’s radius is about 27 percent that
of the earth (a little over a quarter as big), which means its volume is 2 percent that
of the earth (since volume grows with the cube of radius).

Example 28.3. The volume of the moon is 0.02 that of the earth, which means in
units of San Franciscos,

0.02 x 8,181,230, 868.7 = 3624617 SF>

Solving for the radius of the hyperbolic sphere with this volume, we find

Tmoon = 9.8 SF

So, the moon isn’t that much smaller than the earth at all! This gives us a very good
sense of just how quick the exponential growth of volume is. THe difference in radii
between the earth and moon is

11.19 — 9.8 = 1.39SF = 4.3miles

Since the moon is only 2 percent the earth’s volume, this means that 98 percent of
the earths volume is contained in the outer shell of radius 4.3 miles, just the outer
38 percent of the radius! But things only get weirder from here, if we look at larger
spheres, since everything is driven by exponential growth. What can we say about
the sun?

Example 28.4 (Radius of the Sun). The volume of the sun is 1.3 million times that
of the earth, which means in units of San Franciscos, the Sun is

1,300, 000 x 8,181, 230, 868.7 = 1,063, 560, 012, 934, 045 SF>
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28. Life in Curved Space

Solving for the radius of a hyperbolic sphere that has this volume, we find that
r = 18.225 - that is, the sun is only eighteen San Franciscos, or 56 miles in radius!

Remember, the Earth is 11.19 San Franciscos in this world, meaning that the sun is
18.225
ly o7

= 1.62 times as big in radius.

28.1.2. Hov MucH oF THE EARTH 15 VisIBLE?

We've already learned some rather interesting things about the Earth in negative
curvature: its simultaneously much smaller (in radius) and much larger (in surface
area) than we are accustomed to. But what does it look like?

Theorem 28.2 (Distance to the Horizon). Standing at height h above a sphere of radius
R, the horizon in Euclidean space lies at a distance d of

d=R ( )
arccos R-l,-h

and in hyperbolic space, the analogous formula is
d = sinh(R) arccos <%)

As a warm-up, we can use this formula to find the distance to the horizon here in flat
space. At a height of 2 meters =0.002km above the ground the horizon is

6,300

6,300 - arccos <—
6,300.002

) =5.019km

Thus, standing on the beach we can see a little over 5 kilometers, or around 3 miles
out to sea. As we know well from experience, moving up a little bit in height lets us
see much more: from our classroom on the fourth floor of Harney we can easily see
many miles out to sea. Quantitatively this is easy to confirm: if we were at the top of
the Salesforce tower (326 meters tall), we could see

6,300

6,300 - arccos <—
6,300.326

) = 64.09 km

But, what about in hyperbolic space?

Example 28.5 (The Horizon at Different Heights). Measuring in units of San Francis-
cos, a 2 meter tall human is 2/5000 = 0.0004 San Francisco’s tall. Using the hyperbolic
radius r = 11.19SF of earth, we find the horizon lies at a distance of

tanh 11.19

d = sinh(11.19)arccos (—
tanh 11.1904

) = 0.0282786SF
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28.1. The Size of San Francisco

In more useful units, two percent of a San Francisco is 141.39 meters. You can’t see
very far at all, only a couple hundred feet until the earth has curved enough out of the
way to be below the horizon! Moving upwards helps a bit: from the top of the sales
force tower (whose height is 0.0652 San Franciscos) the horizon lies at a distance of

tanh 11.19

d = sinh(11.19)arccos (—
( ) tanh 11.2552

) = 0.349651SF

This is around 1.7 kilometers, or just a bit over a mile. From the top of the Salesforce
tower you wouldn’t be able to see all the way to USF, or even very far out into the
bay! But it gets weirder, as we continue to ascend. From the height of a commercial
airliner (30,000ft, or 1.828 San Francsicos) passengers can see

tanh 11.19

d = sinh(11.19)arccos (—
( ) tanh 13.018

) = 0.9869SF

Even from miles into the sky, we can only just almost see all of San Francisco. And in
fact, this is a fundamental limit: no matter how far above the sphere you are, you can
only see up to 5km in any direction before the horizon. Even from space, when you
look down at the earth, you would see the city stretch all the way across the earths’
disk (though seeing the earth from such a height is another challenge entirely, that
we will confront shortly).

Exercise 28.1. Prove this: that as the height limits to infinity you can only see 1 unit
of distance along the sphere.

What area of the sphere is this? This question is actually a bit more complicated
than it seems at first. We can’t just use the formula for the hyperbolic area of a disk,
because we’re not looking at a disk - we’re looking at a region on a sphere!

Theorem 28.3 (Area of a Spherical Cap). Given a sphere of hyperbolic radius r, the
area of a disk of radius d drawn on its surface is given by

area = 27 sinh(r)? (1 — COS — d )
sinhr

Proof. A sphere in hyperbolic space is still a sphere - and we understand the intrinsic
geometry of spheres quite well! So, we’ll be able to put this to work here. Indeed,
we know that on the unit sphere the area of a disk is 277(1 — cosd) and if the sphere’s
Radius is p, then the area of a disk of radius d drawn on its surface is

271,02 (1 — cos é)
p
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So, all we need to do is figure out the radius of our sphere. It’s tempting to say that
this is just r: that’s the distance in hyperbolic space to its center after all - but this is
not the notion we are looking for here. The radius showing up in the formula above
is the radius the sphere would have, if it were embedded in Euclidean space, which is
where we derived this formula. Since the sphere’s area is 47 sinhz(r), we see that in
Euclidean space the radius would be p = sinh(r) to have the same area giving

area = 27 sinh(r)? (1 — COS — d )
sinhr

O

Exercise 28.2 (Spheres from a large distance). Explain why if you look at a sphere of
large radius from far away, you only see approximately 7 square units of its surface
area.

Hint: Use a taylor series for cos and explain why its justified to only take the first terms
(why is the angle you are taking cos of small?)

The fact that a sphere’s horizon is so nearby has far reaching consequences: one of
them being the affordability of cell phones.

Example 28.6 (Price of Cell Phones). Cell phones work by using cell towers to collect
and re-broadcast signals from phones, but such a signal can’t propagate over the
horizon!

The tallest modern cell towers are around 100 meters tall (with most cell towers much
shorter). From the top of such a tower in flat space, the horizon is 35.4km away, mean-
ing the tower is accessible to approximately 3, 936km? of land area. But in hyperbolic
space? From 100m high the horizon is only

tanh 11.19

tanh(11.19+ %)

d = sinh(11.19) arccos( ) = 0.198SF

or 0.99km away, and the area of such a disk is

0.198

area = ﬂsinh2(11.19) <1 — cos ———
sinh 11.19

) = 0.1231SF?

0.123 square units: equivalently 3.15km? or 1.21mi%. This is 3956 — 1249 times less cov-

erage. To get similar coverage, you need over a thousand times more towers, making
the cell network over a thousand times more expensive.

But its even worse than this: remember the earth’s surface area has grown by a factor
of 838! Thus cell companies are hit with a double whammy: they need 1249 times
more towers per fixed area, and they also have 838 times more area to cover! Overall
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them, the cell network needs to be 1249 x 838 = 1,047, 100 times larger to give the
same coverage: expect your cell plan to go up in cost by a factor of one million to pay
for this increased overhead!

28.1.3. WHAT poes THE EarTH Looxk Like?

Theorem 28.4 (Visual Size of a Sphere). From height h above a sphere of radius R, the
angle o that the sphere takes up in your vision in Euclidean space is

(04 2 arcsin
R h

and in Hyperbolic space is

o = 2 arcsin (ﬂ>
sinh(R + h)

Proof.
O

Again, its useful to do some calculations on the Earth in flat space to get our bearings.
From a standing height of 2 meters, the earth takes up

6300

—) = 3.1365rad = 179.666°
6300.002

2 arcsin (
If the earth were a flat plane it would take up half of our field of view, or 180 degrees.
So, the earth is rather indistinguishable from an infinite plane at human-height (as

searching the uninformed corners of the internet show unfortunately all too well).
From the top of the sales force tower the earth takes up

6300

—) = 178.833°
6300.326

2 arcsin <
which is just slightly smaller. Even from the height of an airplane (30,000ft = 9.144
kilometers), earth takes up almost half our field of view.

6300

—) =173.83°
6309.144

2 arcsin (

And from the international space station at 254mi = 408km high, the Earth still looms
large, taking up a wider field of view than our eyes provide us (we can see approxi-
mately 114 degrees with binocular vision)

2 arcsin (@) = 139.8°
6708
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Now, what happens in hyperbolic space?

Example 28.7 (Size of Earth from Different Heights). At 2 meters above the ground,
the earth looks slightly smaller than its Euclidean counterpart, but perhaps not no-

ticeably so.
sinh 11.19

—) =176.8°
sinh 11.1904

a = 2 arcsin (

From the height of the the Salesforce tower,

sinh 11.19

—) =139.1°
sinh 11.2552

a = 2arcsin (
That is - the earth looks slightly smaller from this skyscraper than it does in flat space
from the actual space station. And it only gets wilder, due to the exponential nature
of the hyperbolic sine. From the height of an airliner,

s'1nh 11.19 ) — 185°
sinh 13.018

The earth is only eighteen degrees across in your vision! This is about the size of your
hand held at arms length away. In hyperbolic space, your airplane flight is rather dark,
and you have to look almost straight down to even catch a glimpse of the tiny earth
below.

a = 2 arcsin (

The height the space station orbits above the earth is quite unrealistic in hyperbolic
space (for some reasons we’ll encounter shortly), but its a good benchmark to evaluate
nonetheless, to really appreciate the unrelenting growth of the exponential. At a
height of 252 miles = 81 San Franciscos, the earth would appear to be

sinh 11.19)
sinh 92.19

0.0000000000000000000000000000000007609°

a = 2 arcsin <

This is so fantastically small that not only would the earth be completely invisible to
the stations inhabitants, but it would not be detectable by any form of future super-
telescope. A ride to the space station would be quite terrifying as the earth rapidly
shrinks below you, fading forever from view into the black.

So, when we move away from a sphere of fixed radius, it shrinks rapidly in our vision.
But what happens if we stand at a fixed distance from a sphere of different radii?

In Euclidean space, if you were distance h from the surface of a sphere of radius x,
the larger the sphere the more and more it would appear to take up half your vision.
Precisely, we can see this using our formula:

. X
a:2arcsm< )
x+h
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As x grows the argument of the arcsine approaches 1, and so the arcsin approaches
/2 and a approaches s, half your field of view. But what happens in hyperbolic
space?

Example 28.8 (Visual Size of Growing Sphere). At a distance h from its surface, the
visual size of a sphere of radius x in hyperbolic space is

a = 2arcsin (ﬂ>
sinh(x + h)
What is this behavior like when x is sufficiently large? Well, sinh(x) rapidly ap-
1 x . L LT
proaches 7€ for large inputs, so we can simplify the argument of arcsine in this
approximation as

. 1ox
sinh x 2 e* 1

Sil’lh(X'f‘h) - leerh a eXeh B el
2

Thus, for large spheres, how big they actually are is essentially irrelevant to how big
they appear in your field of view. Even if you know the distance to a sphere well, its
impossible to gauge its size visually: even spheres that differ in size by millions of
times still take up the same area in your field of view:

a = 2arcsin(e™")

28.1.4. WHAT's THE GRAVITY Like?

Remark 28.1. There is a precise way to do all of this, using the formulation of gravity
in terms of a gravitational potential: if p is the mass density in space, the gravitational
potential U solves AU = p, where A is the laplacian differential operator (in Euclidean
space, this is 92 + 832, +902). In hyperbolic geometry, gravity follows the same equation,
where we simply replace A with the hyperbolic laplacian. Solving this for a point mass
gives the gravitational potential, whose (negative) gradient is the gravitational force.
And finally finding the magnitude of this recovers the law stated below GM/ sinh®r.

Theorem 28.5 (Inverse Area Law of Gravity). Netwon’s law of gravity is usually re-
ferred to as the inverse square law, but this is only true in flat space. In fact, a more
careful reading of the law might be read to say that gravity, like light, spreads out
evenly in all directions. Thus, a mass M causes a gravitational acceleration on an ob-
ject at distance r away proportional to M and inversely proportional to the surface area
of the sphere.
M
SA(r)
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28. Life in Curved Space

So for Euclidean space we would have a = k—z where k is the proportionality constant
giving the strength of gravity. Tradltzonally, the 47 in the surface area of the sphere
is absorbed into the constant which is then renamed G = k/4r, or Newton’s constant,

giving

In hyperbolic space, the area of a sphere 41 sinh® (r) also contains a 47 so we can continue
to use Netwon’s constant, getting the adjusted formula

GM

. 12
sinh” r

a=

Conceptually it will be more helpful often to speak of the relative difference of this from
Euclidean gravity, than to speak of the absolute numbers. The ratio between these two
quantities is

GMm
ag sinhz(r) _ rz

ag Gr@ ~ sinh(r)?

To use this to understand the experience of gravity on the Earth’s surface, we will
use Newton’s other insight, that the gravity of a spherically symmetric body acts just
like a point mass located at its center.

Example 28.9 (Gravity on Earth’s Surface). On the surface of the earth in Hyperbolic
space (rg = 11.19 SF), the gravitational acceleration felt by people is

_ GMearth
sinh(ryy)?

But to actually get the numerical value here we need to think about $units*: we
should express Newtons constant not in meters, but in San - Franciscos! Instead of
doing this, its much easier to just compute the ratio with Euclidean gravity, which
will automatically measure our result in g-forces:

r]Ez
sinh(rg;)?

Because the hyperbolic component requires us to work in units of San Franciscos, we
need to measure Euclidean radius in those units: rg = 6300km = 1249SF. Thus
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28.1. The Size of San Francisco

B (1249)?
sinh(ry)?  sinh(11.19)

=0.00119g

Thus, gravity on the hyperbolic earth is only 0.1% as strong as on earth!

This means that we are only held very weakly to the surface of the earth: you can
multiply your weight here by 0.00119 to find how much you’d weigh there! This
has some pretty scary consequences: since you are just as strong as you are here in
Euclidean space (nothing about you changed, just the gravitational pull of you to the
earth), you can imagine that it’s pretty easy to jump very high. Too high - I'd say, it
turns out even the feeblest jump will launch you into space, never to return again. To
see this, we need to calculate the escape velocity.

Theorem 28.6 (Escape Velocity). On the surface of a gravitating object, when you
Jjump you can either fall back to the ground, go into orbit, or escape forever into the void.
The dividing line between these bound states (falling back, or getting stuck in orbit) and
the unbound states (getting ejected to infinity) is the escape velocity, a speed where if
you jump any slower you’ll end up bound to the planet, but any faster will send you
away forever. Our goal here is to compute the escape velocity for a hyperbolic earth.

The first step is to figure out how much energy is required to escape. The gravitational
field tries to pull us back down all the way along our trajectory, and the total work it
does on us is the integral of its force along our path. Thus, if we have mass m and were
to escape all the way to infinity, this would be

W = J GMm dr
. 12
g sinh” r

= GMmJ cschz(r)dr

™"
)
H

= GMm(coth(ryy) — lim coth(r))
r—00

=GMm (— cothr

= GMm(coth(ry) — 1)

This number (which we still have to compute in the appropriate units of San Franciscos)
tells us how much energy is needed to escape. But how fast to we need to go? The kinetic

energy of an object with massm is Im? To escape to infinity, we need to give ourselves
enough kinetic energy to be able to cancel out the pull of the gravitational field: thus, we

need
1
W=-m? — v=, w
2 m
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28. Life in Curved Space

Putting these together, we find the escape velocity

Vescape = \/ZGM(COth(r]H) -1)

To actually compute this quantity we would need to be careful about units: convert
everything to San Franciscos, do the calculation, and then convert to something more
reasonable to interpret it in the end. However, like before, its easier to instead com-
pute the ratio of the hyperbolic to the Euclidean escape velocities, as all these annoy-
ing constants cancel out.

Exercise 28.3 (Euclidean Escape Velocity). In Euclidean space with F = G]r\;.[m, show

that the escape velocity is . /%

Example 28.10 (Ratio of Escape Velocities). Let vy be the escape velocity from hy-
perbolic earth, and v be the escape velocity from Euclidean earth. Then

2GM(cothrg — 1
M \/ ( i) = {/rg(cothry — 1)
VE 2GM
E

Now we can plug in some actual numbers and get a value.

Example 28.11 (Escaping from Earth). Measuring all radii in San Franciscos, rg =
1249 and g = 11.19, we get the ratio

Y _ [1249(coth(11.19) — 1) = 0.000000476
E

Thus, it takes less than one ten-millionth the speed to escape the hyperbolic earth as
it does its euclidean counterpart! Since the escape velocity here is 11.2km/s (or 6.95
miles per second), in hyperbolic space this becomes

0.000000476 % 11.2 = 0.0000053km /s = 0.533cm/s

Thus if you make any movement faster than half a centimeter per second, you’ll be
immediately ejected from the earth, never to return!

