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Preface

This is the beginnings to a textbook for the course Foundations of Geometry that I will
be teaching at USF in the Fall of 2023.

length(𝛾 ) = ∫
𝑏

𝑎
‖𝛾 ′‖ 𝑑𝑡

dist(𝑝, 𝑞) = inf𝛾 {length(𝛾 ) ∣ 𝛾 (0) = 𝑝, 𝛾 (1) = 𝑞}
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Part I.

The Greeks
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1. Euclid

Geometry began deep in antiquity, arising from our need to measure properties of the
physical world as we came out of the last ice age and began to collect ourselves into
cities. Much of the subject’s long prehistory is lost to the depths of preliterate time, but
signs of the ancients knowlege remain in their surviving artworks.

Figure 1.1.: An Archimedean spiral on Neolithic Pottery, Romania 7000BCE

With writing and the ensuing civilization growth, recognizably modern geometry was
practiced by bronze-age peoples the world over, with notable examples in Babylon, Eg-
pyt and China.

Geometry at this stage in our history was more a compendium of true facts about space,
than it was a coherent theory of how space behaved. One could derive new facts from
known facts, or see that new observations were consistent with existing knowlede, but
early mathematicians had not yet found an order to this chaos.

5



1. Euclid

Figure 1.2.: A collection of Babylonian homework exercises, written in Akkadian,
1700BCE

1.1. Euclid's Postulates

By the time Euclid was born in the 300s BCE, Greek civilization was reaching the twi-
light of its golden age, and serious geometry had been practiced by its mathematician-
philosophers for centuries. While not much is known of Euclids personal life, his fame
survives into modernity as the author of the three book series The Elements, collect-
ing and systematizing much of the Greek’s knowledge of geometry. Much of its con-
tent originates from earlier mathematicians, including Eudoxus, Hippocrates of Chios,
Thales and Theaetetus, while other theorems in The Elements are previously mentioned
by Plato and Aristotle.

But this is not to take anything away from Euclid’s incredible achievement: while the
theorems were not all original, it is his exposition that became a model for all mathe-
matics written over the following twenty centuries. Euclid took the mass of knowlege
humans had discovered, and built it into a logical, self-contained, and understandable
body of knowledge. He turned a collection of truths into a mathematical theory.

Euclid reduced the entirety of Greek geometery to the logical consequenes of just five
statements. Five! Everything that had ever been measured about the nature of space
sprung forth from pure logic and five basic truths. These truths, which Euclid called his
Αξιώματα (Axiomata), we usually call Euclid’s Postulates in English.

Definition 1.1 (Αξιώματα του Ευκλείδη: Euclid’s Postulates).

• Η κατασκευή μιας ευθείας γραμμής από ένα σημείο σε οποιοδήποτε άλλο
• Μια πεπερασμένη ευθεία μπορεί να επεκταθεί απεριόριστα

6



1.2. The Idea of Proof

• Ένας κύκλος ορίζεται από ένα κέντρο και μια απόσταση(ακτίνα)
• Όλες οι ορθές γωνίες είναι ίσες
• Έστω δύο ευθείες που τέμνονται με μια τρίτη. Οι ευθείες αυτές θα έχουν ένα
σημείο τομής από την μεριά που οι εσωτερικές γωνίες που σχηματίζονται με την
τρίτη ευθεία έχουν άθροισμα μικρότερο από δύο ορθές γωνίες.

In English:

• A straight line segment can be drawn joining any two points.
• Any straight line segment can be extended indefinitely in a straight line.
• Given any straight line segment, a circle can be drawn having the segment as
radius and one endpoint as center.

• All right angles are congruent.
• If two lines are drawn which intersect a third in such a way that the sum of the
inner angles on one side is less than two right angles, then the two lines inevitably
must intersect each other on that side if extended far enough.

These five statements were chosen to be as directly observable and intuitive as possible:
and for the most part they do an excellent job at that. Drawing a line between any two
points? Sounds reasonable. Making a line longer? Also reasonable. Rotating any line
segment around to make a circle? Alright. Any two right angles being congruent? Of
course.

But the fifth one, that one you have to read a couple times and draw a picture before
you’re convinced of its truth. We will have much more to say about this 5th postulate
in the next chapter.

1.2. The Idea of Proof

The real power of Euclid’s postulates comes from the ability to prove things from
them.

Definition 1.2 (Proof). A proof of a statement 𝑆 is a sequence of logical claims, starting
from a collection of foundational statements (like a list of axioms and previously proven
statments) and ending with the statement 𝑆 that you wanted to verify is true.

As a quick example, if we take as foundational the definition of even number being a
integer that is 2 times another integer and the rules of arithmetic, we can prove that for
any integer 𝑥 , the integer 𝑥 + 𝑥 is even. Our proof goes as follows:

7



1. Euclid

• We can use the fact that 1𝑥 = 𝑥 to rewrite 𝑥 + 𝑥 as 1𝑥 + 1𝑥 .
• We can factor out the 𝑥 to get 1𝑥 + 1𝑥 = (1 + 1)𝑥
• We can use that 1 + 1 = 2 to get (1 + 1)𝑥 = 2𝑥
• 2𝑥 is twice the integer 𝑥 , so it is even.
• Thus, since 𝑥 + 𝑥 = 2𝑥 , we see 𝑥 + 𝑥 is even.

This proof is not particularly exciting, but it is clear and unambigously true. Each bit of
the proof made just a small step at a time, and explained why each step held using the
foundational material. Anyone who understands the foundational material and knows
how to read would be convinced by this argument that 𝑥 + 𝑥 must be even.

Arguments in greek geometry are exactly of the same style, except we replace the rules
of arithmetic with the Postulates of Euclid, and definitions like “evenness” with geomet-
ric definitions like “triangle”.

Definition 1.3 (Triangle). A triangle is a figure in the plane composed of three points
𝑝, 𝑞, 𝑟 which do not all lie on a common line. The sides of the triangle are the line
segments 𝑝𝑞, 𝑝𝑟 and 𝑞𝑟 . The angles of the triangle are defined by these sides at the
points 𝑝, 𝑞, 𝑟 themselves.

Indeed, given just this definition and the five postulates of Euclid, we can follow him in
proving his first Proposition

Theorem 1.1 (Equilateral Triangles Exist: Elements Prop I). There exists a triangle in
the plane all of whose sides are the same length.

That the circles intersect
seems intuitvely obvious,

but how would one
actually prove this? This is

the beginning hints that
defining things in terms of
calculus will prove useful.

From our modern
perspective, this seems to

have something to do with
the continuity of the circle,

and perhaps the
intermediate value

theorem.

Proof. • Choose two points 𝑝, 𝑞 in the plane. Draw the line segment betwen them,
of length 𝐿. (Postulate 1)

• Now form the circle of radius 𝐿 centered at 𝑝, and the circle of radius 𝐿 centered
at 𝑞 (Postulate 3)

• These two circles intersect in two points. Select one of the intersection points,
call it 𝑟 .

• Use postulate 1 again to draw a line from 𝑝 to 𝑟 and from 𝑞 to 𝑟 . Together with
the original line, these form a triangle.

• The line segment from 𝑝 to 𝑟 is length 𝐿, as is the length of the segment from 𝑞 to
𝑟 as they are both radii of circles. But the distance from 𝑝 to 𝑞 was 𝐿 too: so this
triangle has three sides of length 𝐿.