Life on such a world would be very perilous indeed: it’s impossible to walk as the
mere act of taking a step will launch you beyond orbit! Perhaps we would all live
below ground so there was a solid roof above our heads at all times, or put plungers
on our feet to hold ourselves fast to the ground.
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28.1. The Size of San Francisco

28.1.5. CAN VE st THE SUN or MoON?

As we live our strange lives on the hyperbolic earth, what do we see in the sky around
us? Is it blue? Is there a familiar sun and moon marking the times of day and month?
Or are we forever shrouded in blackness?

To answer this, we first need to think about how far the earth should be from the
sun. Just as the size of the earth and sun have shrank in negative curvature, the size
of orbits and solar systems would also shrink, as the suns gravity drops off much
quicker. A reasonable model to investigate then is what would life be like if we set
the earth-sun separation so the suns gravitational pull is equal to its true value in
Euclidean space? Since Euclidean gravity is inverse square and hyperbolic gravity is
inverse sinh-square, this amounts to finding the radius r such that sinh(r) equals the
Fuclidean distance of 93 million miles, or

sinh(r) = 29933798.4SF

Taking arcsinh, we find r = 17.907 - that is, the earth is less than 18 San Franciscos
from the sun! This is more wild when we realize that the Sun is also 18 San Franciscos
across: we are only one sun-diameter away from the sun!

So, at this distance, how big does the sun look in the sky? Calculating much as we

did for the earth-size previously, we find

sinh 18.225
sinh(18.225 + 17.904)

a=2 arcsin( ) = 0.0000192°

This is absurdly small - the sun would appear star-like in the sky. This is too small to
be interesting, so let’s ask another question: how far away would the earth have to
be from the sun for it to be as big as we see it here in flat space?

Example 28.12 (Distance to the Sun). The angular diameter of the sun in the sky
is about half a degree, so we are looking to solve for at which distance h a sphere of
radius 18.225 appears to be half a degree, or 0.00872665radians. This requires solving

sinh 18.225

2arcsin| ————
<sinh(18.225 +h)

) = 0.0087

We can solve this with some algebra:

sinh 18.225
0.0087

h = arcsinh
sin

) —18.225 = 5.43758SF
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28. Life in Curved Space

This is pretty wild - the earth is 11 SFs in radius, and the sun is 18SFs, but for us to
be able to see the sun at normal size in our sky, we need to be just over 5 SFs away
from it! But the story gets weirder: because the size of the earth is actually larger
than the distance between the earth and the sun, the size of the sun in the sky varies
throughout the day! At high noon, we are at the location on the earth closest to the
sun, with only 18 San Franciscos separating us from its firey surface.

But, at sunrise or sunset we have rotated away, and are actually much farther from the
sun: of course, the same is technically true on the earth, where we are approximately
6,000km closer to the sun at noon than at sunset. But this is absolutely negligible
in comparison to the 93 million miles that separate us. In hyperbolic space these
numbers are 11 SFs and 18SFs however, which are of the same order of magnitude!

Example 28.13 (The Size of the Sun). At noon we are at a distance of 4.74 SFs from
the sun, which itself has radius 18.225, and appears in our sky to be half a degree
across. How far are we away from the sun at sunrise or sunset? Drawing ourselves a
picture, we see that this distance is the hypotenuse of a right triangle, and so we can
use the hyperbolic pythagorean theorem:

d = arccosh (cosh(11.19) cosh(5.43)) = 15.9345SF

This is much farther from the sun (though, still less than a single sun-radius away
from its surface!). How big does the sun appear from here?

sinh 18.225
sinh(18.225 + 15.9345)

a= 2arcsin< ) = 0.0000069°

Over the course of the day, the sun has changed in size by a factor of % = 172,306

times! It rises in the sky as an almost invisibly small star, and then midday quickly
grows by tens of thousands of times to briefly bathe the world in light, before fading
into the abyss once more.

Where’s the moon in this story? We calculated the size of the moon above to be
r = 9.8SF, and we can play the same game and ask what distance it must be from the
earth so that it appears the same visual size in the sky (at least at some point in time).
By sheer coincidence the the moon and sun are both half a degree in our skies, so we
are looking to solve the same equation we did for the sun, just with a different input
radius.

Example 28.14 (Distance to the Moon). The angular diameter of the moon in the
sky is about half a degree, so we are looking to solve for at which distance & a sphere
of radius 9.8 appears to be half a degree, or 0.00872665radians. This requires solving

sinh 9.8

2 in{ ————
aresi <sinh(9.8 +h)

) = 0.0087
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28.1. The Size of San Francisco

We can solve this with some algebra:

sinh 9.8

.. 0.0087
sin T

h= arcsinh( ) — 9.8 = 5.43758SF

This is the same distance, to five figures after the decimal point!

This seems very, very strange at first: the sun and moon are very different sizes, why
should they orbit the earth at essentially the exact same distance to look the same in
the sky? But this goes back to something we already calculated: the size a sphere
appears in the sky is pretty much independent of its actual size (so long as it is large
enough that sinhr = %e’ ), it only depends on the distance to it. So, for the moon and
sun to look the same size they must be at the same distance!

This of course has disastrous consequences, as if we orbit the sun, and the moon
orbits us, the moons orbit will pass directly through the center of the sun. Goodbye
moon! But, before the moon is burned - its reasonable to ask what we would see if
we looked at its surface from earth at “lunar noon” - when it is highest in the sky.
The amount of the moon thats visible would only be a disk of radius

tanh 98

d = sinh(9.8 -
sinh(9.8) arccos (tanh(9.8 +5.43)

) = 0.999990SF

As we expect, we can see only d = 1SF = 5km in radius across the moon - meaning
when we look up in the sky we will see the lunar disk with just a single crater or two
across its surface at a time!
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29. A STRANGE INNER PRODUCT

In the rest of this book, we bring our tools of geometry to study an space that shares
many similarities with Euclidean geometry, but one major difference right at the be-
ginning: the dot product that we use to measure infinitesimal distances and angles
has a minus sign in one place it used to have a plus.

Definition 29.1 (Minkowski Inner Product). We write R>! to mean a 3-dimensional
real vector space together with the inner product

(a,b,c) x(x,y,2z) = ax + by —cz
Its often useful to write this in matrix form, where J is the diagonal matrix J =

diag(1,1,-1):

v*wsz]w

NN
© )
/A\

Zid =k 223%=le

Figure 29.1.: The level sets of the Euclidean inner product are circles. The level sets
of the Minkowski inner product are hyperbolas, together with a union
of two lines as the degenerate level set x> — z% = 0.

More generally, we write R™™ for the n+m dimensional real vector space whose inner
product is of the above form, with n pluses and m minuses, and as shorthand write
R" for R™? (the standard inner product, where all signs are +)
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29. A Strange Inner Product

Definition 29.2. Minkowski space is the 3-dimensional geometry where every tan-
gent space is a copy of R%! (just like Euclidean space has the standard inner product
on the tangent space at every point).

Our primary goal is to practice using the techniques we have developed in geometry
in a new an unfamiliar setting, but this particular space was chosen for a reason: there
will be some exciting payoffs along the way.

This is the geometry of special relativity, but our first introduction to it actually comes
through its intimate relationship to hyperbolic geometry. We will see that just like
the sphere 2 naturally lives inside of Euclidean 3-space (as the level set of the dot
product v-v = 1), hyperbolic geometry H? naturally lives inside of Minkowski space
(as part of the level set of the dot product v x v = —1).

{(X, A Z) € R%1 | X% 4+ yz — 2= _1}

Figure 29.2.: The level sets of the Minkowski inner product in R2! and the —1 level
set: a hyperoloid of two sheets.

29.1. IsoOMETRIES OF MINKOWSKI SPACE

As a first step to understanding this, we aim to take as much of our understanding of
2 inside of R® as we can and build analogies to the hyperboloid in Minkowski space.
In Euclidean geometry, we found the isometries of the sphere inside of the isometries
of Euclidean space, as precisely the isometries which fix the origin (all others were
translations). So here we will attempt to classify the isometries of Minkowski space,
and inside of this, find those that preserve the hyperboloid.
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29.1. Isometries of Minkowski Space

Definition 29.3. Recall that if X is any geometry (where we write (—, ) for its inner
product on each tangent space), an isometry is a map that preserves this inner product,
a¢: X — X where at each point p, and for every v,w € T, X we have

(v, w) = (Dp(v), Dpp(w))

The same is true for Minkowski space, where a Minkowski isometry is any map
¢ : R>! — R?! such that

vxw = D¢p(") * D‘ﬁp("")

Theorem 29.1. TranslationsT(x, y, z) = (x+a, y+b, c+z) are isometries of Minkowski
space.

Exercise 29.1. Prove this via a computation

Since a translation can take any point to any other point, we see already that
Minkowski space is homogeneous. Thus, the only remaining isometries to consider
are those that fix the origin (every isometry can be built as a composition of one
that fixes the origin, and a translation). Studying these generally sounds difficult,
so we start by studying linear isometries: recall an isometry ¢ is linear if it is given
by matrix multiplication: ¢(p) = Ap for some 3 x 3 matrix A, for every point

p=(xy.2).

Theorem 29.2. Show that a linear map $(p) = Ap is a Minkowski isometry if and
only if AT JA = J for J = diag(1,1, -1).

This reduces the classification of linear isometries to understanding solutions of a
matrix equation. We can understand such solutions in analogy with the more familiar
equation AT A = I specifying linear isometries of R®

Theorem 29.3. Show that solutions of the equation AT JA = J are matrices

.
A= a ap; das

Where a; and a; are Minkowski-orthogonal ifi # j, and each column is of Minkowski
norm £1 (precisely, a; x a; = ay *a; = 1 butas xaz = —1)

Its easy to find some such matrices, using things we already know about Euclidean
geometry.
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29. A Strange Inner Product

Theorem 29.4. Show that any Euclidean rotation of the x, y plane that fixes the z axis
is a Minkowski isometry. Show that reflecting in the xy plane, so R(x, y, z) = (x,y,—z)
is also a Minkowski isometry.

Thus, we can understand isometries that rotate the hyperboloid or exchange the two
sheets easily, as they are just the Euclidean isometries we are used to! But there are
more isometries of Minkowski space than just this: thinking back to the sphere in R®,
we have essentially just found the “rotations about the z axis” so far, and a reflection.
What are the analogs of rotations about the other axes?

Since we understand rotations in the xy plane just fine, we can restrict ourselves to
isometries which do no such rotation: for specificity, we can focus on isometries for
the moment which fix the x axis. This let’s us drop the dimension of our problem by
one, and think about just the slice x = 0, or the yz plane.

29.9. IsomeTries of RV

On this slice of the hyperboloid, our inner product has went from (a, b, ¢) * (x,y,z) =
ax + by — cz to just

(b,c) x(y,2) = by —cz

This is a 2-dimensional plane with one + and one —, so is a copy of R, This is an
incredibly useful space because it incorporates all the strange behavior of Minkowski
space in a nice 2 dimensional picture we can see. Here, we imagine this space as
what we get from looking at Minkowski 3-space with the x axis pointed directly at
us: isometries of R correspond to isometries fixing the x-axis, which in turn we
can think of as the Minkowski analog of ‘rotations about the x axis’ in R3.

Theorem 29.5. Show that the Linear isometries of R are given by matrices of the

form
(Z Z) , a? - =1

As well as these followed by a reflection in the z axis, (y,z) +— (y,—z) (which
then switches the upper hyperboloid and the lower one) Hint: Find the Minkowski-
Orthonormal Bases of R!!

The matrices given above are exactly the linear isometries of R"! which preserve the
upper hyperbola, and so correspond to isometries of Minkowski space that preserve
the upper hyperboloid and fix the x axis! Like in Euclidean space, we can parameter-
ize these isometries using trigonometric functions: there we used that a® + b? = 1 is
satisfied by a = cost,b = sint, and here we use a® — b* = 1is the defining trigono-
metric relation for a = cosht and b = sinh¢
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29.3. Distances in Minkowski Space

Corollary 29.1. The linear isometries preserving the upper hyperboloid of R%! are all
of the form
_ [cosht sinht) [y
9(r.2) = (sinht cosh t) (z)

Its really instructive (and confusing) to use these matrices to try and understand the
geometry of RV, Starting with the vectors e; = (1,0) and e, = (0, 1), we can easily
check these are Minkowski orthogonal (e; *x e, = 0): thus if ¢ is any linear isometry
we know D¢(e;) and D¢(e;) will also be Minkowski-orthogonal.

Exercise 29.2. Choose some isometries (just pick some value of t and plug it into the
matrices above and get decimal approximations, to make it easy to work with) and
use them to get a collection of different Minkowski-orthonormal bases in the plane.
Draw them! What do they look like? When ¢ gets large, what is happening to the
vectors?

Figure 29.3.: Various pairs of Minkowski-orthonormal vectors (each pair is grouped
by the blue arrows). Thus our coordinate description of Minkowski
space can be very misleading: each vector in this diagram is length 1,
and within each pair the green and red vector are orthogonal!

29.3. DisTANCES IN MINKOWSKI SPACE

Like in any of the geometries we’ve previously visited, computing the lengths of var-
ious curves in Minkowski space will teach us a lot about it, and eventually will help
us track down the geodesics. There is one small difficulty in generalizing what we al-
ready know however - it’s that our inner product can now spit out negative numbers,
so our definition of infinitesimal length is not well defined, as it had a square root in
it. This is an easy fix: just introduce an absolute value! If v € R™! is a tangent vector,
we define its Minkowski infinitesimal length as

vl = lv vl
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Given a definition of infinitesimal length, we can define the length of curves exactly as
in Geometry class: if y : I — R™! is a curve its derivative y’(t) gives a tangent vector
based at y(¢) for each t, and the infinitesimal length |y’| represents an infinitesimal
segment of arc. Thus, the lenght of y is recovered via integration:

Length(y) = | Iyl as
Where I = [a, b] is the domain of y.

Happily, since the inner product is so close to the Euclidean inner product, many
simple lengths are easy to compute. The first three exercises below show this by
having you find the lengths of several straight lines in the Minkowski plane. But
beware - easy to compute does not mean easy to understand!

Example 29.1. In RY! that the length of a segment of the y axis the same as its
Euclidean length: that is, if y(¢) parameterizes the y-axis from y = a to y = b, then
Length(y) = b —a.

Example 29.2. In RY! that the length of a segment of the z axis the same as its
Euclidean length: that is, if y(t) parameterizes the z-axis from z = a to z = b, then
Length(y) = b —a.

Example 29.3. In R"! show the length of any segment of one of the diagonals y =
+z is ZERO! Thus, Minkowski space has the extremely strange property that curves
connecting two distinct points are allowed to have zero length!

In the final exercise here of ‘simple-to-compute-lengths’ we will look at measuring
the length of the hyperboloid y* — z2 = —1 in R%!: amazingly, due to the strange dot
product we are using, this length also turns out to be easy to compute!

Example 29.4. In R"!, we can parameterize the upper sheet of the hyperbola y* —
22 = —1by (y,2z) = (sinht, cosht). Show that the Minkowski length of this hyperbola
between (0, 1) and (sinh T, cosh T) is exactly T.

Figure 29.4.: The arclength along a hyperbola in Minkowski space.
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29.4. Proving the Hyperboloid is Hyperbolic Space

The length of segments of hyperbolas is a useful thing to compute in hyperbolic ge-
ometry - as these are the geodesics! The fact that this computation comes out so
cleanly in the hyperboloid model is one reason this model is good for computation:
in fact in almost all computer programs I write using hyperbolic geometry, I do all
the computations in the hyperboloid model because of this.

29.4. Proving THE HyprersoLoiD 1s HYPErRBOLIC SPACE

We have learned enough about Minkowski space through its isometries and distances
to embark on our main goal: proving that the hyperboloid really is a copy of hy-
perbolic space! Below is an approach to showing they are the same space, without
constructing an isomorphism directly, which we will do so in a series of steps.

Proposition 29.1. STEP 0: The Hyperboloid is Preserved by Linear Minkowski
Isometries

Proof. Alllinear isometries of Minkowski space preserve the inner product x+y?—z2,

and so they preserve the Minkowski norm of vectors. That is, if ¢ is any isometry
and p is a point of Minkowski space with |p| = ¢ then |#(p)| = c as well. Since the
hyperboloid is the level set |p| = —1, any Minkowski isometry takes the hyperboloid
to itself. O

Proposition 29.2. STEP I: The Hyperboloid is Homogeneous For any two points

p,q on the hyperboloid x> + y* — z2 = —1, there is an isometry of the hyperboloid taking

ptogq.

Proof. Like in previous cases, its enough to show your favorite special point can be
taken to any other point, if o - p and 0 — g we can compose one with the inverse
of the other to send p — g.

Here, a natural special base point for the hyperboloid is (0,0, 1). If p = (x, y,z) is any
other point on the hyperboloid we may use a Euclidean rotation in the x, y direction to
rotate p into the xz plane (such Euclidean rotations are Minkowski isometries, as they
preserve the Minkowski inner product - it agrees with the Euclidean inner product
on the xy directions!) Thus, without loss of generality we may take p = (x, 0, 2).

But now, ignoring the y coordinate, we have a point of R:!, which lies on the hy-
perboloid x? — z2 = —1. We can parameterize this hyperboloid by (sinht, cosht), so
for some particular ¢, € R we may write (x,z) = (sinh(t)), cosh(fy)). But, by our

classification of isometries, we know that the matrix

cosh(ty) sinh(%y)
sinh(fy) cosh(ty)
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29. A Strange Inner Product

Is an isometry, and this takes (0, 1) to (sinh £y, cosh ). Thus, combining this wtih our
rotation, we can take (0,0, 1) to p, and thus p to q. O

Proposition 29.3. STEP II: The Hyperboloid is Constant Curvature Isometries
preserve curvature, so whatever geometry this is, the curvature is the same at every point.
Since its constant curvature, its either the sphere the Euclidean plane or hyperbolic space.

ERY

o _f‘.““‘”

Figure 29.5.: Circles on the hyperboloid of Minkowski radius r have circumference
27 sinh(r).

Proposition 29.4 (STEP III: The Curvature is Constant —1).

Proof. To compute curvature, we need to find the formula of circumference of a circle
in terms of radius C(R), and compute the limit

-1
K= —C""(0
¢

We can find circles of the hyperboloid using isometries: we know that rotations in
the xy plane are Minkowski isometries that fix (0,0, 1), so if p = (x, y, z) is any point
of the hyperboloid and R is any rotation about the z-axis,

dist(0, p) = dist(R(0), R(p)) = dist(O, R(p))

Thus, p and R(p) lie on the same circle about O! Thus, taking an arbitrary point
(x,0, z) on the hyperboloid, we find that the circle containing this point is

cost —sint 0\ /x xcost
sint cost O0]|{0]=|xsint
0 0 1 z z

So we know the circles about O of the hyperboloid, but we don’t know what the
radii are: for that, we need to find a geodesic. Recall that geodesics can be found
as the lines of symmetry - curves that are fixed by isometries. And, one isometry of
Minkowski space is (x,y,z) — (x,—y,z) This fixes the set y = 0, so the hyperbola
containing (x, 0, z) is in fact a geodesic!
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29.4. Proving the Hyperboloid is Hyperbolic Space

For any such (x,0,z) we know that since x2 — z71, we can find some R such that

x = sinh R and z = cosh R. And, from our previous calculation, we know that the
length between O and (sinh R, cosh R) is just R! Thus, the circle parameterized by

sinh R cost
y(@) = | sinh Rsint
coshR

has a radius of R, and all we need to compute is its circumference. This is done via
an integral of [[y’|, which is just sinh R: thus

2
Length = J sinh Rdt = 27 sinh R
0
So C(r) = 2z sinhr and xk = —1: this is hyperbolic space! O

How to tell? Compute some quantity we know in these geometries: say the circum-
ference to radius of circles. Start around (0,0,1): we found the segment of length R
ends at (0,sinh R, cosh R). Thus, a circle is a horizontal circle of (Euclidean) radius
sinh R. Easy to find arclength in Minkowski space is 27 sinh R. Thus its hyperbolic
space!

29.4.1. CALCULATING DisTANCE IN THE HYPERBOLOID

Distance between p and q is the length of a geodesic. If p, q are arbitrary points then
use an isometry to move one to the basepoint (0,0,1). Now need to measure just
distance from this to some p.

Geodesics in hyperbolic space are equivalently (1) distance minimizing (2) straightest
curves (3) lines of symmetry. Easy to find lines of symmetry of the hyperboloid: a
reflection in a vertical plane is an isometry, so the geodesic from (0,0, 1) to p is just
such a segment of a hyperbola. Without loss of generality we can actually rotate
things so p lies in the (x, z) plane, and is (sinha, cosh a) for some a. But we know
from before the length of this segment is just a! Thus this is the distance.

How can we write this in a geometrically meaningful way? Note that

(0,0,1) * (sinha,0,cosha) = — cosha

And so we can express the distance between points X = (0,0,1) and Y =
(sinha, 0, cosha) as
d = acosh | X + Y|
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29. A Strange Inner Product

Now that we have expressed things in terms of the Minkowski dot product, we can
learn alot! The transformations we used to take our general pair of points p,q to X
and Y were all Minkowski isometries, and so they preserved distances on the hyper-
boloid as well as the inner product! That means X xY = p x ¢, and

dist(p, q) = acosh [p * g

We can compute distances in the hyperboloid model by just using dot products! This
makes something as complicated as computations in curved space reducible to linear
algebra! This makes it very helpful to employ the hyperboloid model in computations
done on a computer.
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30. GEOMETRY OF MINKOWSKI SPACE

Our introduction to Minkowski space in the last chapter essentially provided a play-
ground for us geometers,

« We got to try out our definitions (of isometries, distances, etc) in an unfamiliar
context, which was still quite close to things we’ve seen before (all we switched
was one negative sign in the dot product!)

« We were able to use our geometric skills to discover a new model of hyperbolic
geometry living inside this world!

This provides a nice end to our story of hyperbolic space, and our approach to ge-
ometry as a whole. But it also serves as the beginning to a new and wonderful story
of geometry and its interaction with physics. In these final chapters we endeavour
to tell a small bit of this story, where Minkowski space itself (and not merely the
hyperboloid lying within it) takes center stage.

To begin, we need to take a deeper dive into the geometric properties of Minkowski
space.

30.1. Posimive AND NEGATIVE

As a geometry, Minkowski space is a n + 1 dimensional real vector space M where
each tangent space space T,M = R™! comes equipped with the inner product *.

At each point p € M there is a null cone of vectors of length zero. Any isometry of
M preserves null cones: it sends the null cone at p to the null cone at ¢(p).
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30. Geometry of Minkowski Space

Figure 30.1.: The X shapes (cones) in the tangent space at each point of Minkowski
space are the level sets of the dot product, much like circles in the tan-
gent space of Euclidean/Hyperbolic geometry were level sets of their dot
products.

One of the most effective ways to study a geometric space is with curves: for example,
in Riemannian geometry we used curves to help us define geodesics, and then learned
a ton of geometry from trying to classify geodesics. Let’s attempt the same here.

First, we recall the definition of a regular curve. In Riemannian geometry, we said
thisisa curvey : I — M where the derivative is never zero (or, equivalently, its norm
is never zero). We copy this definition in Minkowski space

Definition 30.1 (Regular Curve:). A curvey : I — M is regular if |y’ (#)| # 0 for all
tel

However note here that y’ # 0 is not equivalent to |y’| # 0 as there are null vectors.
Nonetheless the definition we chose for regular is the “correct” one, as the reason one
imposes regularity on curves is that one often wishes to do computations that require

dividing by [y’|.

x4

Figure 30.2.: A regular curve (left) and a non-regular curve (right). The curve on the
right has a single point where its derivative is tangent to the null cone,
meaning the magnitude is zero.
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30.1. Positive and Negative

This condition makes the collection of regular curves in Minkowski space quite dif-
ferent than in Riemannian geometry: we can sort all regular curves into two classes
(which for now, we will call positive and negative).

Definition 30.2 (Positive and Negative Curves.). We say a regular curve is positive
if y’(¢) has positive norm for all ¢, and is negative if the norm is negative for all ¢.

-
Aoy

Figure 30.3.: Positive (right) and Negative (left) curves in R,

Theorem 30.1. Regular Curves are Either Positive or Negative. Precisely, let y be a
regular curve: then it is either a positive or negative curve.

Proof. Apply the intermediate value theorem to the function [y’|. O

Of the non-regular curves, most have points of positive and negative norm - but a few
special ones do not: they have zero norm everywhere. These are worthy of a special
name

Definition 30.3. A curve y is null if |y’(¢)| = 0 for all ¢.

-

4

A

Figure 30.4.: Null curves in R and R*!. In 1 + 1 dimensions, any null curve is just
a subset of one of the lines forming the null cone. In higher dimensions
affine lines lying on the cone are also null curves, but there are more
interesting examples as well (right).
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30. Geometry of Minkowski Space

This sorting of all regular curves curves into two classes has profound implications:
it let’s us actually sort the points of M into classes

Definition 30.4 (Positive and Negative Pairs of Points.). Let p,q € M be two points.
We say that p and q are positively separated if there is a positive curve starting at p
and ending at q. They are negatively separated if there is a negative curve starting
at p and ending at gq. And, they are null separated if there is a null curve connecting
them.

This definition requires some checking to be sure its well-defined:

Theorem 30.2. If two points are connected by a negative curve, then any regular curve
connecting them must be negative. Same for positive pairs. Hint: A sneaky use of
Rolle’s theorem to the z coordinate, for negative curves!

Using affine lines (which are easy to tell when they are positive or negative curves,
just using the norm of their derivative) we can sort points into positives and negatives
with this definition.

Exercise 30.1. For the origin, show that the points that are positively separated from
O are those outside (horizontally) of the X made by the lines z = +x, and the points
that are negatively separated are inside (vertically above an d below) the X.

This same thing holds true at every point: given a point p € M we can sort all other
points g so that the positive pairs (p,q) are all the points lying outside of an X centered
at p and the negative paris are all the points inside that same X.

Figure 30.5.: Points with positive separation (q) and negative separation (r) from a
point p.
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30.1. Positive and Negative
30.1.1. Geobesics

Now that we understand a bit of isometries, regular curves, and positively/negatively
separated points, we can start to talk about geodesics in Minkowski space. This dis-
cussion is more subtle than in Riemannian geometry, for several reasons.

We’ve already dealt with one major difference: the fact that not all pairs of points in
Minkowski space are created equal - for some pairs, every regular curve connecting
them is a positive curve, and for others every regular curve is a negative curve (and
finally, for the remaining pairs of null-separated points, there are no regular curves at
all joining them).

Thus, we already expect there to be two notions of geodesic, a positive geodesic as
some optimization problem over the space of positive curves, and correspondingly a
negative geodesic for pairs of negatively separated points.

But there’s one more subtlety to confront: we already know that Minkowski space has
curves of total length zero between distinct points. This radically different behavior
that Euclidean space suggests a potential problem with our usual notion of geodesic
as minimizing - if we can make a regular curve nearby to a curve of zero length, we
might expect that regular curve to have a very short length - and perhaps taking the
infimum over all regular curve lengths actually gives zero, which is not realized by
any regular curve.In fact, exactly this worry happens.

Theorem 30.3 (A truly mindbending example). Consider the following two curves in
R%1: the first curvey is just the vertical segment from (0,0) to (0,4). THe second curve
c is piecewise: it begins with the affine line segment connecting (0,0) to (1,2) and then
continues as the affine line segment connecting (1,2) to (0, 4).

Which is longer? Now do the same for the piecewise curve that bends at the point (a, 2)
instead of (1, 2), for a € [0,2]. Show that there is a curve connecting (0,0) to (0, 4) with
arbitrarily short nonzero length:

Figure 30.6.: The blue curve is shorter in Minkowski length.
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30. Geometry of Minkowski Space

Exercise 30.2. Can you construct a similar example, for a pair of positively separated
points?

One concern here might be that these curves described are not regular - they have a
corner (they are piecewise regular, however). This is not actually a technical concern
as it is fine (and often more convenient) to just work with the class of piecewise
regular curves from the start. But even if you choose not to do so, these examples
still point the way:

Example 30.1. Given two negatively separated points (without loss of generality
we can take them to be (0,0) and (0, a) after applying isometries), there are regular
curves of arbitrarily short length connecting them. The idea is to approximate the
piecewise curve above by something smooth, in this case, a segment of a hyperbola

I -

Figure 30.7.: Smoothing a piecewise regular curve to a regular curve, while maintain-
ing the property of arbitrarily short length.

The situation is even worse that these examples make it appear - here we found curves
that were very short, but were also very far away from our original curve. Perhaps
one might hope there aren’t any actually nearby to our original curve - so maybe its
still “locally” nice. But this intuition is rather shaky; by modifying the idea above to
introduce lots of small crinkles instead of one big deviation....
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30.1. Positive and Negative

L

Figure 30.8.: Finding a very short piecewise regular curve arbitrarily close to a long
curve.

Exercise 30.3. If you constrain a curve to never get more than € away from a vertical
line in its x coordinate, what can you say about its length? Can it be arbitrarily close
to zero, or is there some lower bound?

What about if its a regular curve?

Corollary 30.1. There are no length minimizing regular curves in Minkowski space:
given any pair of positively or negatively separated points, the infimum of the lengths
of all regular curves joining them is zero, but there is no regular curve of length zero
joining them.

Thus, the inifmum is not a minimum, so the minimum does not exist!

This example teaches us two important things: first the formal definition of geodesic
can’t be directly borrowed from Riemannian geometry, but secondly we can see its
clearly not even the right notion! In Riemannian geometry, its easy to make a curve
longer, by wiggling it, curves of minimal length are the right sort of optimal objects
to seek. But in Minkowski space, its easy to make a curve shorter by wiggling it;
and in fact, its difficult to make a curve longer! Almost everything you try shortens
it...so perhaps the right thing to do is turn our intuition on its head and define our
optimal objects as the length maximizing curves. Amazingly, for negative curves this
works!

Definition 30.5 (Negative Geodesics). Let p,q be two negatively separated points
in Minkowski space. Then in the set of all regular curves joining p to g, there is a
unique curve of maximal length.

We call this curve the geodesic from p to q.

This is a definition that justifies itself with a claim: (that there is a maximum, and as
a bonus its unique!) So, we should check this!
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30. Geometry of Minkowski Space

Theorem 30.4. Ify is an affine line connecting two negatively separated points, then
y is globally length maximizing.

Proof. Without loss of generality we can take our points to be (0,0) and (0, a) after
using some isometries, and so y is the curve y(¢) = (0,t). Now let a(t) = (x(¢), z(t))
be any other curve joining a(0) = (0,0) and a(1) = (0, a). Writing out its length, we
see

Length(a) = J V]’ * a’| dt
I
- | Jley = @yiar
I
= J (z)2 — (x*)2 dt
I
Where the last equality follows as since « is regular and joins negatively separated

points, we know that a’(¢) is negative for all ¢, and so taking the absolute value is the
same as multiplying by a negative.

But, no matter what x(¢) is we know x’(£)® > 0 and so for all ¢<

(ZI)Z _ (x/)Z < (z/)Z

Both sides of this are positive and the square root is an increasing function, so this
implies

V@2 = ()2 < (@) = I2/]

and finally, |z’| > 2/, so stringing these inequalities together and integrating yields

L (27)2 = (x')2dt < JI Z dt

The first integral here is none other than the length of @, and the second integral here
is easily evaluated via the fundamental theorem of calculus:

J Zdt=2z(1)=z(0)=a—-0=a
[0,1]

Thus for any such curve a we have Length(a) < a. As this is precisely the length of
the affine line y we have

Length(a) < Length(y)
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30.1. Positive and Negative

As a corollary of this, looking closer at the argument above we can see that in fact no
other curve can be as long as y, so this is the unigue maximum

Exercise 30.4. Geodesics connecting negatively separated points are unique.

Hint: if a is distinct fromy then its x coordinate must be nonzero at some point. Because
it is continuous, this means there must be some small interval where the x coordinate
is nonzero, and on this interval you can show the length of a is strictly less* than the
length of y. On the rest of the curve we can get < as above, and putting it together
we get the inequality is strict: & must actually be shorter than y!

In fact, there’s a way to make this craziness sound not so strange after all. Remember
that we defined infinitesimal arclength by using an absolute value for negative curves,
since the dot product yields a negative number. So, finding the maximal length is
really finding the maximum absolute value which is the same as finding the most
negative (since we know the original numbers are all negative). But the most negative
is the minimum! So, we could simply modify our definition of the length of a negative
curve to remember that the dot product is negative

L(y) = —L\/Iy’ *y’|dt

And with this new definition all curves have negative length, the maximum is not
achieved (as curves can have lengths arbitrarily close to zero) but the minimum is:
curves of minimal length are again geodesics! This is a totally fine approach to take,
and perhaps a convenient one if you are very good at not missing minus signs. How-
ever when it comes to our use case for Minkowski geometry (the physics of relativity)
we will see that the length of negative curves really corresponds to time intervals, and
if we put a negative here, we’ll have to negate it once more to think of intervals of
time as positive like we do in daily life. So, we will opt not to do this, and instead just
deal with the fact that geodesics are maximizing.

This turns out to be alright actually - as its strangeness actually forces us to think
carefully about what is going on, and this careful though reveals things are even
stranger for positively separated points!

In R where the inner product has one positive and one negative direction, things
are symmetric, and so nothing stranger happens (positive geodesics are also length
maximizing). But, as soon as there is more than one positive direction, things can get
rather strange indeed.

Exercise 30.5. Let p = (0,0,0) and g = (2,0, 0) be two positively separated points in
R%!, and let y(t) = (¢, 0, 0) be the affine line connecting them.

« Show that there are nearby curves to y which are shorter, by varying the curve
slightly into the negative z direction (for example, look at the curve connecting
(0,0,0) to (1,0, z) and then continuing to (2,0,0) for z € (0, 1).)
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30. Geometry of Minkowski Space

« Show that there are nearby curves to y which are longer

To study this a bit further, it will be useful to have a little more terminology available
to us, so we introduce the idea of a variation:

Definition 30.6. If y is an affine line between two positively separated points, a
variation of y is a nearby curve y + n, where 7 is some curve with 5(a) = n(b) = 0 (so
that y and its variation start and end at the same point).