8



1.3. Absolute Geometry

A video demonstration of this proof is below:

https://youtu.be/zdofiH5HncU

Propositions, themselves being verified from the list of known facts, are then “legal” to
be used in the justification of future facts. Euclid is very intentional in his development
of the subject, and makes sure that every proposition only usues in its justification facts
that have been previously proven.

1.3. Absolute Geometry

Euclid delays using Postulate 5 as long as possible, and proves the first 28 propositions
of Book I using only Postulates 1-4. (Indeed, in Proposition I we used only Postulates 1
and 3!) These days, we call such results theorems of absolute geometry.

Definition 1.4 (Absolute geometry). Absolute geometry is the set of theroems which
can be proven using only Euclids postulates 1 through 4.

Below we embark on a breif, and incomplete tour of Euclid’s work in absolute geometry
to get better aquainted with the Greek notion of geometric proof.

The early propositions focus mostly on increasing our toolkit: they prove that its possi-
ble to do certain useful geometric constructions from the axioms, so that we can in the
future use these directly where convenient.

Proposition 1.1 (Copying a Line Segment: Elements Prop 2). Given a segment 𝐿 and a
point 𝑝 not on that line, its possible to draw a new line segment starting at 𝑝 whose length
is the same as 𝐿.

The proof of this proposition uses only Proposition I together with the 5 postulates, and
so must be quite ingenious: there isn’t much to work with! Indeed, its best understood
through an animation, so there is a youtube video below.

https://youtu.be/aBCkBJoXMlo

Proposition 1.2 (Cutting a Line Segment to Size: Elements Prop 3). Given two line
segments of unequal lengths, its possible to cut the longer line segment so that the remaining
piece has the same length as the shorter.

Proof. Start with a line segment 𝐴𝐵, and another line segment 𝐶𝐷, and without loss of
generality let’s say that 𝐶𝐷 is the longer segment.

9
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1. Euclid

Figure 1.3.: .

• Use Proposition 2 to build a segment with the same length as𝐴𝐵 but now starting
at the point 𝐶 .

• Now use Postulate 3 to spin this new line around to form a circle centered at 𝐶 .

• This new line intersects 𝐶𝐷 in a new point, call it 𝐹 .
• Now the line 𝐶𝐹 is a radius of the circle, and so has the same length as the original
copied segment: the length of 𝐴𝐵.

Figure 1.4.: .

10



1.3. Absolute Geometry

Exercise 1.1 (Constructing an Isoceles Triangle). Start with a line segment of length
𝑎. Prove that you can construct a triangle with one side of length 𝑎, and two sides of
length 2𝑎, using the postulates 1-5 and the propositons 1-3 given so far.

Figure 1.5.: An isoceles triagle with two sides doubel the other.

Now that we can copy and cut line segments, Euclid is ready to prove his first theorem
about telling when two shapes are the same (or congruent). You may recall this as side-
angle-side congruence from elementary geometry: Euclid proves it by using what we
just proved to copy one triangle on top the other, to see they are equal.

Theorem 1.2 (Side-Angle-Side Congruence: Elements Prop 4). If two triangles share a
pair of sides with the same lengths, and those sides form an angle of equal measure on each,
then the two triangles are congruent.

Figure 1.6.: Side-Angle-Side Congruence: sides with the same length and angles with
the same measure are marked alike on the two triangles.

https://youtu.be/sk2dL_kitcE?si=IdB32dJQqdSneuuz
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1. Euclid

Euclid continues on this way for some time, proving more theorems theorems about
triangles, including side-side-side congruence.

Theorem 1.3 (Side-Side-Side Congruence: Elements Prop 8). If two triangles have cor-
responding sides of the same three lengths, then the two triangles are congruent.

Figure 1.7.: Side-Side-Side Congruence: sides with the same length are marked alike on
the two triangles.

As a quick application we use this to show that the angles of an equilateral triangle are
all equal to one another.

Proposition 1.3. The three angles of an equilateral triangle are equal.

Proof. Let 𝐴𝐵𝐶 be an equilateral triangle. Then as all of its sides are the same length, it
is side-side-side congruent to any rotated copy of itself. Concretely, we see that 𝐴𝐵𝐶 is
congruent to 𝐵𝐶𝐴.

Figure 1.8.: Equilateral triangles have three equal angles.

This sets up an equality between the angles:

𝐴 = 𝐵 𝐵 = 𝐶 𝐶 = 𝐴

12
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Thus all the angles are equal to one another.

These congruences are both theorems of absolute geometry, meaning that they are true
in any world where Postulates 1-4 hold. Being able to tell when two triangles are the
same gives Euclid a new power - to verify that one can cut an angle precisely in half.

Proposition 1.4 (Bisecting an Angle: Elements Prop 9). If 𝜃 is any angle, it is possible
to draw a line dividing it into two angles each of measure 𝜃/2.

Before watching the video on this one (or looking back at your notes) try to draw the
diagram from the instructions!

Proof. • Start with an arbitrary angle at a point 𝐴, and choose a point along 𝐷 one
of the angle’s rays.

• Use the segment from 𝐴 to 𝐷, with Postulate 3, to construct a circle centered at
𝐴.

• This circle intersects the angles other ray at some third point, 𝐸
• Use Proposition 1 to construct an equilateral triangle on the segment 𝐷𝐸, which
goes across the angle.

• Call the vertex of the equilateral triangle 𝐹 . Now use Postulate 1 to draw a line
from the angle’s vertex 𝐴 to 𝐹 .

• This creates two triangles, using the new line 𝐴𝐹 , and then using one side of the
equilateral triangle, and one side ray of the original angle.

• These two triangles, 𝐴𝐸𝐹 and 𝐴𝐷𝐹 have all three pairs of sides the same length:
thus, by Side-Side-Side congruence, they are equal.

• Thismeans their angles are also equal. So the two angles we have split the original
angle at 𝐴 into are equal, and so each must be half the original angle’s measure.

This proof is a bit involved too - so it may be helpful to watch a video for future refer-
ence!

https://youtu.be/HUv0I96vH34

Applying this to a straight angle allows one to bisect this into two equal angles. Since
half a straight angle is a right angle, a corollary of this propositon is that it is possible
to construct a right angle along any line segment.

13
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1. Euclid

Proposition 1.5 (Constructing Right Angle: Elements Prop 11). Given a line segment 𝐿
and any point 𝑝 along that line segment, it is possible to construct a perpendicular line 𝑇
to 𝐿 passing through 𝑝.

At this point, we now (finally!) know that right angles must exist! Of course we had
an axiom about right angles, but it did not tell us that there were any: it just said IF
you had two right angles, then they are congruent. But it never gave you a means of
making a right angle yourself! Now that we have one, we can do several interesting
constructions: for example, we can prove that right triangles exist:

Proposition 1.6. A right triangle exists can be created with any two leg lengths 𝑎, 𝑏.

Proof. Begin with a line segment 𝑆1 of length 𝑎, and another line of length 𝑏.

Figure 1.9.: Lines of the lengths we want as legs of the right triangle.

• Using Proposition 1.5, construct a segment at a right angle to 𝑆1 at one of its
endpoints, 𝑝.

• Use postulate 2 to extend this line segment indefinitely (in case the original seg-
ment you constructed was shorter than 𝑏!)

• Use Euclid’s Proposition 3 (Cutting a Line Segment to Size) to trim this new seg-
ment until it is length 𝑏. Call the result 𝑆2.

• Now, use Postulate 1 to connect the endpoints of 𝑆1, 𝑆2 by a straight line. Together,
these three line segments form a triangle, with one right angle at 𝑝, and side
lengths 𝑎, 𝑏 as required.

14



1.3. Absolute Geometry

Figure 1.10.: Constructing a long perpendicular to one segment.

Figure 1.11.: Cutting to size Figure 1.12.: The final triangle
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1. Euclid

Knowing that right triangles exist, its natural to ask next howwe can tell when two right
triangles are congruent. But we already have that tool: we can use Euclids proposition
asserting Side-Angle-Side congruence to conclude right triangles are congruent if and
only if their legs are the same length.

We’ve already learned quite a bit about triangles in absolute geometry, though we
haven’t quite exhausted the possible knowledge. Euclid goes on to prove a few more
propositions, before reaching the final general congruence test for triangles in the
26th:

Proposition 1.7 (Angle-Side-Angle Congruence: Elements Prop 26). Two triangles are
congruent if they have two equal pairs of angles, and an equal corresponding side.

Again, we give a quick application of this triangle congruence, and complete the con-
verse of Proposition 1.3.

Proposition 1.8 (Equilateral if Equiangular). Prove that a triangle with three equal an-
gles has three equal sides. Together with CITE this proves that a triangle is equilateral if
and only if it is equiangular.

Proof. Let 𝐴𝐵𝐶 be an equiangular triangle, so the angle measures at 𝐴, 𝐵 and 𝐶 are all
equal.
Choose one of the angles - say 𝐵 - and bisect it with a line. This line divides the triangle
into two smaller triangles, which we see are congruent (they share a side: the new
bisecting line, as well as two angles since they each have one of the original angles, and
one of the bisected halves). Thus, the remaining pairs of sides of this triangle are also
congruent, so 𝐵𝐴 equals 𝐵𝐶 .

Figure 1.13.: Equilateral

There was nothing special about the angle 𝐵, so we may also do the same construction
at another angle - say 𝐴. This again gives a pair of congruent triangles, from which we
can conclude that 𝐴𝐵 equals 𝐴𝐶 .

16



1.3. Absolute Geometry

Stringing these equalities together, we see that 𝐴𝐵 = 𝐴𝐶 = 𝐵𝐶 so all three sides are
equal, and the triangle is equilateral.

Exercise 1.2. Prove that inside of an equilateral triangle, you can inscribe an upside
down equilateral triangle of exactly half the side length, as in the figure below. In your
proof, feel free to use any of the Postulates, as well as any proposition stated above this
point.

Figure 1.14.: Nested equilateral triangles.
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2. Parallels

The fifth postulate of Euclid is often called the parallel postulate, as it gives a condition
that can be checked for whether or not two lines are parallel.

Definition 2.1 (Parallel). Two lines are parallel if they do not intersect.

Why the parallel postulate was suspicious to take as an axiom to the ancients.

One reason often cited: its complexity! Its a long statement.

But better reason, it implies the EXISTENCE of something (an interesection) at an arbi-
trary distance. The other postulates only assure the existence of things on scales that
arleady show up in problem (given a segment, it can be extended finitely. Given a length,
you can make a circle with it.)

2.0.1. Equivalents to Postulate 5

Definition 2.2 (Equivalence to Parallel Postulate). A postulate 𝑃 is equivalent to the
parallel postulate if - 𝑃 can be proven from postulates 1-5 - The combination of postu-
lates 1-4 and 𝑃 can prove Postulate 5.

One cleaner statement equivalent to Postulate 5 was already known to Proclus in an-
tiquity, but became widely recognized after John Playfair’s 1795 commentary on the
Elements:

Definition 2.3 (Playfair’s Axiom). In a plane, given a line and a point not on it, a unique
line parallel to the given line can be drawn through the point.

Often Playfair’s axiom is
stated more generally, and
only asserts that at most
one line parallel to a given
line can be drawn.
However, it is possible to
prove directly from Euclids
Postulates 1-4 that parallel
lines exist (Book I
Proposition 31): so our
formulation is equivalent.

This does away with much of the seeming complexity of the original postulate, replac-
ing the condition of precise angle measures and intersections with the stipulation that
parallel lines are unique. However this does not help with the more substantive point
of unease, that Postulate 5 says something about what is going on arbitrarily far away.
After all, how do you check that a parallel line is unique other than to check that all
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2. Parallels

other lines make some intersection, even though many of those intersections will be
unobservably far away.

In 1733, a Jesuit Priest and geometer by the name of Giovanni Saccheri made a useful,
and prescient observation. He asked himself, what are all the logical possible statements
that could take the place of Euclid’s 5th postulate, or the (now-called) Playfair’s Axiom?
Well, if the axiom states that there exists a unique parallel through a given point, the
other logical choices are that there are none or there are many.

Figure 2.1.: The three possibilites of Giovanni Saccheri, image by Søren Peo Pedersen
(Wikicommons)

Saccheri attempted to draw a contradiction from the other cases with Euclids other
four postulates, and while his investigations did not quite succeed, they led in some
very interesting directions we will return to later on.

In the millenium and a half span from Proclus until the 1800s, many other foundational
theorems of Euclidean geometry were also shown to be equivalent to the 5th. Among
these are the following short list:

Theorem 2.1 (Some Equivalents to the Parallel Postulate). The following postulates are
equivalent to the parallel postulate:

• All triangles have angle sum 𝜋 .
• At least one rectangle exists.
• There exist triangles of arbitrarily large area
• Circumference/Radius is a constant for circles
• Area/Radius Squared is a constant for circles
• Equidistant curves to a line are lines
• There exists a pair of triangles which are similar, but not congruent
• The pythagorean theorem is true
• Given any 3 non-collinear points, there is a circle passing through them.

20



2.1. Proofs: Triangles

• Any two parallel lines have a common perpendicular.

All of these properties are true of the world around us, and some of them (like the
statement that rectangles exist) are even finitely checkable: it seems inconceivable to
imagine a world where they were false! Yet, for over two millenia mathematicians the
world over tried - and failed - to prove any single one of these statements from the first
four postulates of Euclid alone.

The reason for this is grander than any of them could imagine, until Gauss, Lobachevsky
and Bolyai entered the scene in the early 1800s. No one could prove any of these state-
ments from the first four because they are not implied by the first four! There are logi-
cally possible, consistent mathematical worlds which act very similar to the geometry
we find around us on earth, but for which the Pythagorean theorem is false. We will
encounter these worlds (hyperbolic geometries) in the second half of this course.

2.1. Proofs: Triangles

To recover all of geometry in its full glory, he first invokes the 5th postulate in Proposi-
tion 29, which is restated below.

Proposition 2.1 (Alternate Angles are Equal (Euclid Prop 29)). A straight line falling
on parallel straight lines makes the alternate angles equal to one another

Before we can prove this however, we need to talk a little bit about how the greeks
measured angles. Euclid has several criteria called common notions he uses to axiomatize
the means of measuring quantities such as angle, length, and area. For us in this short
introduction, we will summarize some of these in the following “angle axioms”.

Definition 2.4 (Angle Axioms).

• Any two congruent angles have the same measure.
• If an angle 𝐴 is divided into two disjoint angles 𝐵 and 𝐶 , the measure of 𝐴 is the
sum of the measures of 𝐵 and 𝐶 .

To get accustomed to these, we will first prove a practice result comparing angles, which
does not need the parallel postulate.