We call y+n a negative variationif n(t) = (0, 0, z(t)) is nonconstant only in the direction
where the inner product returns negative values, and analogously we call y + 5 a
positive variation if n(t) = (x(t), y(t), 0) is non-constant only in the directions where
* is positive.

X711

Figure 30.9.: A variation of y.

Exercise 30.6. Let p,q be two positively separated points in Minkowski space, and
y the affine line connecting them.

« Show that y is a local minimum of the length functional over the set of all
positive variations of y.

« Show that y is a local maximum of the length functional over the set of all
negative variations of y.

This shows that y is a local minimum of length if you vary the curve in the positive
directions of the inner product, but is a local maximum if you instead vary the curve a
bit in the negative direction. From multivariable calculus we might recognize points
that are either a maximum or minimum depending on the direction you slice in as
saddle points, and indeed this is the case here.

Theorem 30.5. Let p,q be a pair of positively separated points in Minkowski space,

and y the affine line connecting them. Theny is a saddle point of the length functional
over all regular curves.
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30.1. Positive and Negative

We do not prove this theorem, as understanding the precise definition of a saddle
point in infinite dimensions, and ensuring to do the calculation correctly would take
us rather far afield. And, seeing that we will never use this result (in our upcoming
physics application, it will turn out that only the negative curves are relevant) its just
not worth it here.

However, it does tell us that if we want a general definition of geodesic in Minkowski
space, we need to work a little harder: we can’t just replace local minimum with local
maximum and call it a day; instead we should seek a definition which captures both
max/mins and saddles.

Definition 30.7 (Minkowski Geodesics). A minkowski geodesic is a regular curve
y : R — R>! which is a critical point of the Length functional

Length(y) = L Iyl dt = L Jy e

In fact, one could take this more general definition and apply it back in Riemannian
geometry as well. Even though it appears to allow for more possible behaviors, one
can prove that with a positive inner product at each tangent space, the only critical
points of length are actually minima - that is, they are the same geodesics we have
already found! So, there is no harm in replacing the definition with this, and using it
universally across both Riemannian and Minkowski spaces.

This small change turns out to be the a hint to much wider generalizations, bringing
geometry deep into the study of quite a lot of fields of math and physics. We do not
have the time nor background to develop such here, and should remain focused on
our goal. But I cannot help but mention one: Lagrange managed to rewrite the laws
of classical mechanics as an optimization problem, where the solutions to Newton’s
laws appeared to correspond to the minima of a certain function (called the Action
Functional). But on closer inspection - this didn’t always work! Instead we discovered
physics is not seeking minima but rather critical points and so this generalized notion
of geodesic is the correct notion here as well. (Look up The Principle of Stationary
Action to learn more)
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31. GEOMETRY OF SPACETIME

We begin by defining spacetime to be the set R* = {(x,) | x € R3,¢ € R} of all possible
points in space, at all possible moments of time. We call a point (x,t) an event, and
we call a point x € R? a location, and a point t € R a moment. Our goal is to try to
understand the mathematical structures that determine the behavior of spacetime - a
lofty goal with very little to go off of initially!

31.1. AXIOMATIZATION

Like many things in mathematics, one way to study spacetime is to study its group
of symmetries. This is analogous to how we study Euclidean space by discovering its
group of isometries, and then use our newfound knowledge of translations rotations
and reflections to simplify all further calculations.

But how do we go about finding the symmetries to start with? In Euclidean geometry,
perhaps we start by realizing that the Euclidean plane has a particular mathematical
structure on it - it has a distance function (induced by a dot product on all tangent
spaces), and we can rigorously define the isometry group as the set of all transfor-
mations that preserve this dot product. But for spacetime, the situation seems much
more difficult - we don’t know what sort of math structure best describes spacetime,
that’s one of the things we are looking to discover! So we can’t just explicitly define
spacetime symmetries to be the things that preserve this (unknown!) structure.

However, if we dig back deep enough into history, we can find a close analogy be-
tween our current predicament and geometry. The greeks after all did not know
about infinitesimal tangent spaces and all that: instead, they described geometry ax-
iomatically, by specifying properties that they observed to be true of space, and then
using these as the foundations of their mathematical theory. Us moderns then could
take the axioms and try to rigorously find which mathematical spaces satisfy them:
we saw in Geometry class that if you take Axioms 1-4 there are two possible ways
the world could be (Euclidean or Hyperbolic), but once you have all the Axioms 1-
5, there is a unique structure (Euclidean dot product on every tangent space) which
instantiates them.

Could we attempt an axiomatic description of spacetime? That is, could we list some
rules we claim to be true (based on our observations of the world around us) and use
these as constraints on our mathematical theory? Perhaps, if we choose a good set of
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31. Geometry of Spacetime

axioms, we will be able to find a small number of possible solutions (like Euclidean
/ Hyperbolic space, for Euclid’s Axioms 1-4). Then, if we were left without a unique
solution, we could try to find more axioms to add (based on other observations of the
world around us) which further narrow down to a unique mathematical structure,
which would allow us to begin a rigorous study of spacetime.

Here’s a proposal for three first axioms: in the first we take the ideas of Euclid, in the
second the ideas of Galileo, and while the third observation doesn’t have a name, it
certainly predates the others, going back to the first humans to imagine themselves
as living in space while time passes.

Definition 31.1 (Axioms of Spacetime Symmetries).

« Symmetries of space and time are symmetries of spaceitme: If A : R> —
R? is a Euclidean isometry, then o/(p,t) = (A(p), t) is a symmetry of spacetime.
Similarly, if B is any isometry of R (a translation, reflection or combination)
then % (p,t) := (p, B(t)) is a symmetry of spacetime.

« Galileo’s Principle: All symmetries of spacetime must preserve the class of
constant speed trajectories. And, if £; and ¢, are the worldlines of any two
constant speed observers, there is a symmetry of spacetime taking £; to £,.

« Space is different than time: There is no symmetry of spacetime which takes
the vertical axis (0,¢) to a line in space (¢, 0).

The symmetries of spacetime form some group G of transformations R* — R*. But
which group? These axioms put strong constraints on this group of transformations,
and so our immediate goal is to try and discover which groups G satisfy these axioms.
Perhaps surprisingly, the list is small! There are only two different groups, up to
isomorphism, whose transformations satisfy Axioms (1)-(3). Said colloquially, these
axioms alone imply there is only two possible ways that spacetime could logically
behave.

31.1.1. S7er 1: INTERESTING SYMMETRIES CHANGE VELOCITY

By Axiom (1) we know that spacetime is homogeneous, as Euclidean space is homo-
geneous, and the real line is homogeneous. We can use this to reduce the class of
isometries we are interested in. Let ¢ : R* — R* be an arbitrary symmetry of space-
time, and let ¢(0,0) = (xp,%;). Then we can find a Euclidean isometry A : R3 — R3
with A(x) = 0, and the time isometry B(¢) = t — t; for which B(t;) = 0, and build (via
axiom (1)) a spacetime symmetry y(x,t) = (A(x), B(t)). Then notice that

¥9(0,0) = y(x,1) = (0,0)

So = ¢ is a symmetry of spacetime (both ¢ and y were in G, so n = /¢ € G) where
1(0,0) = (0,0). But now, taking an inverse, we see
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p=vy 1y

So an arbitrary symmetry of spacetime is the composition of a symmetry which fixes
the origin, and a symmetry which is just a translation in space and time. Since we
understand the symmetries of space and time separately (from Euclidean geometry!)
this implies that if we can understand the spacetime symmetries that fix the origin,
we can understand the entire group G.

So, what are the symmetries fixing the origin? Some of these we also already under-
stand: if we take a Euclidean rotation R that fixes 0 € R® for instance, the symmetry
R (x,t) = (R(x),t) fixes the origin. Thus, what we are really interested in are space-
time symmetries that fix the origin of spacetime but do not fix the origin of space for
all time (as this is a Euclidean isometry, just applied at each time!).

This means we are looking for isometries that fix the origin but do not fix the t axis!
These are the only sort that we do not already understand. But by Galileo’s principle
(axiom 2) the t axis is a constant speed trajectory (moving at speed zero) and so any
symmetry of spacetime must send it to another constant speed trajectory, which is
another affine line. But, since without loss of generality our isometry fixes the origin,
this is just some other line through (0,0)! All such lines are of the form (vt,t) for
v € R3, or of the form (vt,0) if they lie directly in the Euclidean space. However
Axiom (3) rules out this second class (this would be a symmetry that took the time
direction to a space direction) so, we know that (0,¢) must be sent to (vt,t). Such a
trajectory represents something that moves v units of space for every ¢ units of time,
and thus represents someone moving at velocity v.

Thus, the only isometries we are interested in are the ones that take (0,¢) to (vt,t):
the rest we already understand! Let’s call such a symmetry S(v).

One thing to ask ourselves here; S(v) unique (if we are trying to give it a name, after
all)? What if we had two symmetries A and B which both took (0,t) to (vt,£)? Then
B! would take (vt,t) to (0,t), and so the combination B~! A fixes the t axis pointwise
- it restricts to a Euclidean isometry only in space! That is, we can write B"1A = %
where % (x,t) = (R(x),t) is just a Euclidean transformation. Composing with B yields
A = B%, so A and B differ by a Euclidean isometry. BUT we already understand
Euclidean isometries! So A and B are ‘essentially’ the same. (Precise note: really
what we’ve seen here is that if A and B both take (0,¢) to (vt,t) then they lie in the
SAME COSET of the Euclidean group inside the group of spacetime symmetries!)

%Note to future self: prove that things fixing the t axis pointwise must be the SAME
euclidean isometry on each slice
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31. Geometry of Spacetime

31.1.2. Ster 2: Tre Grour 1s LINEAR

The first step is to show that the only groups that satisfy these axioms are groups of
linear transformations, that is, G < GL(4,R). We did not do a full and rigorous job
of this in the independent study, (let me know if we should return, and dot all our
i’s and cross our t’s): instead we pointed to two ways one can prove this with more
work

« Using Galileo’s axiom, we see that if ¢ : R* — R* is a symmetry it must take
constant speed trajectories to constant speed trajectories. Since constant speed
trajectories are affine lines, this means it must preserve (at least some subset
of) affine lines. ¢ also fixes the origin, so it sends affine lines through the origin
to affine lines through the origin: like a linear map! (It’s more work, but in fact
this is the only option, it is a linear map)

+ We could instead proceed and just look for the subgroup of G that is linear - and
accept the fact that there could also be nonlinear symmetries out there! We will
end up finding a bunch of linear symmetries, and in the end, can go back and
argue that we have actually found all the symmetries: there were no nonlinear
ones out there to be worried about!

31.1.3. S71er 3: WE can Work witH | SpAce DIMENSION

Let S(v) be a symmetry of spacetime taking (0,t) to (¥t,¢), and let v = || be the
speed. Then, just in R? there is a Euclidean isometry rotating about 0 which sends
v to (0,0,v). For a proof recall that Euclidean space is isotropic, so we can take any
direction on the unit sphere to any other direction on the unit sphere. Thus there’s
an isometry taking v/|v| to (0,0,1). But, isometries preserve length, so this same
isometry must send the vector v to a vector of the same length in the direction of
(0,0,1): that is, by definition (0,0,v). If we call this Euclidean rotation R, we can
build an associated spacetime symmetry Z(x,t) = (R(x), ).

Using this, consider the X = % ~1S(v): this takes the (0,t) axis to (0,0, s)t,t). Then
KX = S(v), so we can understand our arbitrary isometry S(v) as a composition of
X, which takes (0,%) to a velocity along the z axis, and a Euclidean rotation. Since
we already understand Euclidean isometries, this lets us further simplify what we are
interested in: it is enough if we understand the isometries which take a stationary
observer to one moving along the z axis!

Using the fact that we also know that such resulting transformations are linear, we
can write this as a matrix:

* ok ok o
* ok ok o
* ok ok ok
* ok ok ok
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Our goal is to fill in the missing entries! (right now, all of them!). One first thing
to notice, is that with our motion in the z direction, the x and y directions don’t get
mixed up with z and ¢ after the transformation (an argument from axiom 2 goes as
follows: if distances in the x and y directions were affected by me moving in the z
direction, I could tell whether or not I was moving - violating Galileo’s principle! -
by seeing how the length of something I was carrying with me changed! I would like
a better argument here though)

This implies the matrix is block diagonal: the xy do not mix with the zt, so we have

o o * *
o O * *
* * © o
* * © O

Now, we have a transformation which translates along the z-axis, and does something
in the x, y direction. Say that it does the Euclidean rotation R in the xy plane, which
acts on spacetime as R(x, y, z,t) = (R(x, y), z,t). Because we are free to use Euclidean
isometries to simplify our situation, we can compose our map above with R~ without
changing the property that we care about (that it translates along the z axis) so we
can without loss of generality assume that the 2 x 2 euclidean block is the identity!
Thus, our matrix is

o o o~
oo~ o
* * © ©
* * © O

This leaves a very manageable sized problem - everything about the symmetries of
spacetime can be totally understood so long as we know how they work with one
space and one time dimension!

31.1.4. Ster 4: Some MATRIX CALCULATIONS

This is where all the real work is!!

Now we have gotten ourselves into a sufficiently restricted situation that we can do
some actual calculations. We are only interested in symmetries fixing the origin, and
taking (0,t) to (vt,t) for some 0 # v € R3. We know these symmetries are linear, and
after a Euclidean isometry can actually assume without loss of generality that v is
parallel to the z axis, so the matrix representing our symmetry is block diagonal with
only one 2 x 2 undetermined block:
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31. Geometry of Spacetime

(aw) b
5(”)‘(c(v> d(v))

We then did a bunch of matrix calculations thatI do not feel like typing tonight (sorry!)
but I emailed out a handwritten copy of. Together, this implies that there are two
possibilities for the group of symmetries of R* satisfying axioms (1) to (3).

Possibility 1: The group of symmetries of spacetime consists of the following matri-

o={(o V)]

Possibility 2: The group of symmetries of spacetime consists of the following matri-
ces, for ¢ some positive constant.

1 1 —v
L= 2 (—v/c2 1 )

1_2

c

v € (—c,c)

31.2. IMPLICATIONS

Our next goal, as mathematicians is to try and study these two possible worlds, and
derive some properties they have. We will refer to Possibility I as the Galilean world,
and Possibility II as the Lorentzian world.

Proposition 31.1 (All Lorentzian Worlds are Isomorphic). At first, it appears that
there are really uncountably many different possibilities for spacetime: one possible
Galilean world, but a continuum of Lorentzian worlds, one for each value of ¢ € (0, ).
But, it turns out that this entire continuum of Lorentzian worlds are qualitatively the
same: we can make this formal by saying that the group of symmetries for any two
lorentzian worlds are isomorphic

Exercise 31.1 (Prove This:). When ¢ = 1 we have the Lorentz & group with matrices
1 ( 1 —v)
1— vz % 1

For the Lorentz group <, with an arbitrary c, show that the map
<, c 4 1

defined by sending v to v/c is

« Injective
« Surjective
« A group homomorphism
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31.2. Implications

31.2.1. VeLoary ADDITION

These two worlds have very different rules for velocity addition: in the Galilean world,
velocities add:

Proposition 31.2. Foranyv,w € R,

G(v)G(w) = G(v + w)

But in the Lorentzian world, velocities satisfy a rather different formula, which makes
sure that the overall velocity always remains within (—c, c) as the formula seems to
require.

Proposition 31.3. For anyv,w € (—c,c),

L(W)L(w) = L (%)
1+

c?

Exercise 31.2. Do these calculations.

Exercise 31.3. Then, using the velocity addition for &, show that no matter what
speed you start out moving at, and no matter how much you speed up by, you will
never go faster than c. That is, our mystery constant is actually a universal speed limit.

31.2.2. ExisTence oF A CONSTANT SPEED

Show that in the Galilean world, if there is an object moving at any speed v you can
catch up to it: there’s a symmetry of spacetime that boosts your velocity to v, and
now the object is standing still. In the Lorentzian world, we already know that it is
impossible to boost an initially stationary observer to any speed beyond (—c, ¢). But
what if we had an object moving at the universal speed ¢ to begin with? This would
follow a trajectory (x,t) = (ct, t) through spacetime.

Exercise 31.4. Say you observe an object to be moving at speed c.

What would happen if you speed up? Would you see its speed change at all? Show
that no matter what speed you go (so, no matter which Lorentz transformation L(v)
you apply to (ct, t)) you will always see this object move at the same speed.

This is an incredibly weird prediction: first, we saw that it is impossible to start out
stationary and move at any speed outside of (—¢, c). So, you may have thought that
if there were an object moving at speed ¢, even though you could never catch up to
it,
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31.2.3. MEeTRIC

The type of mathematical structure spacetime has in these two possibilities is also
rather different. Perhaps surprisingly, it turns out that the Lorentzian spacetime
(with the more complicated looking matrices!) actually has a nicer mathematical
structure.

What should we be looking for here? Well, if Geometry taught us anything, the
geometric properties of a space are usually stored in the form of a dot product on in-
finitesimal tangent vectors (we saw this even for strange geometries, like Minkowski
space). So, now that we have two potential symmetry groups of spacetime, we should
ask if these correspond to any sort of geometric structure.

Exercise 31.5 (The Galilean World). Show that if (x, y) * (u,v) = axu + fyv is any
inner product on the space R? = (z,t) of 1 + 1 dimensional Galilean spacetime which
is preserved by all transformations G(v) then either @ = 0 of § = 0. That is, its not
really an inner product on spacetime at all but rather only notices information about
space, or information about time. This tells us that in the Galilean world, there is no
geometry of spacetime, but rather space and time are just separate entities.

Exercise 31.6 (The Lorentzian World). Show that the inner product (x, y) * (u,v) =
xu — c2yv is preserved by all lorentzian transformations L(v). This is a Minkowski
dot product (just scaled by the quantity c?): and says that this spacetime cannot be
thought of as space and time separately any more than the x and y axes in the plane
can be thought of separately - they are just parts of one larger geometric object (this
time with the geometry of Minkwoski space!)

This was Hermann Minkowski’s big realization upon reading Einstein’s work: in 1908
he said in a lecture, announcing this that

“Gentlemen! The views of space and time which I wish to lay before you
... They are radical. Henceforth space by itself, and time by itself, are
doomed to fade away into mere shadows, and only a kind of union of the
two will preserve an independent reality”

Remark 31.1 (Reminder: Showing a dot product is preserved). If L is a transformation
and v, w are tangent vectors based at p, to show that L preserves the dot product *
one must show that DL,(v) x DLy(w) = v * w. For us, since L is linear we know
DL, = L and so we just need to compute L applied to vectors v and w and then take
the dot product. Alternatively, remember we can just show infinitesimal length is
preserved, so [Lw|? = Lw * Lw = w % w for a single arbitrary vector w.

This proves our main theorem: we’ve discoverd the mathematical model for space-
time in this case, and identified it with something we already understand!

Theorem 31.1. The geometry of spacetime equipped with the Lorentz symmetries is
isomorphic to Minkowski space.
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32. RELATIVITY

32.1. SYMMETRIES OF SPACETIME

We’ve shown there are two possible ways the symmetries of spacetime could behave:
it can either follow the laws of the Galilean Group G:

o={lo V)]

Or, it can follow the symmetries of the Lorentz Group L

1 1 —v
L= 2 (—v/cz 1 )

1-2

v € (—c,c)

Where these are applied as linear transformations to the spacetime of events e = (x,t)
for x € R,t € R. While the Galilean group has much more intuitive consequences,
it turns out the real world exhibits Lorentz symmetry, and we focus on the strange
consequences of that here.

32.1.1. OBSERVERS IN SPACETIME

Objects in the world are modeled by curves in spacetime y(s) = (x(s),(s)). An objectis
said to be stopped at some instant s if its x coordinate is not changing: x’(sy) = 0. An
object is stopped for a interval if this holds for all points in that interval: equivalently,
if x is constant for s € [a, b]. An object described by y is stoppable at s, if there is some
Lorentz transformation L(v) where the curve L(v)y(s) is stopped at sy: equivalently
if L(v)y’(sp) is parallel to (0, 1).

In the coordinates (x,t) of an observer O who is stationary at x = 0, we define the
speed of an object y relative to O to be the change in x over the change in time. That
is, the average speed over an interval s,s + h is

x(s + h) — x(s)
t(s + h) —t(s)
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32. Relativity

Exercise 32.1. Show the instantaneous speed is expressible as a derivative

X(s)
TS

An observer is called constant speed if this v is constant as a function of s. Such
constant speed trajectories describe affine lines in spacetime.

Galileo’s principle says that anyone’s viewpoint on the world is equivalent - that is,
that anyone can imagine themselves as not moving. This gives a constraint on the
set of curves that describe trajectories we can move on, which we will call observer
trajectories. Every observer trajectory must be locally stoppable at each point, in order
to obey Galileo’s principle.

In a world with Lorentz symmetry, this already poses a strong constraint: because
L(v) is defined only for v € (—¢,c) and L(v) takes the vector (—v, 1) to (0, 1), we see
that ONLY trajectories with speed less than c are stoppable, and so observers can only
travel at speeds less than the constant c!

While trajectories moving at speed c are ruled out for observers, they are not imme-
diately disallowed overall. However such trajectories have some very strange prop-
erties:

+ An object moving at speed ¢ can never be stopped: it must always move!
« You cannot run away from an object moving at speed ¢: no matter your speed,
you will always see it approaching you at speed c!

Thus not only must such objects never stop moving, but they can never even slow
down! They must always travel at speed c.

32.2. MeASURING TIME ALONG A TRAJECTORY

If y(s) is the trajectory of some observer through spacetime, one may ask between
the points y(a) and y(b), how much time elapses for that observer. We need to find
a way to calculate this quantity. Here’s an alternative argument to the one given in
class (this is perhaps more like the ‘physics way’ starting with a simple case and then

building up)

If the observer is stationary, this is easy: the vertical axis is defined as the time axis
of a stationary observer, so we just measure the difference in t coordinates. But for
any other observer this is not possible. However, this suggests a strategy to calculate
the time duration of a constant speed observer: if an observer moves at speed v can
use the Lorentz boost L(v) to make them stationary, at which point we can read off
from the time axis exactly how long of a time they experienced. For example, using
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32.2. Measuring Time along a Trajectory

homogenity of spacetime to have our constant speed observer pass through the origin,
we may write

y(s) = (vs,s)
1 1 —v\ [sv
= e 7))
1 sV —sv _ 1 0 )
2 —sv?/c? +s) L7 s(l—z—z)

1
c? c?

and then

L(v)y(s) =

So, between s = g and s = b this observer themselves really experiences the time
2
T=(b-a)|l- v
2

On a general curve y we need to instead take an infinitesimal approach, as at each
point the observer may be moving at a different speed v = x’ /t’. For an infinitesimal
interval around this point, the time dT which passes is proportional to ds = b — a by
the above formula, and

2
AT = As |1 - L
cZ

Taking the limit as the interval shrinks to zero and integrating gives the following
result for curves of the form y(s) = (x(s), s) (this constraint is only because we used
the curve (sv, s) as our initial starting point!)

T=J\/stzj 1_Mds

32.2.1. ANoTHER W AY

We could also carry out this calculation more abstractly (this is the ‘math way’ that
we did in the independent study): we know that spacetime with Lorentz symmetries
preserves the dot (x”)? — ¢?(t")? on tangent vectors, from our previous assignments.
Looking at this dot product, the units we have written it in are space-units (if x is in
meters and c is in meters per second, then ct is also in meters...). But, if we wanted to
measure everything in time-units (perhaps more intuitive for us, who are trying to
understand durations) we could do that just as easily. Dividing this entire dot product
through by the constant ¢? gives
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32. Relativity

&y

Which is also preserved (as its just a constant multiple of the original) but now has the
same units that ¢ does (so, if we are thinking of time in seconds, the output of the norm
will be seconds). If y is the trajectory of some observer, then y’ = (x’,t") is moving
at speed v = x” /t’ less than ¢, and so there is a Lorentz transformation L(v) bringing
it to a stop. This transformation must take its tangent vector to a vector along the
vertical t axis, but also cannot change the length with respect to this preserved inner
product! Thus, the duration we would measure for time must simply be the norm

2 2
i1 = | -] = Jor - &2 -

~ (x’)zé(t,)z _ v_2

[

Integrating this over a curve gives

b
Time(y) = J t'(s)\[1— gds

a

And, for curves of the form y(s) = (x(s),s), we see t’ = 1 and this agrees with our
previous formula from the physics derivation. A side note: we can always parame-
terize a curve like this if we want, so there is no loss of generality here! Because our
curve is a negative curve, we know that ¢’ is always positive, and so t is an increasing
function. Thus, ¢ has an inverse function and we can use that inverse to reparame-
terize: the equations (x(s),#(s)) and (x(t~1(s)), #(t"1(s))) trace out the same curve in
spacetime, but t(t71(s)) = s so the second is just of the form ( f(s), s) for some f.

Now we can proceed from this general statement applicable to all curves, to specialize
for constant speed trajectories. Say that y is a constant speed curve connecting the
spacetime events p = (xp.t,) and g = (x;,%;). Then one way to parameterize this
affine line is

y(s)=p+s(g—p)

where y(0) = p and y(1) = q. The derivative of this is just (x",t") = ¢ — p = (x; —
Xpslg tp) and so

1 2 1 (x5 — xp)?
Time(y) = L ly’lds = J )2~ (x ) L \/(tq —tp) = %ds

(x, — x,)? Ax2
_ PRV R S SO 2 _ BX
= \/(tq tp) 2 = [At >
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32.3. The Flash vs a Flashlight

This is a remarkably understandable formula! (Even if the consequences are wild) In
a diagram, we are measuring the duration experienced along a trajectory simply by
the Minkowski Pythagorean Theorem! Take the difference in time coordinates At, the
difference in space coordinates Ax/c (dividing by ¢ puts it in units of time) and then

apply a? — b?!

Side Note: we can rewrite this in terms of the speed v = Ax/At so it matches up with
the physics derivation, factoring out At from the root:

Ax/At)? 2
Time(y) = At 1—M:At 1-Z
\} c? c2

32.3. THe FLAsH vs A FLASHLIGHT

Imagine the following setup: you and The Flash are standing still right next to one
another, at a distance of d from your friend who is also standing still relative to you
both, and is holding a flashlight. At some point in time, your friend turns on the
flashlight, and immediately The Flash takes off, running away from the light beam at
speed v.

:;:xﬂ,c Flotw

?*"'A You we

%

Figure 32.1.: Flash running away from a flashlight.

Exercise 32.2.
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« How much time passed on your clock, by the time the light hits you?

« How much time passes on The Flash’s clock, by the time the light hits him?
« What time will your clock read at the moment that The Flash is hit?

« What time will your clock read when you see The Flash get hit?

32.4. THe TwiN PARADOX

Two twins start out right next to one another. One of decides to stay where they are,
and just hang out. The other gets into an fast moving ship and goes on a joyride, fol-

lowing some trajectory y(s) through spacetime, but eventually coming back to where
they started.

f p oo

Qf’ - Twed Tome

A

Figure 32.2.: A sedentary twin, and two possible adventures.

Exercise 32.3. Prove that no matter what trajectory y the adventurous twin travels

on, so long as they leave home they return younger than the twin who stayed at
home.
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32.5. Neither Before nor After

o~

Py 4
—-‘

Figure 32.3.: How long is this out-and-back journey for the twin that stayed home?

Exercise 32.4. Say that the adventurous twin leaves home at velocity v, and travels
for T units of time (on his clock), and then turns around and heads home by the same
manner (traveling at velocity v for time T). How old is his twin when he gets back?

32.5. NetHer Berore NOR AFTER

In the Galilean world, everyone agrees which slices of spacetime counts as “space”.
These slices define a universal notion of time: given any two events p = (xp,tp)
and g = (x4, t,), the time difference t, —#, is a number that any Galilean observer
could compute from p and g and would agree on. We’ve seen already that things are
much stranger in the Lorentzian world, where the time difference between events
(like two twins departing, and then reuniting again) differs wildly depending on who
you ask.

But, surely the order events occur in is invariant across observers, even if the precise
length of time elapsed between them is not - right? Right??

Exercise 32.5 (Wrong). Consider an observer O who is not moving with respect to
(x,t), and imagine two events in spacetime p and g that he agrees occur at the same
time. Show that there is also an observer who claims that p happens before g, and an
observer who claims that p happens after q.
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Hint: If p and q occur at the same time for O then they have the samet coordinate. Apply
a Lorentz boost L(v) and compare the resulting t coordinates. What about L(—v)?

But not all is lost: there are still pairs of events where everyone agrees the order they
occurred in: for instance, it is a fact of the matter that I lived in Minnesota before
I lived in California, and not the other way around. Everyone, even fast traveling
aliens watching us through super telescopes agrees with this.

::{#rel-prob-5} Show that if p and q are two events on the trajectory of some observer,
and p happened before g for that observer, then everyone agrees that p happened
before g. :::

Hint: Show if'y is the trajectory of some observer with y(a) = p and y(b) = q then
lg — p|? is negative. And, because spacetime is homogeneous, you might as well consider
p = (0,0) is the origin. Then show that if ¢ = (x,t) is a point witht > 0 and |q — p| =
lg — 0] = |q|? negative, then every Lorentz transformation applied to q leaves its time
coordinate positive, so it always occurs after p, whose time coordinate is zero.

Thus spacetime has events where it is undefined which came first, and others where it
is unambiguous which was first. And, there are no events which unambiguously occur
at the same time! (This is what physicists call the “Relativity of Simultaneity”). In fact
these two types of pairs of events have a nice math interpretation: the ones which can
be ordered in time are the pairs of points with negative separation (from our linear
algebra chapter) and those which cannot are those with positive separation.

If you feel like getting really confused, this is a good time to go back and think about
The Flash and the Flashlight: remember we said that from our friend with the flash-
light’s perspective, the following events are simultaneous:

« Him turning on the flashlight
+ You and the Flash being right next to one another.

Since you are not moving relative to your friend, you both agree that these events
are simultaneous. But The Flash does not! In fact, from the Flash’s perspective, the
flashlight is not turned on until much later than he started running: this means from
his perspective, there is much more distance for the light to cover before overtaking
him (as he had a head start).

Exercise 32.6. Draw in space slices for The Flash into the diagram, and see that the
space slice through the point where the flash runs away from you intersects your
friend far before he turned on the flashlight. Use geometry and Lorentz transforma-
tions to figure out how long after the flash starts running he thinks the flashlight is
turned on.
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32.6. You Can’t Go Back

32.6. You CaN'T Go Back

The grandfather paradox is a classic time travel story that highlights one of the absurd
consequences of entertaining time travel into the past. In it, starting from wherever
you are right now, you travel along some path in spacetime and eventually you end
up back inside the past light cone of your starting point: somewhere where actions
you undertake could affect you where you started!

The classical example is rather violent: you arrive at a time before your parents were
born, and kill one of your grandfathers. Thus, no parents, and no you. But how could
this be possible, since you exist - after all its you who went back and did this! The one
can be much less violent and arrive at similar absurdities: what if along your journey
you bring your favorite book to read; and upon your arrival in your past, you meet
the author before he has written it. You give him a copy, remarking how much you
loved it. If he then reads it, agrees, and submits it for publication, who wrote the
book?

In fact, this book example provides a much better picture of what must be going on
mathematically than the grandfather case. Indeed, track the book: starting in your
hand, it follows you (on an observer’s trajectory) until it meets the author, at which
point it changes hands and follows the author (also an observer’s trajectory) until
it ends up on a bookstore’s shelf, and then gets into your hands! At each point in
time the book was following an observer’s trajectory (either literally with you or the
author, or sitting motionless on a shelf), but at the end of its journey it ended up at
the same spacetime event where it began.

That means the trajectory of our book is a closed curve: a loop in spacetime!
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32. Relativity

Figure 32.4.: A time travel paradox

Exercise 32.7. Show that there are no closed observer trajectories in spacetime with
Lorentzian symmetries. Thus, you can never visit the past!

Hint: An observer trajectory must always have its tangent vector lying inside the nega-

tive cone. But if y(s) = (x(s),t(s)) were a closed curve, then use some real analysis to

show that the t component must have a point where t’(sy) = 0. But this is a problem!!
Why?
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ASSIGNMENTS

ProsLem Set |

Exercise 32.8 (Constructing an Isoceles Triangle). Start with a line segment of
length a. Prove that you can construct a triangle with one side of length a, and two
sides of length 2a.

Exercise 32.9 (Inscribing an Equilateral Triangle). Prove that inside of an equilateral
triangle, you can inscribe an upside down equilateral triangle of exactly half the side
length, shown

Figure 32.5.: An equilateral triangle inscribed within a larger one.

Exercise 32.10 (Angle Sums of Polygons). A polygon is convex if all of its angles
are less than 180°, so that it has no “indents”. Equivalently, a convex polygon is one
where any line segment with endpoints on the boundary of the polygon lies inside
the polygon.
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Figure 32.6.: A convex and non-convex octagon.

Prove that the angle sum of convex quadrilaterals is a constant, for all quadrilater-
als. Prove the angle sum of convex pentagons is also a constant. What are these
constants?

What do you think the formula is for the sum of angles in a convex n-gon? (Optional:
If you have seen mathematical induction, prove your guess!)

Exercise 32.11 (Rectangles Exist). Prove that Rectangles exist using Euclid’s Postu-
lates (and also Playfair’s Axiom, if you like it), and the propositions proven in the
sections Euclid and Parallels.

Hint - we know how to make right angles now, and parallel lines through points. Start
making some!

Exercise 32.12 (Diagonal Bisectors). If the diagonals of a quadrilateral are bisect one
another, then that quadrilateral is a parallelogram.

Exercise 32.13 (Proving the Pythagorean Theorem). The following is an ingenious
rearrangement proof of the Pythagorean theorem.
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We start with two squares with sides a and b, respectively, placed side by side. The total area of the two squares is
a2+b2.