Proposition 2.2 (Opposite Angles are Equal). If two lines intersect at a point in 𝔼2, the
each of the two opposite pairs of angles have equal measure to one another.
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Figure 2.2.: Opposite angles are equal in measure

Here we have used that any
two angles which sum to a

straight line equal two
right angles, as two right

angles also form a straight
line. Euclid proves this

separately as Proposition
13.

Proof. Let two lines cross at a point, determining the four angles labled 𝛼, 𝛽, 𝛾 , 𝛿 in the
diagram above. Any two angles which together from a straight line are congruent to
one another (a straight line is two right angles) and so we have the following equalities

𝛼 + 𝛽 = 𝛽 + 𝛾 = 𝛾 + 𝛿 = 𝛿 + 𝛼
Take the first equality, 𝛼 + 𝛽 = 𝛽 + 𝛾 and subtract 𝛽 from both sides: this gives 𝛼 = 𝛾 .
Similarly, subtracting 𝛾 from the second equality 𝛽 + 𝛾 = 𝛾 + 𝛿 yields 𝛽 = 𝛿 .

Next, we’ll prove our first lemma that does invoke the parallel postulate:

Proposition 2.3 (Corresponding Angles are Equal). If a line crosses a pair of parallel
lines, the angles it makes with each of the parallel lines are equal in measure.

Proof. Let 𝐿1 and 𝐿2 be two parallel lines, and 𝑇 a third line crossing them transversely.
Let 𝛼, 𝛽, 𝛾 be the three angles determined by these lines as labeled in the corresponding
diagram.

Because 𝑇 is a straight line, we know the sum 𝛾 +𝛽 is two right angles. And, by Postulate
5, we know that as 𝐿1 and 𝐿2 do not intersect, the sum of 𝛼 and 𝛾 must also be two right
angles. Thus

𝛼 + 𝛾 = 𝛾 + 𝛽

Subtracting 𝛾 from each side yields 𝛼 = 𝛽 .
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2.1. Proofs: Triangles

Figure 2.3.: Corresponding angles are equal in measure

Now we have enough information assembled to complete the task at hand.

Proving Euclid 29

Figure 2.4.: Alternating angles are equal in measure

Proof. Again let 𝐿1 and 𝐿2 be lines crossed by a transverse line 𝑇 . Denote by 𝛼, 𝛽 the
opposite interior angles labeled in the corresponding diagram. By Proposition 2.3, we
know that the angle corresponding to 𝛼 is of equal measure. But this angle is opposite
to 𝛽 , so by Proposition 2.2, we know this angle also equals 𝛽 . Thus, 𝛼 = 𝛽 .
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2. Parallels

We have barely begun our use of the parallel postulate (we so far have used it precisely
once, in a lemma about corresponding angles), but even just letting touch our theory is
enough to have profound consequenes.

Theorem 2.2 (Triangles have Angle-Sum 𝜋 ). If 𝑇 is any triangle in𝔼2 with angles 𝛼, 𝛽, 𝛾 ,
then

𝛼 + 𝛽 + 𝛾 = 𝜋

Below I give a proof using not the Parallel Postulate directly, but using the equivalent
Playfair’s axiom, that parallel lines exist and are unique. Check Euclid Proposition 32
for the original proof.

Proof. Consider an arbitrary triangle Δ, and choose one side 𝑆 of the triangle, and let 𝑝
denote the vertex of Δ opposite 𝑆.

Figure 2.5.: An arbitrary triangle.

By Playfair’s Axiom (Definition 2.3), there is a unique line through 𝑝 which is parallel
to the line containing 𝑆. Draw this line, and extend all the sides of the triangles to lines
(Postulate 2).

Note that the opposite interior angles formed by two sides of the triangle with the pair
of parallel lines are equal (Proposition 2.1).

Thus, the straight line at the top is the sum of all three angles of the triangle! In radians,
this sum is 𝜋 , so the sum of the three angles of Δ is equal to 𝜋 .

Exercise 2.1 (Polygon Angle Sum). A polygon is convex if all of its angles are less than
180∘, so that it has no “indents”. Equivalently, a convex polygon is one where any line
segment with endpoints on the boundary of the polygon lies inside the polygon.
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Figure 2.6.: A parallel to one side.

Figure 2.7.: Alternate angles to the bottom fill out a straight line.

Prove that the angle sum of convex quadrilaterals is a constant, for all quadrilaterals.
Prove the angle sum of convex pentagons is also a constant. What are these constants?

What do you think the formula is for the sum of angles in a convex 𝑛-gon? (Optional:
If you have seen mathematial induction, prove your guess!)

2.2. Quadrilaterals

Definition 2.5 (Quadrilaterals). A quadrilateral is a polygon with four straight line
sides. If all four angles are right angles, it is called a rectangle. A rectangle with all sides
the same length is a square. If opposing sides are segments of parallel lines, its called a
parallelogram.

Finally, we’ve uncovered enough to move beyond triangles a bit!

Theorem 2.3 (Rectangles Exist). There exists a quadrilateral in the plane, all of whose
angles are right angles.
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Figure 2.8.: Convex vs Non-Convex Octagon.

Exercise 2.2. Prove Theorem 2.3 using Euclids Postulates (and also Playfair’s Axiom,
if you like it), and the propositions given so far in this section.

Hint - we know how to make right angles now, and parallel lines through points. Start
making some!

In fact (you may or may not have concluded this in your proof, depending on how
general you were), for any lengths 𝑎 and 𝑏, one can construct a rectangle with these
as the side lengths. Now that we know rectangles exist, we can start asking questions
about them: what patterns can we find?

Proposition 2.4 (Rectangles have Congruent Opposite Sides). Let𝐴𝐵𝐶𝐷 be a rectangle.
Then the opposite sides 𝐴𝐵, 𝐶𝐷 have the same length, as do the other pair 𝐵𝐶, 𝐷𝐴.

Proof. • Start with an arbitrary rectangle, and extend its sides into lines.

• Looking at one of the sides, it crosses the other pair in two right angles (by def-
inition: its a rectangle). Thus the angle sum is a straight line, and so this other
pair of sides is parallel, by the 5th postulate.

• Draw a diagonal connecting an opposing pair of vertices of the rectangle.
• This diagonal divides the rectangle into two triangles, which both share a common
side.

• But, since the this diagonal cuts across a pair of parallel lines, its alternate angles
are equal.

• Thus, the two triangles that have been formed are congruent to one another, by
Angle-Side-Angle.
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Figure 2.9.: A rectangles opposing sides are parallel.

Figure 2.10.: A diagonal cuts the rectangle into two congruent triangles.

• But if the triangles are congruent, then they have the same side lengths.
• Thus, each pair of opposing sides of the rectangle must have the same length.

Running the same argument with the other diagonal also gives a pair of triangles con-
gruent to these, thus the diagonals of a rectangle must be equal in length to one another.
In fact, more is true: the point where the diagonals intersect one another divides each
of the diagonals in half - the Greeks would say their intersection bisects both of the
diagonals.

A goodway to get a feel for Euclidean geometry is to try and play aroundwith properties
like this that you discover. So, rectangles diagonals bisect one antother, but is this all?
Playing around a bit, its easy to see there should be more examples (draw any two
line segments that cut each other in half making some sort of 𝑥 , then connect up their
vertices). But can we give any sort of order to this collection of shapes?

Exercise 2.3 (Bisecting Diagonals = Parallel Sides). If the diagonals of a convex quadri-
lateral bisect one another, then that quadrilateral is a parallelogram.