)

c

b a

The construction did not start with a triangle but now we draw two of them, both with sides a and b and hypotenuse
c. Note that the segment common to the two squares has been removed. At this point we therefore have two triangles

and a strange looking shape.
‘
C
Cc
- A b
b a

As a last step, we rotate the triangles 90°, each around its top vertex. The right one is rotated clockwise whereas the

b a

left triangle is rotated counterclockwise. Obviously the resulting shape is a square with the side c and area c2.

Prove that the final shape shown here is a square, using what we have learned (the
Postulates and Propositions).

ProsLem Set

Exercise 32.14 (The Square Root of 3). Read carefully the geometric proof of Theo-
rem 3.2, which proves /2 is irrational by showing its impossible to make two integer
side-length squares where one has twice the area of the other.

Construct a similar argument showing that it is impossible to find two integer side-
length equilateral triangles where one has three times the area of the other.

Hint: try to mimic the argument in the book, but now use the diagram below for inspi-
ration
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NN A

Exercise 32.15 (Convergence to the Diagonal). Consider a simpler analog of
Archimedes’ situation, where instead of trying to measure a curve using straight
lines, we are trying to measure a straight diagonal line using only horizontal and
vertical segments. The following sequence of paths converges pointwise to the
diagonal of the square, but what happens to the lengths?

A A A

If you believed that because this sequence of curves limits to the diagonal, its sequence
of lengths must limit to the length of the diagonal, what would you have conjectured
the pythagorean theorem to be?

Exercise 32.16. Use the result of last week’s problem Exercise 32.9 (that you can
inscribe an equilateral triangle with half the side lengths) to produce an alternative
proof of Archimedes sum

By dividing up a triangle instead of a square. Draw some nice pictures (its pretty!)
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Exercise 32.17. Construct an argument in the same spirit as Archimedes’ geometric
series to show the following equality:

200

Can you cut something iteratively into thirds? It may not be as pretty as Archimedes’,
but thats ok!

FracTALs

The final two problems involve the Koch Snowflake fractal. In these problems you
should still explain why things you are doing are valid geometrically, but you do not
need to prove every thing you do from the axioms. We are getting ourselves
ready for a calculus mindset!

This shape is the limit of an infinite process, starting at level 0 with a single equilateral
triangle. To go from one level to the next, every line segment of the previous level
is divided into thirds, and the middle third replaced with the other two sides of an
equilateral triangle built on that side.

o o o o o o o /\=o

Figure 32.7.: The Koch subdivision rule: replace the middle third of every line seg-
ment with the other two sides of an equilateral triangle.

Doing this to every line segment quickly turns the triangle into a spiky snowflake like
shape, hence the name. Denote by K, the result of the n'" level of this procedure.
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Figure 32.8.: The first six stages Ky, K1, K3, K3, K4 and Ks of the Koch snowflake pro-
cedure. K, is the fractal itself.

Say the initial triangle at level 0 has perimeter P, and area A. Then we can define
the numbers P, to be the perimeter of the n'” level, and A, to be the area of the n"
level..

Exercise 32.18 (The Koch Snowflake Length). What are the perimeters P;, P, and P3?
Conjecture (and prove by induction, if you’ve had an intro-to-proofs class) a formula
for the perimeter P,.

Explain why as n — oo this diverges (using the type of reasoning you would give in
a calculus course): thus, the Koch snowflake fractal cannot be assigned a length!

Before doing the next problem: ask yourself what happens to the area of an equilateral
triangle when you shrink its sides by a factor of 3? Can you draw a diagram (similar
to that from last week’s Exercise 32.9 but larger) to see what the ratio of areas must
be?

Exercise 32.19 (The Koch Snowflake Area). What are the areas A;, Ay and Az in
terms of the original area A?

Find an infinite series that represents the area of the nth stage A, (if you’ve taken an
intro to proofs class or beyond - prove it by induction!). Use calculus reasoning to
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sum this series and show that while the Koch snowflake does not have a perimeter, it
does have a finite area!

ProsLem Set I

LiNeAR TRANSFORMATIONS

This exercise goes with similar examples in the text, on visualizing linear transfor-
mations action on the plane by what they do to the points of the unit square. For
instance, we saw that the transformation (2 ¢) scales the x axis by a factor of 2 and
leaves the y axis invariant, so it performs the following stretch to our little smiley
face

Exercise 32.20. Choose your own image on the plane (hand-drawn is great!), and
draw a reference image of it undistorted, inside the unit square. Then draw its image
under each of the following linear transformations:

(o 2)

DETERMINANTS & AREA

Recall the following definition: the determinant of a linear transformation M =
(a b ) is
cd

a
detM = ‘c d

b‘:ad—bc
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(5+a)

Figure 32.9.: The determinant measures the change in area under a linear map.

In class, said this measured the area change of the unit square under the linear trans-
formation M, but now we will confirm it. We can actually find this area in a pretty
satisfying way using just what we’ve proven about Euclidean geometry so far. We
know the areas of squares, rectangles, and right triangles, so let’s try to write the area
we are after as a difference of things we know:

Figure 32.10.: A formula for the determinant can be found knowing only the area of
squares, rectangles, and right triangles. (I learned this awesome dia-
gram from Prof Daniel O’Connor!)

Exercise 32.21. Show the area of the parallelogram spanned by (a,c) and (b,d) is
ad — bc, using the Euclidean geometry we have done, and the diagram above.
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CALCULATING DErRIVATIVES

Practice calculating the derivative of multivariate functions as matrices, and applying
them to vectors. No proofs, here, just some computations!

Exercise 32.22. Find the derivatives of the following functions, at the specified
points.

« The function f(x,y) = (xy,x + y) at the point p = (1, 2).

z ) at the point g = (3,0).

. _ 2 _ =
+ The function ¢(x, y) = (xy 3x, 1

Now use these to compute the following quantities:

* Dfi12)(3,4)
* Ddz,0)(a, b)

DIERENTIATING COMPOSITIONS

This is another problem which focuses on the new computational skills, using linear
algebra. No proofs here either!

Exercise 32.23. If F,G, H are the following multivariate functions
F(x,y) = (x - y,xy)

G(x,y) = (—y,x)
H(x,y) = (x>, %)

Differentiate the following compositions:

« FoGat(1,1)
« GoGat(0,2)
« FoGoH at(—1,3).

WHEN THE DErivATIVE 1s CONSTANT

In class, we proved that if a function is linear, then its derivative is constant. But is
this the only time a function’s derivative is constant? Certainly no - the derivative
of (x,y) = (x + 1,y) is constant (equal to the identity matrix!), even though this
function is not linear.

We call a function affine if it is the composition of a linear function and addition
of a constant. For instance, 2x + 3 or 5x + 2y — 7 are affine functions. We call a
multivariable function affine if each of its component functions is affine.
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Exercise 32.24 (When the derivative is constant). Prove that a function ¢ : R?> — RR?
has a constant derivative if and only if the function is affine: that is, a linear map plus
constants.

Hint: if the derivative is a constant matrix, can you integrate each entry (with respect
to the right variable) to figure out what the original functions were?

ProBLEM SeT IV

P ARAMETERIZATION INVARIANCE

Below are four different curves which all trace out the same set of points in the plane:
the segment of the x axis between 0 and 4.

a(t) = (t,0) t €[0,4]
B(t) = (2t,0) t €[0,2]
y(®) = (t2,0) t €[0,2]

Because these all describe the same set of points, we of course want them to have the
same length! But our definition of the length function involves integrating infinites-
imal arclengths (derivatives), and these curves don’t all have the same derivative!
Thus, to really make sure our definition makes sense, we need to check that it doesn’t
matter which parameterization we use, we will always get the same length.

Exercise 32.25. Check these three parameterizations of the segment of the x-axis
from 0 to 4 all have the same length.

After doing this exercise, read the proof of Theorem 10.1 (which follows this exercises’
original location in the text): you don’t have to write anything here, but it’s good to
see how do to this in general with the chain rule!

NON~ISOMETRIES

Exercise 32.26. Write down a linear map that sends both (1,0) and (0, 1) to unit
vectors, but is not an isometry.

This shows there’s not a shortcut to checking something is an isometry by just seeing
what happens to the basis vectors!
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COoMPOSITION AND INVERSION OF |SOMETRIES
Exercise 32.27. If ¢ and ¢/ are two isometries of E2, prove that both the composition
¢ o is an isometry, and the inverse ¢~ is an isometry.

Remember, you will need to explain why at every point p € E2, these maps do not change
the lengths of tangent vectors. This will probably involve the multivariable chain rule,
whether you do it in words, or in equations!

HoMoGeNTY AND IsOoTROPY

In class we built a couple different sorts of isometries from the basic ones we con-
structed by hand (translations and rotations about 0). In this exercise, you are to
prove the existence of another very useful isometry. We will use this homework
problem all the time

Exercise 32.28 (Moving from p to q.). Given any two pairs p, v, and g, w; of points
. q in Euclidean space and unit tangent vectors v, € Tp]Ez, wy € Tq]E2 based at them,
prove that there exists an isometry taking v, to w;.

Hint: try to combine pieces we know about, and prove the result does what you need by
applying it both to the point p, and applying its derivative to the vector v.

LINES OF SYMMETRY

In this exercise we will investigate the third potential definition of line, which in-
volves isometries.

Definition 32.1 (Line of Symmetry). A fixed point of an isometry ¢ : E? — E?isa
point p with ¢(p) = p.

A curve y is called a line of symmetry of E? if there exists an isometry which fixes
y(@) for all ¢.

In this exercise, you show that the curves which are lines of symmetry are exactly
the same as the curves which are lines under Archimedes’ definition!

Exercise 32.29 (Reflections in Any Line).

« Show that map ¢(x, y) = (x, —) is an isometry of E?. Explain why this shows
that the x-axis is a line of symmetry of the plane.
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« Show that every curve which is distance-minimizing in the plane is also a line
of symmetry. Hint: given an isometry that reflects in the x axis, can you build
an isometry that reflects in any other line? Consider moving the line to the x axis,
reflecting, and then moving back.

EQuiLATERAL TRIANGLES REVISITED

In this question we will revisit two problems from Greek geometry. That is we will
be re-proving things we knew before, so we know they are still true in our new foun-
dations!

This problem requires the distance function on the Euclidean plane, which we did
not get to in class on Thursday, but will cover on Tuesday. However - you all areadly
know the distance function so you can absolutely complete the homework now if you

like!

Definition 32.2. If p = (x, y) and q = (a, b) are two points in the Euclidean plane, the
distance from p to q is the length of the shortest curve connecting them. Working
this out, we find the familiar pythagorean theorem:

dist(p,q) = \J(x - a)? + (y — b)?

First, we re-prove the very first proposition of Euclid, the existence of an equilateral
triangle. Then we redo your earlier homework problem on finding a smaller equilat-
eral triangle inside of it, of half the side lengths (but this is much easier with our new
tools!).

Exercise 32.30.

« Beginning with the segment [0, £] along the x-axis, construct an equilateral tri-
angle by finding the coordinates of a point p = (x, y) € E? which is equidistant
from both endpoints of the segment.

« Re-prove that inside of this equilateral triangle, you can inscribe a smaller one
with exactly half the side length. Hint: just find where the vertices should be, and
then measure the distances between them!

LenaTH ofF A PArRABOLA

Arclength integrals give a good opportunity to practice a lot of Calculus Il integration
techniques. Even for relatively simple curves like the parabola, the answers can be
quite nontrivial!

474



Problem Set IV

Exercise 32.31 (The Length of a Parabola). Find the length of the parabola y = x?
between from x = 0 to x = g, following the steps below.

« Paramterize the curve as c(t) = (t,t%), show the arclength integral is L(a) =
Jloa V1 + 48

« Perform the trigonometric substitution x = %tan@ to convert this to some

multiple of the integral of sec3(6).

« Let I = [ sec®(9)d6 and do integration by parts with u = sec 6 and dv = sec? 0.

« After parts, use the trigonometric identity tan?# = sec?6 — 1 in the resulting
integral to get another copy of I = [ sec® 0d to appear.

+ Get both copies of I to the same side of the equation and solve for it! To check
your work at this stage, you should have found that

J sec® 0do = % secOtanf + %ln |sec 8 + tan 0]

« Relate this back to your original integral, and undo the substitution x = % tan 6:
can you use somet trigonometry to figure out what sec 0 is?
« Finally, you have the antiderivative in terms of x! Now evaluate from 0 to a.

MiNMIZING A FUNCTION BY MINMIZING ITS SQUARE

Here’s a problem that’s straight up single variable calculus, but turns out to be a quite
useful “trick” in geometry! Oftentimes we want to minimize a function in geometry
(like arclength, or distance) but this turns out to be technically hard because of the
square root. One might wonder - what happens if I square the function, and try to
minimize that instead? That will have an easier formula (no roots), but will I get the
right answer?

This exercise shows, yes you will!

Exercise 32.32 (Minimizing the Square: A Very Useful Trick!). Let f(x) be a differ-
entiable positive function of one variable, and let s(x) = f(x)? be its square. Show
that the minima of s(x) and f(x) occur at the same points, by following the steps
below:

« First, assume x = a is the location of a minimum of f. What does the first
and second derivative test tell you about the values f’(a) and f’’/(a)? Use this,
together with the fact that f(a) > 0 to show that x = a is also the location of a
minimum of s (using the second derivative test).

« Conversely, assume x = a is the location of a minimum of s(x). Now, you
know information about the derivatives s”(a) and s’’(a). Use this to conclude
information about f’(a) and f’’(a) to show that a is a minimum for f as well.
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ProBLEM SET V

THe PARALLEL PosTuLATE

Recall that Playfair’s Axioms (already suggested by Proclus in the 400s) was a simpler
re-phrasing of Euclid’s original fifth postulate on parallel (that is, nonintersecting)
lines.

Proposition 32.1. Given any line L in E?, and any point p € E? not lying on L, there
exists a unique line A through p which does not intersect p.

Exercise 32.33. Prove Proposition 32.1.

Hint: use isometries to help you out!

First, use an isometry to move L to the x-axis. Then, use another isometry to keep L on
the x axis, but to move p to some point along the y axis. Then, prove that through any
point on the y axis there is a unique line that does not intersect the x-axis.

SIMILARITIES AND LINES

We saw in Theorem 12.2 that any isometry will carry a line to another line. The same
is true more generally of similarities:

Exercise 32.34 (Similarities Send Lines to Lines). Let y: R — E? be a line, and
o : E? — E? be a similarity. Prove that o o y is also a line.

*Hint-replicate the proof of Theorem 12.2 as closely as possible, replacing the isome-
try ¢ with the similarity o, and keeping track of the scaling factors of o versus o~ !
(Proposition 11.4).

DisTANCE TO A LINE.

In this problem it’s probably helpful to use the ‘calculus trick’ offered as an optional
problem last week: that is, if you are looking to minimize a positive function f(x),
you can instead try to minimize the function f(x)?, and you’ll find the same x-value
achieves the minimum.

The reason this is useful to us is that the distance function in geometry has a square
root in it, and differentiating roots can be a lot of work. So this says instead we can
minimize the square of distance to find the right point.
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Exercise 32.35 (Closest Point on Line). Let L be the line traced by the affine curve

y@) = (z: _—:_— 2), and O be the origin.

Alternatively, do this for the line (2t + 1, 3t — 4), to save yourself a lot of abcd’s.

« Find the point p € L which is closest to O.

- Calculate dist(O, L).

« What angle does the segment connecting p to O make with the line L? (We
haven’t reviewed the definition of angle yet, so just use your knowledge of angles
from precalculus: pick a line an compute an example!)

This problem shows how we can use calculus as a tool to discover a geometric fact:
here we learned something about where the closest point on a line is located (by
finding it with calculus, then calculating the angle formed).

Often calculus can provide the tools needed for discovery of a new fact, but once its
known, one can often go back and find a geometric (more in the style of Euclid) proof
that all of a sudden makes the conclusion feel inevitable.

Exercise 32.36 (Closest Point: Geometric Reasoning). Now that we know the answer,
formulate in your own words a geometric proposition that describes which point p
on a line is closer to a given point g not on that line.

Prove this propostion without just taking a derivative, try to reason more like the
Greeks, using other facts and theorems that we’ve proven.

Hint: if you pick some other point r along L, can you draw a triangle using p,q,r? How
can we use the geometry of this triangle to show that r is farther from q than p was?
Does the Pythagorean theorem say anything useful?

INTERSECTING CIRCLES

Recall that in all of Euclid’s axioms, conditions for intersections with circles were
never specified! Indeed - Euclid intersected two circles in his construction of the
equilateral triangle. Now that we have a precise description of circles in our new
foundations, we can fix this gap:

Exercise 32.37. Prove that two circles intersect each other if the distance between
their centers is less than or equal to the sum of their radii.

Alternatively: do this for the specific case where the circles radii are 3 and 4,
and the distance between thier centers is 5.

Hint: start by applying an isometry to move one of the circles to have center (0,0), and
then another isometry to rotate everything so the second circle has center (x,0) along
the x-axis. This will make computations easier!
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Figure 32.11.: Two circles intersect if the distance between their centers is less than
or equal to the sum of their radii.

PARABOLAS

A parabola was one of few curves that the Greeks understood. However, while we
often think of a parabola algebraically that was not their original definition!

Definition 32.3 (Parabola). Given a point f (called the focus) and a line L not con-
taining f (called the directrix), the parabola with focus f and directrix L is the curve
C of points where for each p € C the distance to the focus equals the distance to the
line:

dist(p, f) = dist(p, L)

L

L

Figure 32.12.: A parabola is the set of points which are the same distance from a point
(the focus) and a line (the directrix). In this figure, line segments of the
same color are supposed to be the same length.

Exercise 32.38. In this problem we confirm that y = x? is indeed a parabola! Let L

be a horizontal line intersecting the y—axis at some point (0, —¢), and f = (0,h) be a
point along the y-axis for £,h > 0.
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« Write down an algebraic equation for the coordinates of a point (x, y) deter-
mining when it is on the parabola with focus f and directrix L.

« Find which point f and line L make this parabola have the algebraic equation
2
y=x°.

ProsLem SeT VI

RiGHT ANGLES

In this set of two problems, we make use of the fact that we can finally measure angles
rigorously in our new geometry, to reprove an important fact we already know, and
to prove the one remaining postulate of Euclid: the 4th.

Exercise 32.39. Prove that rectangles exist, using all of our new tools! (Ie write
down what you know to be a rectangle, explain why each side is a line segment,
parameterize it to find the tangent vectors at the vertices, and use the dot product to
confirm that they are all right angles).

To prove Euclid’s 4th postulate, we need to first phrase it more precisely than Euclid’s
original all right angles are equal.

Proposition 32.2 (Euclids’ Postulate 4). Given the following two configurations:

« A point p, and two orthogonal unit vectors u,, v, based at p
« A point q, and two orthogonal unit vectors ay, b, based at q

. . 2 .
There is an isometry ¢ of E* which takes p to g, takes uy, to ay, and vy, to by.

Exercise 32.40. Prove Euclids’ forth postulate holds in the geometry we have built
founded on calculus.

Hint: there’s a couple natural approaches here.

« You could directly use Exercise 32.28 from a previous homework to move one point
to the other and line up one of the tangent vectors. Then deal with the second one:
can you explain why its either already lined up, or will be after one reflection?

o Alternatively, you could show that every right angle can be moved to the “standard
right angle” formed by(1,0),(0, 1) atO. Then use this to move every angle to every
other, transiting through O
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MEASUREMENT OF THE CIRCLE

The half angle identities played a crucial role in Archimedes’ ability to compute the
preimeter of n gons in his paper The Measurement of the Circle. Indeed, to calculate
the circumference of an inscribed n-gon, its enough to be able to find sin 7 /(2n):

1
@ .élsin%

Figure 32.13.: The side-length of an inscribed n-gon is 2 sin in, found via bisecting the
side to form a right triangle. The perimeter of the n-gon is just n times
this.

By repeatedly bisecting the sides, we can start with something we can directly com-
pute - like a triangle, and repeatedly bisect to compute larger and larger n-gons.

800

Figure 32.14.: Archimedes’ method: repeatedly doubling the number of sides of the
n-gon to get polygons approaching the circle.

In the book, I use the half-angle identities to compute the exact value of sinz/12.
Follow that example further, to retrace the steps of Archimedes.

Exercise 32.41. Continue to bisections until you can compute sin(z/(2 - 96)). What
is the perimeter of the regular 96-gon (use a computer to get a decimal approximation,
after your exact answer).

Explain how we know that this is provably an underestimate of the true length, using
the definition of line segments.

Optional: Be brave - and go beyond Archimedes! Compute the circumference of the
192-gon.
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QUADRATURE OF THE PARABOLA

This is also a two-problem series, where we complete Archimedes famous Quadrature
of the Parabola using modern tools from calculus. Archimedes problem was about
a parabolic segment: that is, the region enclosed by a parabola and a line segment
connecting two points on the parabola. Instead of working in complete generality
like Archimedes, we will be content to just study a special case in this problem. We
will look at the parabola y = x2, and the parabolic segment cut out by this and the
line connecting (-1, 1) to (2,4).

L

Figure 32.15.: The Parabolic Segment in this Problem

Recall Archimedes main result: the area of this parabolic segment is 4/3rds the area
of the largest inscribed triangle, which is the triangle whose base is the line segment,
and third vertex lies on the parabola at the point where the tangent line is parallel to
the base.

4
\¢

/

Figure 32.16.: The overall segment’s are is 4/3rds that of this triangle.

Exercise 32.42.

« Write down a formula for the area of the triangle whose third vertex lies at
(x,x%)
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Hint: instead of finding the height of the triangle to use %bh, can you use the fact that
the determinant of a matrix calculates the area of a parallelogram whose sides are the
column vectors, and that the area of a the triangle you want is half a parallelogram?

« Use Calculus I to find the point x where the inscribed triangle has maximal
area. Then show that Archimedes was right: the slope of the tangent line to
the parabola at this point is exactly the same as the slope of the line segment
forming the triangle’s base!

This gives us the starting point: the area for which archimedes wishes to compare
the parabolic segment. Next - we need to find the parabolic segment’s area. We could
of course follow Archimedes’ original method (and if you choose to, this can be your
class project!) But here, we will use our modern tools and confirm the answer with
calculus:

Exercise 32.43. Compute the area of the parabolic segment (via integration, as the
area between two curves). Show that its exactly 4/3rds the area of the triangle!

THe ARreA AND CIRcUMRERENCE CONSTANTS

A circle has a circumference constant: the ratio of its radius to its circumference, which
we’ve named 7. But it also has an *area constant: the ratio of its area to the square of
its radius, which we’ve named 7.

It was Archimedes who first showed that these two constants were intimately re-
lated, by finding that 7 = 2. Here we will again use our modern tools to reprove
Archimede’s result.

Tau is the circumference of the unit circle x? + y? = 1. We can parameterize the top
half of this circle via
(@) = N1 %)

And then compute its arclength via the integral

1

Lo jll Iy (Olde = j %dt

2 “11—1¢2

But we can also write down the area of the circle as an integral: the top half of the
circle is y = y/1 — x2 and the bottom half is y = —/1 — x2 so the area is

1 V1-x2 1
H:J J' dydx:J 241 — x2dx
-1J)-V1=x? -1

Your goal in this problem is to show these two integrals are equal to one another!
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Exercise 32.44. Prove that

1 1
J ! dt = J 241 — x2dx
- -1

1"1_1»2

Thus showing that g =7

Hint: Do u-substitutions to the integrals to make them into the same integral. The goal
isn’t to evaluate them and get a number! This is just a Calc II problem - but a tricky one,
so here’s one outline you could follow:

2

(1) Rewrite the area integrand \/1 — x? as \/11

1-x2°

Use properties of integrals to

break this into two integrals, and see

1 2
2
ﬂIT—J L —
-1

V1 —x?

(2) Now we just have to evaluate this new integral: Do the u-substitution u =
\J1 — x2 to this, to show that

2

1 1
J dezj N1—wldu=nr
“141—x? -1

(This u-sub requires some work: you’ll need at some point to solve for x in
terms of u!)

(3) Now just assemble the pieces! You never completed a single integral, but you
still managed to prove that 7 = 2.

ProsLem SeT VI

TRIGONOMETRIC IDENTITIES:

The following exercise has you compute with some trigonometric identities, which
we needed to find the volume of spheres:

Exercise 32.45 (Integrating cos*(9)). Start with the angle sum-identity we derived
in class some lectures back

cos(a + b) = cos(a) cos(b) — sin(a) sin(b)

Use this to derive an identity relating cos(20) to cos?(0) (we did most of this in class
- but repeat it for yourselves). Now use this identity twice to show
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cos20  cos 40
2 8

4€:§
cos*(6) 8+

by writing cos? @ = (cos? §). Then use this to confirm that

1
J costf =21
0 84

This result was crucial to our calculation of the volume of the four dimensional sphere
in class, where we showed (via a trigonometric substitution)

/4
vol = 8z J cos*(0)do
3 Jo

Using this result gave us the final answer:

o

T3
vol = —=
38
T

<
N

4
T

Do

2
THE S~DMENSIONAL SPHERE

The unit sphere in five dimensions is given by the set of points (x, y, z, w, u) satisfy-
ing
x2+yz+zz+wz+u2 =1

Exercise 32.46. Calculate the volume of this space by slicing along the u direction.
Show that the slices are four dimensional spheres: what’s the radius? Use the volume
formula in four dimensions we derived in class

2
vol(r) = %r‘l

to write down the volume of each slice, and then perform the integral to confirm that
the 5-dimensional volume is
82

15

(This will not need any trigonometric substitution) Once you have this, find the “sur-
face area” of this 5-dimensional sphere by differentiation.
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HigH DiMensionaL SpHERES AND CYLINDERS

Exercise 32.47. The discovery Archimedes was most proud of was that the surface
area of the sphere in 3-dimensions was the same as the area of the smallest cylinder
surrounding it.

Is the same true in four dimensions? (A four-dimensional cylinder has a sphere’s
surface as its “base”, just like a three dimensional cylinder has a circle’s length as its
base!)

ProsLem Set VI

Tre Dot ProbucT

One thing we used in our arguments building up the basics of spherical geometry
was the fact that the dot product has a nice derivative rule.

Exercise 32.48 (Product Rule for Dot Product). Let f(¢) = (fi(®), o(t), f3(t)) and
g@) = (g1(t), g2(t), g3(t)) be two vector functions. Prove that the dot product satisifes
the product rule:

% (@ -5®) = f(®)- g + f) - &' (1)

Our use of the dot product overall is as a tool to give the sphere geometry it defines
what we mean by infinitesimal length and by angle. Often we will use this just as a
theoretical tool - but its good to get some hands-on practice at the beginning, mea-
suring some actual angles.

Exercise 32.49. Consider the curves a(t) = (cost, sint, 0) (the equator of the sphere),
and f(t) = (0, sin(t), cos(?)) (a line of longitude). Prove that they

« Intersect each other at the t = /2
« Form a right angle at their point of intersection.

Draw a picture of this situation in 3D on a sphere.
|SOMETRIES

Recall the definition of an isometry of 2 is a function ¢ : 2 — 2 which preserves the
dot product (or equivalently, preserves infinitesimal lengths).
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Exercise 32.50. A permutation matrix is a square matrix where every row and col-
umn has exactly one “1”, and the other entries are zero. Prove the following permu-
tation matrix

0 1 0
A=|1 0 0
0 0 1

can be used to define an isometry of 2 by the formula

X

$(x.y,2) = Aly
z

directly from the definition of isometry.

In class we are working our way to prove some facts about isometries, mimicking
what we did in the Euclidean plane. In particular, on Tuesday we will prove the
following two important facts.

Theorem 32.1 (The Sphere is Homogeneous). Given any two points p and q on the
sphere, there is an isometry taking p to q:

Proposition 32.3. Let N be the north pole, and v be any unit vector in Ty, Then there
exists an isometry ¢ of the sphere which fixes N and takes (1,0,0) € Ty? tov.

The first is an analog of translations of the Euclidean plane: we can always find an
isometry of the sphere that takes any point to any other. And the second is similar to
when we proved that you could build rotations of E? about the origin (we’ll actually
prove it, using that exact theorem!)

Your goal in these next problems is to use these theorems to prove even more: first,
prove that you can actually rotate the sphere fixing any point you wish (not just the
north pole!)

Exercise 32.51. Use Proposition 32.3 and Theorem 32.1 to show the sphere is
isotropic: that given any point p € 2 and any two unit vectors v, w € T,2, there exists

an isometry of 2 fixing p and taking v to w.
(Hint: first show you can do this when p is the north pole! Then use homogenity and

a conjugation. Be inspired by the Euclidean proof!)

Next, just like in Euclidean space we often find it useful to combine homogenity and
isotropy into one condition: we can move any point and any tangent vector to any
other point and tangent vector that we like!
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Exercise 32.52. Let p, g be any two points on the sphere, and v a unit tangent vector
at p and w a unit tangent vector at q. Then there is an isometry of ? taking (p, v) to

(q.w).
Hint: Look back at Ex 4 Homework 4!

ProBLEM SET IX

A\CCELERATION

We saw in class that the acceleration of a curve on the unit sphere is the projection
of its E3 acceleration vector onto the tangent plane. In terms of the curve y(t), that
worked out to

ace, (1) =y @) — (" (1) - y(1) y@®)

Exercise 32.53 (Geodesic Curvature). The magnitude of the acceleration of a unit
speed curve is called its geodesic curvature: its a way to measure how much that curve
differs from a geodesic. This exercise, you will calculate the geodesic curvature of the
circle of radius r on %:

« Let C be a circle on 2 of radius r (to make calculations easy, let C be centered at
the north pole if you like).

« Write down a parameterization of C (hint: you know the plane that C lies in, and
its Euclidean radius in that plane!)

« Find a parameterization of C that has speed 1 (hint if you wrote down a parame-
terization above, what speed does it travel at? Can you adjust it so the new curve
has speed 1?)

« What is the acceleration felt on 2 if you go around a circle of radius r at unit
speed? What is it’s magnitude?

The idea of measuring acceleration along a surface in E? as the projection of the sec-
ond derivative onto the tangent space is foundational to the study of surfaces beyond
just the sphere (it is one of the fundamental concepts in differential geometry). When
the acceleration of a curve y is equal to zero on a surface, then we say that curve is a
geodesic on the surface. So, the equations we get by setting the acceleration equal to
zero give us a set of differential equations that tell us what the geodesics are! These
are called the geodesic equations

In this next problem, we will get a small taste of what happens in differential geom-
etry, when our space is not nice and symmetric like the plane or the sphere, and we
have to resort to finding the geodesic equations and solving them (you won’t have to
solve them! Just find them....)
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Exercise 32.54 (Geodesics on Surfaces). Let S be the surface z = x? + y?, which is
the output of the function F : E? — E? given by

F(x,y) = (x,y, x% + yz) cE3

Let p = F(x, y) be a point on S.

« Use calculus to find two tangent vectors to the graph at a point p: Hint:
DF(x)y)<1, 0) and...?

« Find a normal vector n to the graph at p using these and the cross product.

« Write down the projection of a vector v = (a, b, ¢) onto the normal vector n.

« Write down the projection of v = (a, b, ¢) onto the tangent plane T,S.

This is all the data we need to be able to compute acceleration along the surface S! Let
y(t) be a curve that lies on the surface, so

y(®) = F(x(2), y(0)) = (x(8), (), x(£)* + y()?)
for some function x(¢) and y(2).

o Find y”’
« Find the acceleration of y on the surface S, in terms of x(t) and y(t).
« What are the geodesic equations for S?

CURVATURE
We saw in class that the circumference of a circle of radius r on ? is given by
C(r) = 2z sin(r)

Furthermore, we saw that the area is given by

r

Ar) = J C(r)dr = 27(1 — cos(r))
0
The idea of curvature is a

Exercise 32.55. Check this, that as r — 07 the following limits both exist, and are

both equal to zero:
. Cge r)—C(r)
m———=- =9

li
r—0 r
G - G(0)
lim ———= =0
r—0 r2
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But

G -G>0) _x
lim ———= ==
r—0 r3 3

Hint: L’Hospital’s rule.

Because the first two limits here are zero, they tell us that the difference between the
circumference of a Euclidean circle and a Spherical is very small indeed - they agree
to first and second order, and their difference is only revealed at the next (cubic) level.
We use this to define the curvature of any surface, where we normalize things so that
the curvature of the unit sphere comes out to be 1:

Definition 32.4. Let S be any surface, and C the circumference function for circles
drawn on that surace at a point p. Then the curvature of S at p is

3. Cp(r)—C(r)
Kk = = lim ————
T r—0 r3
We dont need to work with circumference however; its possible to measure the cur-
vature of space using area as well!

Exercise 32.56. Which power n is the smallest such that

. Apz (r) — A2(r)
lim ——

r—0 r
has a nonzero value? For this n, what is the value of the limit? Use this to write
down a definition of curvature in terms of the area of circles, normalized so that the
curvature of the unit sphere is 1.

SrHEres OF DIFERENT Si1zES

Unlike the Euclidean plane, spheres have no nontrivial similarities: in fact, if you
apply a similarity of E? to the sphere, it sends it to a larger or smaller sphere - not to
itself! Because of this there is not just one spherical geometry like there was for the
plane, but many. For each positive real number R we can define spherical geometry
of radius R, denoted 2 as follows.

Definition 32.5 (Spherical geometry of Radius R.). Let i denote the set of points
which are distance R from the origin in E3. For each point p € %, the tangent space

Tp%, consists of all points in E* which are orthogonal to p (definition unchanged from
the unit sphere), and the dot product for measuring infinitesimal lengths and angles
is the standard dot product on E? (also unchanged from the unit sphere).
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The development of each of these spherical geometries is qualitatively very similar
to that for 2: we can see without any change that (x, y, z) ~ (x, y, —z) is an isometry
so the equator is a geodesic, and orthogonal transformations are still isometries so all
great circles are geodesics.

What changes is the quantitative details: the formulas for length area and curvature.
In the next two problems, your job is to redo the calculations that I did for 2 for the
geometry %:

Exercise 32.57 (Circumference and area.). What is the formula for the circumference

and radius of a circle of radius r on i,?