27



2. Parallels

Figure 2.11.: Opposing sides of a rectangle are equal, since congruent triangles have the
same side lengths.
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3. Pythagoras

The pythagorean theorem needs no introduction, and is perhaps the most well known
formula in mathematics from antiquity (and perhaps, only rivaled by 𝐸 = 𝑚𝑐2 in the
modern era).

Theorem 3.1. On a right triangle with legs of length 𝑎, 𝑏 and hypotenuse of length 𝑐, these
lengths satisfy

𝑎2 + 𝑏2 = 𝑐2

This theorem is fundamental to almost all real-world applications of geometry because
it is the Greek foundation for the distance function it lets us measure distance between
two points in the plane if we only know their horizontal and vertical separations.

Pythagoras’ Theoremwas not first discoverd by Pythagoras - and its first origins are lost
to history though surviving tablets show that it was already in common use in Babylon
by 3700 years ago.

The same theorem was discovered by many mathematicians the world over, from an-
cient india to china and the middle east. But it was the Greeks who, in building the
Elements, first realized its essential reliance on the theory of parallels.

While we are these days accustomed to algebraic expressions occuring in the midst of
geometric arguments (and so, think of the Pythagorean theorem primarly as an equa-
tion) the origin of this equation deals fundamentally with the area of squares. Indeed,
Euclid’s original statement was:

In right-angled triangles the square on the side opposite the right angle equals the sum
of the squares on the sides containing the right angle.

And so, before we can proceed, we need to study area.
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Figure 3.1.: A babylonian tablet engraved with Pythagorean triples: three whole num-
bers for which the sum of the squares of the first two equals the square of
the third (3, 4, 5); (8, 15, 17); and (5, 12, 13) are visible here. These were likely
used to help determine land boundaries.

Figure 3.2.: The pythagorean theorem, illustrated.
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3.1. Areas

Just like measuring angles, Euclid needed some additional rules to specify how areas
are to be measured. Here I’ve summarized these in a modern phrasing for us to use.

Definition 3.1 (Area Axioms).

• The area of a square of side length 𝑥 is 𝑥2.
• Any two congruent shapes have the same area.
• If a shape 𝑅 is the disjoint union of two shapes 𝑆 and 𝑇 , the area of 𝑅 is the sum
of the areas of 𝑆 and 𝑇 .

Proposition 3.1 (Area of a Rectangle). The area of a rectangle is equal to the product of
its two side lengths.

Proof. Create a square of side lengths 𝑎 + 𝑏, and divide it up into a square with side
lengths 𝑎, one with side lengths 𝑏 and two rectangles wtih sides 𝑎, 𝑏, as shown in the
following picture.

Figure 3.3.: Computing the area of a rectangle given the area of squares

Let 𝐴𝑅 denote the unknown area of the rectangle. Using the area axioms, we can write
the area of the large square as a sum of the areas of its components

(𝑎 + 𝑏)2 = 𝑎2 + 𝑏2 + 2𝐴𝑅
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From here; its just algebra. Expanding the left hand side and cancelling like terms we
find

𝐴𝑅 = 𝑎𝑏

Exercise 3.1. Starting with segments of lengths 𝑎, 𝑏 and using the postulates and what
we have proven or stated in this text so far, construct the diagram used in the proof of
Proposition 3.1, and justify it has the properties claimed of it (made of two squares and
two rectangles of the correct dimensions).

We can now use this result to deduce the area of right triangles as well.

Proposition 3.2 (Area of a Right Triangle). The area of a right triangle is half the product
of its two legs.

Proof. In the proof of ?@prp-rect-opposite-sides (showing that the opposing sides of
a rectangle are the same length) we saw that the diagonal divides a rectangle into two
congruent triangles.

Call the area of the rectangle 𝐴𝑅 and the area of each of these triangles 𝐴𝑇1 and 𝐴𝑇2 .
Since the triangles are congruent their areas are equal (Area Axiom 2), and since they
together make up the entire rectangle, 𝐴𝑅 = 𝐴𝑇1 + 𝐴𝑇2 (Area Axiom 3). Putting these
together

𝐴𝑅 = 𝐴𝑇1 + 𝐴𝑇2 = 2𝐴𝑇1 ⟹ 𝐴𝑇1 =
1
2𝐴𝑅

Since we know 𝐴𝑅 is the product of its two side lengths, and these are the legs of each
triangle, we see that the area of the right triangle is half the product of its side lengths,
as claimed.

And finally we can extend this back to general triangles, recovering the familiar formula
from high school geometry, that a triangle’s area is given by 𝐴 = 1

2𝑏ℎ

Proposition 3.3 (Area of a Triangle). The area of a triangle is half the product of its base
and its height.
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3.2. Proving the Pythagorean Theorem

Exercise 3.2. Prove Proposition 3.3.

Hint - consider two cases: does the top vertex of the triangle lie over the base, or does it not?
In both cases, try to use what we know about right triangles to help.

3.2. Proving the Pythagorean Theorem

This theorem has been proved many times! Indeed, there is an entire textbook by Elisha
Scott Loomis devoted to distinct proofs of the Pythagorean theorem, collecting 367 in
all, and this website gives 119 distinct proofs for you to peruse.

Euclid even proved this proposition in two distinct ways in The Elements, first in Book
I, Proposition 47 and much later, in Book 6, Proposition 31.

Figure 3.4.: The configuration used by Euclid to prove Pythagoras’ Theorem in Book 1,
Proposition 47.

However, as with many things in mathematics - time brings new insights and clairty
even to the oldest of problems. The styles of proof that I personally findmost elegant are
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3. Pythagoras

all rearrangement proofs: starting with one collection of shapes and moving the pieces
around in a way that forces the truth of the theorem.

A particularly ingenious rearrangement proof was devised in the mid 800s CE by Thābit
ibn Qurra (full name ,( a polymath
from Bagdad who made contributions to mathematics, astronomy and medicine.

Proof.

Exercise 3.3. Justify that the resulting final shape here (in the proof by Qurra above)
is indeed a square.

My favorite proof of the pythagorean theorem needs no words to be convincing: it’s
core idea is contained in the following diagram.

Proof. The blue areas in these two pictures are the same, as all we have done is slide
around the triangles.
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3.2. Proving the Pythagorean Theorem

Of course, to make this rigorous we have to explain why the re-arrangement really is
the same square.

Variants of this proof were discovered by the 12th century Hindu mathematician
Bhaskara (Bhaskara II), and even much ealier, appearing in the Chinese astronomical
text Zhoubi Suanjing ( ) from the second century BCE (and, claiming to record
works from the 11th century BCE).

Exercise 3.4. Explain how the diagram from the Zhoubi Suanjing shows that 𝑎2 +𝑏2 =
𝑐2 using the formulas we’ve derived for the areas of squares and right triangles, and
some algebra.
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3. Pythagoras

3.3. The Irrationality of √2
Traditionally the realization that irrational numbers must exist is attributed to Pythago-
ras (or his followers, the Pythagoreans). While the usual story is likely apocryphal
(where the Pythagoreans kept as a strict secret the existence of irrational numbers, and
murdered Hippasus for divulging it), their discovery nonetheless revealed a tension be-
tween two pillars of Greek mathematics

• Lengths constructed in Euclidean geometry are ‘real’
• Any two lengths can be measured by a common ratio.

The first of these is merely stating that the Axioms of euclidean geometry are construc-
tive - a proof in Euclidean geometry is a step-by-step recipe to really construct some
line segment, polygon, or circle. So if the axioms say you can make something, you
really can make it!

Exercise 3.5. Use the constructions of the previous section together with the
Pythagorean theorem to prove √2 exists.

The second was born out by centuries of experience, in both mathematics and music
all known quantities came in common ratios. Notes could be measured relative to each
other, as could lengths. Ratios ruled the cosmos (today, we would say the Greeks be-
lieved in the number line ℚ of rational numbers).

Many proofs of the irrationality of √2 have been devised during the 2500 years since
its discovery, with perhaps the most famous still being that recorded by Euclid, often
phrased algebraically as proof by contradiction using fractions in lowest terms. But
there are also purely geometric proofs of this fact. Below is a relatively modern one,
devised by Stanley Tennenbaum around 1950.

Theorem 3.2. The Square Root of 2 is not a rational number.

Assume that √2 = 𝑚/𝑛 is the ratio of two whole numbers, so 2 = 𝑚2/𝑛2, or 2𝑛2 = 𝑚2.
Geometrically, this means there is a square with integer side lengths (𝑚), whose area is
exactly twice the area of another integer-side-length square (𝑛).
Now take the two smaller squares and position them inside the larger. They don’t fit
disjointly (remember, the sum of their areas is the entire square! So if they leave any of
the square unfilled they must overlap somewhere else to make up for it).

Actually, this picture determines three new squares, along the diagonal - two unfilled
and one “double covered” by the overlapping yellow ones.
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3.3. The Irrationality of √2

Figure 3.5.: A square with integer side lengths (blue) whose area is twice that of another
integer square (yellow).

Figure 3.6.: Placing two of the smaller inside the larger must cause an overlap.

Figure 3.7.: This determines three new squares down the diagonal.
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3. Pythagoras

What do we know about these three squares? Well, they all have integer side lengths, as
they are differences of integer side length squares (thus, they’re smaller) than the side
lengths of our original squares. But what can we say about their areas?

The two original yellow square’s areas exactly sum to the blue squares area: this means
the amount they miss (the two smaller blue squares) equals exactly the amount of over-
lap (the red square). So these new squares have the property that twice the area of the
smaller add up to the area of the larger! This is just the start of what could easily become
an infinite process: we now have a procedure that takes any integer square solution and
produces a new solution with smaller squares. We could repeat this process again and
again, getting ever smaller squares.

Figure 3.8.: From this, we can do an infinite regress.

But this clearly cannot be! It is impossible to make a list of ever decreasing positive
integers, as there is a smallest positive integer: one! Assuming there was any rational
solution to √2 = 𝑚/𝑛 gave us an infinite procedure to make smaller and smaller integer
solutions forever, which cannot happen. Thus there cannot be any solutions at all!

And, the square root of 2 must be irrational.

Exercise 3.6 (The Square Root of 3). Construct a similar argument showing that it
is impossible to find two integer side-length equilateral triangles where one has three
times the area of the other.
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4. Archimedes

In all six books and 465 propositions of The Elements, Euclid never attempts to measure
the length of a single curve, nor the area of a non-polygonal figure. Pristine, Greek,
axiomatic geometry was about lines, and figures made out of them.

Curves were a different sort of object, a different category or type of thing in the mind
of some of the ancients. Much as we would never try to measure the length of a gallon,
they would never try to measure the length of a curve.

But to Archimedes, it was not a matter of kind, but of technology. Curves could be
measured, if only the correct tools for the job could be developed.

4.1. Measurement of the Circle

In 250BCE Archimedes wrote a mathematical text entitled Κύκλου μέτρησις, or “Mea-
surement of the Circle”. While likelymuch of the text has been lost to time, an important
theorem remains

Theorem 4.1 (Area of the Circle: Archimedes). The area of any circle is equal to the
area of a right triangle with one side equal to the circle’s radius, and the other side to the
circle’s circumference.

This is the first time in greek mathematics that a curved object has been equated to a
straight one. The idea of archimedes’ argument is both beautiful and ingenious, but
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4. Archimedes

the difficulties of following it through using the mathematics of the time were consid-
erable.

Archimedes began by approximating the circle by a polygon with a large number of
sides.

Figure 4.1.: A polygonal approximation of the circle.

He then cut the polyogn into triangles, and “unrolled it” along its perimeter, into a saw-
tooth of wedges. This unrolling has not changed the total area, so this line of triangles
has the same area as the original polygon.

Figure 4.2.: Unrolling a polygon into triangles.

Then, Archimdes recalls that the area of a triangle is given by half its base times its
height: that means if you shear a triangle, the area is unchanged as both the base and
height are not altered by the procedure.

Figure 4.3.: Shearing a triangle leaves area invariant.

So, Archimedes shears all of the triangles along the sawtooth to the left, until all of their
vertices coincide atop the perpendicular to the leftmost edge.
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4.1. Measurement of the Circle

Figure 4.4.: Shearing the sawtooth produces a right triangle.

Thus, for every regular 𝑛-gon, archimedes can find an exact right triangle which has
the same area, and whose height is the radius of the polygon and whose base is the
perimeter. Archimedes then very carefully argues that as the number of sides of the
polygon goes to infinity, the difference of its area from the circle, goes to zero, and the
difference of its perimeter from the circumference of the circle does as well. Thus, the
circle must share the same property as the polygons, it must have the same area as a
right triangle made from its radius and circumference!

It is important one does not come away wtih the impression that it must just ‘obviously’
work, and that once Archimedes had his argument for polygons he was essentially done.
Perhaps the best way to see this is to consider for yourself a seemingly analogous argu-
ment, which completely fails.

Exercise 4.1 (Convergence to the Diagonal). Consider a simpler analog of Archimedes’
situation, where instead of trying to measure a curve using straight lines, we are trying
to measure a straight diagonal line using only horizontal and vertical segments. The
following sequence of paths converges pointwise to the diagonal of the square, but
what happens to the lengths?

If you believed that because this sequence of curves limits to the diagonal, its sequence
of lengths must limit to the length of the diagonal, what would you have conjectured
the pythagorean theorem to be?

To compute the convergence of areas, Archimedes was able to make clever use of the
already existing area axioms (of Euclid’s common notions, our Definition 3.1). How-
ever, to measure the length of a curved segment, Archimedes had to introduce two new
axioms (as the measurement of curves is not possible in Euclid’s framework).
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4. Archimedes

Definition 4.1 (Archimedes Axiom I). If 𝑝 and 𝑞 are distinct points in the plane, the
line segment from 𝑝 to 𝑞 is the shortest of all paths connecting 𝑝 to 𝑞.

Figure 4.5.: The straight line is shorter, per Axiom I

Definition 4.2 (Archimedes Axiom II). If there are two convex paths from 𝑝 to 𝑞, and
one lies inside the convex region defined by the other, than that one is shorter.

A convex path was defined
rigorously by Archimedes

in terms of a convex
region. He called a region
convex if the line segment
connedting any two points

of the region lied wholly
within the region. A path

was convex if when the
endpoints were joined with
a straight line, the region
enclosed by the path and

line is convex

Figure 4.6.: The inside curve is shorter, per Axiom 2

Archimedes could not prove these axioms, as there was no deeper fundamental theory
of lengths to rely on. However by formulating his argument axiomatically, he located
any possible uncertainty in the axioms themselves: if these two plausible statements
were true, then his striking conclusion necessairly followed.