Hint: base your circles at N = (0, 0, R) and look back at our arguments from class to see
what must change, and what stays the same.

Exercise 32.58. Using the definition of curvature as a limiting ratio of circumference
(Definition 32.4), compute the curvature of 12?

ProBLEM SET X

PLATONIC SOLIDS

In these problems we will investigate regular polygons on the sphere. Recall we call
a polygon regular if it has rotational symmetries about its center: in particular this
implies that all its sides are the same length, and all its angles have the same measure
(since isometries preserve both lengths and angles).

In the Euclidean plane, we know that regular polygons of all side numbers > 3 exist
(these are how Archimedes approximated the circle, after all!), but their angles are
strictly determined by their number of sides. We proved in a previous homework
that the angle sum of an n-gon is (n — 2)r, and if all the angles of a regular n gon are
equal, each angle must measure 6, = %7{.
This puts a strong restriction on which regular polygons can be used to tile the plane.
To tile the plane, a necessary (but not sufficient) condition is that we need to be able
to fit k copies of each polygon around a vertex, without any gaps or overlaps. This

tells us that the angles of a polygon that can tile must be 0 = 27”
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Figure 32.17.: Angles need to be an integer divisor of 27 to fit evenly around a point
without gaps or overlap.

Thus, to figure out which polygons even have a chance of tiling the Euclidean plane,
we want to know for which n (the number of sides) there the angle 8, is actually 27
over an integer. We can start listing:

3-2 T 21
93:—7'[:—:—
3 3 6
4 2 4

5 5

6 3

7 7

Thus, we see that its possible to fit six triangles around a vertex, four squares around
a vertex and three hexagons around a vertex, but as the angles 65 and 6; aren’t even
divisions of 27, there’s no nice way to fit pentagons or 7-gons around a vertex, and
thus no hope of using them to tile the plane.

This is the start to the classification of regular tilings of the plane, where by what
we see from the angle measures, its possible for triangles, squares and hexagons, but
impossible for all other shapes!
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Figure 32.18.: The three regular polygons that tile the Euclidean plane.

Our goal here is to investigate what changes on the sphere.

Exercise 32.59 (Spherical Pentagons).

« Find a relationship between the area A of a spherical regular pentagon and its
angle measure «. Hint: divide the spherical pentagon into five triangles

« Show that there exists a spherical pentagon whose angle evenly divides 2x:
how many of these spherical pentagons fit around a single vertex?

« What is the area of such a spherical pentagon? How many of these pentagons

does it take to cover the entire sphere?

For the pentagon, there was only one possibility, as the restriction that the angle at a
vertex be 27 /k is so restrictive. However, for triangles, there are three possibilities!

Exercise 32.60 (Spherical Triangles). There are three different equilateral triangles
that can be used to tile the sphere. Find them! For each triangle:

« How many fit around each vertex?
« How many are needed to cover the sphere?
« What platonic solid does this correspond to?

THe PYTHAGOREAN THEOREM

The fundamental formula in Euclidean trigonometry is the Pythagorean theorem
which allows us to measure the length of the hypotenuse of a right triangle in terms
of the other side lengths.

The goal of this exercise is to derive the spherical counterpart to this:

Theorem 32.2 (Spherical Pythagorean Theorem). Given a right triangle on ? with
side lengths a,b and hypotenuse c, these three lengths satisfy the equation

cos(c) = cos(a) cos(b)
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Figure 32.19.: A spherical right triangle.

Exercise 32.61 (Deriving The Pythagorean Theorem). Prove that the formula given
above really does hold for the legs and hypotenuse of a right triangle on 2, using the
distance formula that we’ve already calculated:

cosdist(p,q) = p-q

Hint: move your triangle so the right angle is at the north pole, and the legs are along
the great circles on the xz and yz plane. Now you can write down exactly what the other
two vertices are since you know they are distance a and b along these geodesics from N,
and these geodesics are unit circles in the xz and yz planes!*

On a sphere of radius R, a similar formula exists: here to be able to use arguments
involving angles we need to divide all the distances by the sphere’s radius, but after-
wards an argument analogous to the above exercise yields

(%)= o5 (7)o (%)

cos| =] =cos(=)cos|=

R R R

Its often more useful to rewrite this result in terms of the curvature k = 1/R?

Theorem 32.3 (Pythagorean Theroem of Curvature ). On the sphere of curvaturek,
the two legs a,b and the hypotenuse ¢ of a right triangle satisfy

cos (c\/E) = cos (a\/E) cos (b\/E)

As a sphere gets larger and larger in radius, it better approximates the Euclidean
plane. We might even want to say something like in the limit R — oo (so, x — 0)
the spherical geometry becomes euclidean. But how could we make such a statement
precise? One way is to study what happens to the theorems of spherical geometry as
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k — 0; and show that they become their Euclidean counterparts. The exercise below
is our first encounter with this big idea:

Exercise 32.62 (Euclidean Geometry as the Limit of Shrinking Curvature). Consider
a triangle with side lengths a, b, ¢ in spherical geometry of curvature k. Asx — 0, the
arguments of the cosines in the Pythagorean theorem become very small numbers, so
it makes sense to approximate approximate these with the first terms of their Taylor
series.

Compute the Taylor series of both sides of

cos (c\/E) = cos (a\/E) cos (b\/E)

in the limit x — 0, we can ignore all but the first nontrivial terms. Show here that only
keeping up to the quadratic terms on each side recovers the Euclidean Pythagorean
theorem, ¢? = a® + b2.

TRIGONOMETRY

Following the derivation of the spherical pythagorean theorem, we might next hope
to discover relationships between the sides of a spherical right triangle and its angle
measures. And, indeed we can!

(&

Figure 32.20.: A right triangle with angles «, f and opposite sides a, b.

The corresponding laws of spherical trigonometry are as follows:

Theorem 32.4 (Spherical Trigonometric Relations). For a right triangle with angles
a, B, corresponding opposite sides a, b and hypotenuse c the following relations hold:
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You will not be responsible for the derivation of these formulas, nor for re-
membering them: if you ever need them they will be given to you!

One of the most biggest differences between spherical trigonometry and its Euclidean
counterpart is that its possible to derive formulas for the length of a triangles’ sides
in terms of only the angle information! This is impossible in Euclidean space because
of the existence of similarities: there are plenty of pairs of triangles that have all the
same angles but wildly different side lengths! No so in the geometry of the sphere.

Exercise 32.63. Using the trigonometric identities in Theorem 32.4 together with
the spherical pythagorean theorem Theorem 32.2, show that the side length a of a
right triangle can be computed knowing only the opposite angle & and the adjacent
angle f as

Hint: start with the formula for cosa. Write out the tangents in terms of sines and
cosines, then apply the pythagorean theorem to expand a term. Finally, use the definition
of sin B to regroup some terms.

Formulas such as this are incredibly useful for calculating the side lengths of polygons,
by dividing them into triangles and using facts that are known about their angles.

Exercise 32.64 (Spherical Trigonometry). Use spherical trigonometry to figure out
the side lengths of the pentagon you discovered in the first exercise.

Hint: can you further divide the five triangles you used before, into ten right triangles
inside the pentagon?

ProsLem Set X

ORTHOGRAPHIC M AP

Exercise 32.65. Can you find the coordinates (x, y) of a point on the map where the
vectors (1, 0) and (0, 1) only make a 45-degree angle with one another?

Hint: can you make the problem easier for yourself by restricting x and y to lie on some
line, so the problem ends up having one variable instead of two?
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You can see how this would make such a map difficult to use for navigation: it would
look like the map is telling you to turn 90 degrees but in reality you should only turn
half that!

Because having to do computations like these constantly when working with a map
is a huge technical headache, mathematicians much prefer conformal maps, where
the angle you see in the Euclidean plane accurately represents the map-angle, and
all of this is unnecessary. (This is why the main map employed by mathematicians,
Stereographic Projection, is conformal).

ARCHIMEDES M AP

Read the section of the textbook on Archimedes Map (in the Examples chapter). Give
a proof that this mao is infinitesimal area preserving following the outline below:

Exercise 32.66.

« Show that at each point p € M the vectors (1,0) and (0, 1) are sent by ¢ to
orthogonal vectors on the sphere.

« Find their lengths on the sphere (ie the map-lengths), and use this data to find
the area of the infinitesimal rectangle they form.

« Observe that everything beautifully cancels and the area is still one, even
though the square was stretched into a rectangle!

Since the infinitesimal area is unchanged by the map at each point, we can finish
Archimedes proof via integration (which I do below, using your exercise)

Theorem 32.5. The surface area of the unit sphere is the same as that of its Archimedes
map: that is, the same as the area of its bounding cylinder.

Proof. Archimedes map captures every point of the sphere except the north and south

poles. Since points have zero area, this omission has no effect on our actual question
so we can proceed to calculate with the map M.

S T R

But now we know that dAp,, = dAgz, that’s what you've proved in the exercise
above! So we can sub this out, and then realize the resulting integral is just the
definition of the Euclidean area of M in the plane:

= J]M dAg: = area(M)
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STEREOGRAPHIC PROJECTION:

Read the stereographic projection section first (we will cover the necessary
bits in class as well)

The stereographic projection map has many uses in mathematics beyond just repre-
senting points of the sphere on the plane. Because it is conformal (angle preserving),
its often used as a tool to help build more interesting conformal maps between regions
of the plane, following this general recipe:

« Start with a region on the plane.

« Use i/ to map it to the sphere.

« Do something to the sphere, moving the region around
« Use ¢ to put it back on the plane.

The overall composition is a map between two regions on the plane, that was created
by going to the sphere and back! In these exercises, we will deal with a fundamental
example of this, and construct a map from the unit disk onto half of the entire plane!

The strategy above is summarized for this case in the following three figures:

e Ch
an
(b) Rotating the sphere about the x axis by a
quarter turn takes the lower hemisphere to

(a) Mapping the unit disk to the lower hemi- the hemisphere of positive .

sphere of ? via the parameterization /.

ne,

) 1

f—

Figure 32.22.: Projecting the hemisphere of positive y to the plane with ¢ gives the
half plane with positive y.

Exercise 32.67 (Disk and Half Plane: Construction). Let D be the unit disk D =
{(x,y) | x¥* + y* < 1} and let U be the upper half plane U = {(x,y) | y > 0}. Let
T : D — U be the map described above. Prove that $T can be expressed as
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2.2
T(x,y):( 2x 1—-x"—y )

1+x2+92 -2y 1+x%+y% -2y

By building it step by step:

Start with (x, y) in the unit disk.

Apply ¢ to get the disk onto the sphere.

Rotate the sphere about the x axis in the appropriate way so that the south pole
goes to (0, 1,0).

Apply ¢ to return to the plane.

This map is conformal - meaning that it preserves all angles! And even more than
that, it takes generalized circles to generalized circles.

Exercise 32.68 (Disk and Half Plane: Understanding). Prove that these claims are
in fact true: that our new function is conformal, and sends generalized circles to
generalized circles. Hint: what kinds of maps is it built out of? What do each of these
maps to do angles, or to generalized circles (on the plane) / circles (on the sphere)?

Use this to “transfer” this picture of polar coordinates in the unit disk onto the plane,
via our new map.

fis lrstsg sl

Figure 32.23.: What do these generalized circles look like when mapped to the half
plane?

Srreres of RAabius R:

The chapter on stereographic projection deals with the unit sphere. It is not too hard
to generalize what we have done to spheres of other radii, and while this may not
sound super exciting at first, it actually turns out to be absolutely fundamen-
tal to how we are going to discover hyperbolic space! So, it is a rather important
exercise to work this all out for yourself.

The good news is you have this entire chapter as a guide, where I've worked out many
of the details for the case of the unit sphere. The formulas will be quite similar, but
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there’ll be R’s inserted in various places: so the second piece of good news is that I'll
give you the formulas that you need to derive! That way, you can check your work.

Definition 32.6. Let é be the sphere of radius R in E3. Then the chart ¢ for stere-
ographic projection of this sphere is defined geometrically exactly as in the original
version: given a point p € 12[2, ¢(p) is where the line connecting p to the north pole
N = (0,0, R) intersects the xy plane.

Exercise 32.69. Show that the formulas for both the chart and the parameterization
of stereographic projection here are as follows:

Rx Ry)
,9,2) = (X,Y) = ,
9(x.y,2) = ( ) <R—z R—-z
IR2X 2R2%Y X2+Y2—R2)
X,Y)=(x,y,2z) = , )
Y(XY) = (x,3.2) <X2+Y2+R2 X2 +Y2+R2 X24+Y24+R?

(It might help to look back at Proposition 24.1, and attempt Exercise 24.1).

Running through the same arguments as in the chapter above (which you don’t have
to write down), its straightforward to check that this new map is a conformal map
between 2 minus N, and the plane. This means its parameterization i both preserves
angles and stretches all vectors by a uniform length: we can use this fact to compute
the dot product for this map.

Exercise 32.70. At a point p = (X,Y) on the plane, what is the factor by which a
vector v € TPIE2 is stretched when mapped onto ; by the parameterization of stereo-
graphic projection? Hint: we know the factor is the same for all vectors: so pick an easy
vector to calculate with and find its length!

Once you know this, follow the argument style of Theorem 24.3 to compute the map-
dot product on the plane, and show that it is equal to

B 4R*
(V . W)map = m(v . W)

ProsrLem Set Xl

GeTTing Usep To HypersoLICc SPACE

Exercise 32.71 (Hyperbolic Circle Area). In this exercise you will go through the
transition-style arguments we use to turn formulas on the sphere into their analogs
in hyperbolic geometry, much like we did in class.
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The starting point is the formula for the area of a circle of radius r on the sphere of
radius R:

Alr) = Lr C(r)dr = Lr 27 sin (%) dr = 27R? (1 — cos %)

« Re-express this in terms of curvature

« Convert to the Taylor series

« Plugink = -1

« Convert back to hyperbolic trigonometric functions

What is the correct hyperbolic formula? (We wrote it down without doing the full
derivation in class, so you can confirm)

Exercise 32.72 (Hyperbolic Pizza). One way to try and develop intuition for the
strange behavior of circles is to think about the type of circles we see in daily life:
pizzas! One major factor determining how good a pizza is is its crust percentage which

we will define as

area(Crust)
CrustPercent = ———
area(Pizza)

In this probelm we will consider pizzas which have 1 inch crusts: meaning a 10 inch
(radius) pizza has a 9inch radius center of toppings, surrounded by a 1 inch thick
circle of crust.

« Show the CrustPercent for Euclidean pizza is

SN

_1

r2’
From this we see that as r — oo the crust percent drops to zero: this makes
sense, if you imagine an extremely large pizza with only a linch thick crust,
it’s totally reasonable that most of the pizza is not crust!

« What is the CrustPercent for a hyperbolic pizza of radius r? Show that when r
is large, this limits to the constant

1
CrustPercent - 1 — - = 63%
e

Thus crust is an inevitable part of life in hyperbolic space: no matter what size
pizza you make it will always be well over half crust!

Exercise 32.73 (Hyperbolic Pizza II). In this problem, we will imagine our unit to be
inches (so, the radius appearing in formulas for space of curvature —1 is measured in
inches).

You are at a pizzerias and are trying to decide if the 5 inch radius pizza they sell is
large enough for you and your friends. They also sell a six inch (radius) pizza, but it
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costs twice as much. At first, you think this sounds crazy! But is this actually a good
deal, or not?

Your friend is feeling very hungry, and jokingly asks the pizza-maker how large of
a pizza he would need to order so that its areas is the same as an american football
field (100 x 50 yards). The pizza-maker says “I think I have room for that in my oven,
coming right up!” How big of a pizza is he going to make?

Hint: invert the formula for area in terms of radius, to get radius in terms of area, then
plug into a calculator!

W ORKING WITH THE MODELS

Exercise 32.74 (Hyperbolic space is homogeneous). We proved in class that the hor-
izontal translations T(x,y) = (x + t,y) are isometries of the Half Plane model, and
we also proved that the similarities S(x, y) = (sx, sy) are also isometries.

Combining these two, prove that H? is homogeneous: that is, that for any two points
p,q € H?, there exists an isometry that takes p to q.

Hint: can you first show that you can build an isometry that takes (0, 1) to any point in
the plane? Then combine two of these to get what you want?

Exercise 32.75 (The Circumference of Circles). In the Disk Model, if a < 1 the Eu-
clidean circle x? + y* = a? centered at O is also a hyperbolic circle. In the text, we
compute that its hyperbolic circumference is

4ma

C= 5

1—a

and that its hyperbolic radius is

r = 2arctanh(a)

Using these two, prove that C(r) = 27 sinh(r). Hint: solve for a in terms of r and plug
into circumference. Then use hyperbolic trigonometric identities to simplify!

Together these two arguments prove that the geometry modeled by the Half Plane
and the Disk has the circumference function C(r) = 27 sinh(r) for circles based at any
point (the second problem establishes this for circles at a special point, and hte first
problem establishes that space is homogeneous, so its the same at all points). Thus,
this space truly is hyperbolic geometry, and has curvature —1 (we proved in class, any
space with this circumference function has constant curvature —1).
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