Like much of Archimedes’ work, these axioms were incredibly precient and hit on deep
truths of mathematics. In our modern re-building of geometry we will in fact take
Archimedes’ axiom 1 as the definition of a straight line (CITE). And Archimedes’ re-
striction to only considering convex curves was also essential: we’ve already seen in
Exercise 27.11 how delicate arguments can be. But it’s even worse than this: when you
drop the convexity requirement its not even true anymore that all curves must have a
length (see the bit at the end of this section for an example).
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4.1. Measurement of the Circle

The surviving text of Measurement of the Circle is only fragmentary, but if you wish to
read some of the argument in its original (translated) form you can find it here.

Should you open this text youmay be at first shocked by the quantity of nubmers you see
- in Greek works usually geometry reigns supreme and there is essentially no algebra to
be found. But here Archimedes takes the opportunity to deduce a practical consequence
from the theoretical development discussed above.

Figure 4.7.: Archimedes’ calculation of 𝜋 using the first several stages of the method
of exhaustion: he computed provably over- and under-estimates (by #def-
archimedes-axiom-2) starting with hexagons, and iteratively doubling the
number of sides

Sides Inscribed Circumscribed

6 3.0 3.4641
12 3.1058 3.2154
24 3.1326 3.1597
48 3.1394 3.1461
96 3.1410 3.1427

A Fractal in the Plane

The Koch Snowflake is a fractal, defined as the limit of an infinite process starting from
a single equilateral triangle. To go from one level to the next, every line segment of the
previous level is divided into thirds, and the middle third replaced with the other two
sides of an equilateral triangle built on that side.
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4. Archimedes

Figure 4.8.: The Koch subdivision rule: replace the middle third of every line segment
with the other two sides of an equilateral triangle.

Figure 4.9.: The first six stages 𝐾0, 𝐾1, 𝐾2, 𝐾3, 𝐾4 and 𝐾5 of the Koch snowflake proce-
dure. 𝐾∞ is the fractal itself.
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4.2. Quadrature of the Parabola

Doing this to every line segment quickly turns the triangle into a spiky snowflake like
shape, hence the name. Denote by 𝐾𝑛 the result of the 𝑛𝑡ℎ level of this procedure.

Say the initial triangle at level 0 has perimeter 𝑃 , and area 𝐴. Then we can define the
numbers 𝑃𝑛 to be the perimeter of the 𝑛𝑡ℎ level, and 𝐴𝑛 to be the area of the 𝑛𝑡ℎ level..

Exercise 4.2 (The Koch Snowflake Length). What are the perimeters 𝑃1, 𝑃2 and 𝑃3?
Conjecture (and prove by induction, if you’ve had an intro-to-proofs class) a formula
for the perimeter 𝑃𝑛.
Explain why as 𝑛 → ∞ this diverges (using the type of reasoning you would give in a
calculus course): thus, the Koch snowflake fractal cannot be assigned a length!

Before doing the next problem: ask yourself what happens to the area of an equilateral
triangle when you shrink its sides by a factor of 3? Can you draw a diagram (similar to
that from last week’s Exercise 27.5 but larger) to see what the ratio of areas must be?

Exercise 4.3 (The Koch Snowflake Area). What are the areas 𝐴1, 𝐴2 and 𝐴3 in terms
of the original area 𝐴?

Find an infinite series that represents the area of the 𝑛𝑡ℎ stage 𝐴𝑛 (if you’ve taken an
intro to proofs class or beyond - prove it by induction!). Use calculus reasoning to sum
this series and show that while the Koch snowflake does not have a perimeter, it drtoes
have a finite area!

4.2. Quadrature of the Parabola

Archimedes also found the area enclosed by a segment of a parabola and a straight line
through an ingenious infinite process. His theorem relates the area of this parabolic
segment to the area of the largest triangle that can be inscribed within.

Theorem 4.2. The area of the segment bounded by a parabola and a chord is 4/3𝑟𝑑 s the
area of the largest inscribed triangle.

After first describing how to find the largest inscribed triangle (using a calculation of
the tangent lines to a parabola), Archimedes notes that this triangle divides the remain-
ing region into two more parabolic regions. And, he could fill these with their largest
triangles as well!

These two triangles then divide the remaining region of the parabola into four new
parabolic regions, each of which has their own largest triangle, and so on.
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Figure 4.10.: A parabolic region and its largest inscribed triangle

Figure 4.11.: Archimedes’ infinite construction of the parabolic segment from triangles
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4.2. Quadrature of the Parabola

Archimedes proves that in the limit, after doing this infinitely many times, the triangles
completely fill the parabolic segment, with zero area left over. Thus, the only task re-
maining is to add up the area of these infinitely many triangles. And here, he discoveres
an interesting pattern.

We will call the first triangle in the construction stage 0 of the process. Then the two
triangles we make next comprise stage 1, the ensuing four triangles stage 2, and the next
eight stage 3.

Proposition 4.1 (Area of the 𝑛𝑡ℎ stage). The total area of the triangles in each stage is
1/4 the total area of triangles in the previous stage.

If 𝐴𝑛 is the area in the 𝑛𝑡ℎ stage, Archimedes is saying that 𝐴𝑛+1 = 1
4𝐴𝑛. Thus

𝐴0 = 𝑇 𝐴1 = 1
4𝑇 𝐴2 = 1

16𝑇 𝐴3 = 1
64𝑇 …

And the total area 𝐴 is the infinte sum

𝐴 = 𝑇 + 1
4𝑇 + 1

16𝑇 + 1
64𝑇 + ⋯

= (1 + 1
4 + 1

16 + 1
64 + ⋯) 𝑇

Now Archimedes only has to sum this series. For us moderns this is no trouble: we
recognize this immediately as a geometric series

But why is it called geometric? Well (this is not the only reason, but…) Archimedes was
the first human to sum such a series, and he did so completely geometrically. Ignoring
the leading 1, we can interpret all the fractions as proportions of the area of a square.
The first term 1/4 tells us to take a quarter of the square

The next term says to take a quarter of a quarter more,

And so on. Repeating this process infinitely, Archimedes ends up with the followign
figure, where the highlighted squares on the diagonal represent the completed infinite
sum.

He then notes that this is precisely one third the area of the bounding square, as two
more identical copies of this sequence of squares fill it entirely (just slide our squares
to the left, or down). Thus, this infinite sum is precisely 1/3, and so the total area is 1
plus this, or 4/3
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Figure 4.12.: The first term: 1/4

Figure 4.13.: The second term: 1/4 + 1/16

Figure 4.14.: The infinite process: 1/4 + 1/16 + 1/64 + ⋯
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4.3. The Sphere and the Cylinder

Figure 4.15.: The area of the parabola is the yellow shaded region in these squares

Exercise 4.4. Use the result of Exercise 27.5 (that you can inscribe an equilateral trian-
gle with half the side lengths) to produce an alternative proof of Archimedes sum, but
dividing up a triangle instead of a square.

Exercise 4.5. Construct an argument in the same spirit as archimedes to show the
following equality:

∞
∑
𝑛=1

(13)
𝑛
= 1

2
Can you cut a shape iteratively into thirds? It may not be as pretty as Archimedes’, but
thats oK!

4.3. The Sphere and the Cylinder

Archimedes continued his investigations of curves into the third dimension, where he
proved fundamental results about the sphere.

Theorem 4.3 (Sphere Volume: Archimedes). The volume of the sphere is equal to the
volume of its enclosing cylinder, minus the right circular cone with the same base and
height.

That is, the sphere’s volume is 2/3rds that of its enclosing cylinder.

Like before, Archimedes required careful use of the method of exhaustion to prove that
equality held in the limit. Modern calculus allows us to reach the same result directly
from Archimedes’ insight much faster.
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Exercise 4.6 (Sphere and Cone Slices). Using Calculus, find the volume of both of these
shapes as volumes of revolution and show they are equal.

But Archimedes was not content to undertand the volume of the sphere, he also wanted
to relate its surface area to the area of a known shape. He succeeded via an absolutely
ingenious argument, to prove the following

Theorem 4.4 (Sphere Surface Area: Archimedes). The surface area of a sphere is equal
to that of its enclosing cylinder.

Mathematics yutuber 3Blue1Brown has made an excellent video discussing Archimedes
proof, which I encourage you to watch: we would have a movie day in class if I we did
not have many other interesting places to go!

https://youtu.be/GNcFjFmqEc8?feature=shared

Archimedes himself was so proud of this argument that he instructed that a sphere and
cylinder be engraved on his tombstone. After he was killed during the Roman invaison
of Syracruse in 212BCE, his tomb was quickly forgotten, only to be found centuries later
when the great roman orator Cicero searched it out in 75BCE. In his own words:

“Once, while I was superintendent in Syracuse, I brought out from the dust
Archimedes, a distinguished citizen of that city. In fact, I searched for his
tomb, ignored by the Syracusans, surrounded on all sides and covered with
brambles and weeds. The Syracusan denied absolutely that it existed, but I
possessed the senari verses written on his tomb, according to which on top
of the tomb of Archimedes a sphere with a cylinder had been placed. But
I was examining everything with the eyes … And shortly after I noticed a
small hill not far emerged from the bushes. On it there was the figure of
a sphere and a cylinder. And I said immediately to the Syracusans “That’s
what I wanted!” > Cicero, 75 BC

If you are interested in reading Archimedes’ original work a translation of the paper
The Sphere and the Cylinder is available here.
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Part II.

Calculus
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5. Fundamental Strategy

Calculus is the story of humanity’s quest to understand infinity: dealing with the in-
ifnitely small (differentiation), infinitely large (convergence), and processes that occur
infinitely often (sequences, and infinite series). Out of this philosophical quandries grew
an extremely useful set of mathematical tools that radically changed our world.

No longer were we constrained by the straight line geometry of the Greeks, or even the
algebra of polynomials from the Middle East. The new mathematical tools provided a
means of calculating - or a calculus with arbitrary curves.

The Fundamental Strategy of Calculus Upon zooming in far enough,
functions appear linear. At this level of zoom, you can replace difficult
(nonlinear) problems with simple (linear) ones

This was Archimedes’ fundamental insight. In trying to compute the area of a circle, he
divided it into small circluar wedges. Of course, it was no easier to calculate the area of
a wedge than it was to calculate the area of the circle as a whole - as each wedge still had
a curved (nonlinear) side. But - as the number of wedges grew - each wedge shrank, and
allowed us to zoom in on a smaller and smaller piece of the curve. The farther we zoom,
the closer this small curved arc is approximated by a straight line - making our problem
into a linear one: we replace the area of a curved sector with the area of a triangle!

Figure 5.1.: Large circular sectors are not well approximated by triangles But small circu-
lar sectors only have a tiny piece of circular arc. Tiny arcs are approximately
linear, so small sectors are well approximated by triangles.
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This insight was discovered time and again over the following twenty centuries, by
mathematicians the world over. As this is a geometry course - and not one on the
history of calculus - we will not have the time to treat many of these amazing insights
with the respect and awe they deserve. (Though, for those interested in such matters -
consider taking Real Analysis with me in the spring!).

5.1. Infinitesimal Space

In the original, pre-rigorous formulations of calculus, mathematicians had the correct
picture in thier minds - that if you zoom in far enough on any smooth graph, it should
look linear. But they had difficulty putting this intuition on a firmmathematical footing.
Of course, at any finite level of zoom the curve is not linear, but still curves very slightly!
It’s only in the limit of infinite zoom that this approximation becomes exact.

But at the level of infinite zoom, what is the resulting line made out of? It can’t be made
out of regular points (𝑥, 𝑦) on the plane: as these points are what makes up the curve. It
must instead bemade out of some new, infinitesimally small numbers. The intuitionwas
that infinitely near every number 𝑥 on the line, there were also infinitesimal numbers
nearer to 𝑥 than any other other “normal” (finite) real number. And infinitesimally near
any point 𝑝 in the plane, there were infinitesimally small points.

But immediately from this idea sprung forth many questions: how many of these in-
finitely small numbers must there be? If 𝜖 is one of these infinitesimals near 𝑥 , then
what about 2𝜖? That must still be infinitesimally near to 𝑥 , as 𝜖 is so so so small! Sim-
ilarly, 𝑘𝜖 must be infinitesimally near 𝑥 for any 𝑘: there’s an entire number line of
infinitesimal numbers near every real number!

Figure 5.2.: Tangent space to a point on the line.

What about in the plane? If 𝑣 and 𝑤 are two points infinitesimally close to 𝑝, then what
about 𝑣 + 𝑤 , or 𝑘𝑣 + 𝑐𝑤 for scalars 𝑘, 𝑐? These must also be infinitesimally near 𝑝: so
it appears there is an entire plane of infinitesimal points that must be near every finite
point!
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Figure 5.3.: Tangent space to a point on the plane.

This mental picture seemed to make perfect sense, but there were some deep questions.
What are the rules of arithmetic for infinitesimally small numbers? Using arithmetic
for just infinitesimal numbers alone, or just finite (normal) numbers alone posed no
trouble, but strange things happened if you tried to combine them. If 𝜖 is infinitely
close to zero, what is the number 1/𝜖? It must be bigger than all normal numbers: so,
is it inifnity? But then what is 2/𝜖? Another infinity larger than the first? Luckily, we
don’t have to worry about these questions, as during the development of Real Analysis
mathematicians proved an important theorem:

Theorem 5.1. The real line does not contain any infinitesimal numbers.

This tells us as geometers that we should not be trying to combine the arithmetic of
finite and infinitesimal numbers, and should instead keep them separate! This in fact
makes things easier : at each point of the plane we have a plane of infinitesimal numbers,
but different infinitesimal planes do not mix together, or with the points of the space.
Because we often use these infinitesimal numbers to describe tangents to curves, the
modern terminology for these infinitely zoomed in spaces are tangent spaces

Definition 5.1 (Tangent Space to the Line). To every point 𝑥 ∈ ℝ, there is attached a
separate real line of infinitesimal numbers, denoted 𝑇𝑥ℝ and called the *tangent space
to ℝ at 𝑥 . Inisde a fixed tangent space we can write down linear equations, but points
of 𝑇𝑥ℝ cannot be combined with points of ℝ itself, or 𝑇𝑦ℝ for any other point 𝑦 .

Definition 5.2 (Tangent Space to the Plane). To every point 𝑝 ∈ ℝ2, there is attached
a separate plane of infinitesimal vectors, denoted 𝑇𝑝ℝ2 and called the *tangent space to
ℝ2 at 𝑝. Inisde a fixed tangent space the rules of linear algebra apply, but points of 𝑇𝑝ℝ2
cannot be combined with points of ℝ2 itself, or 𝑇𝑞ℝ for any other point 𝑞.
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Figure 5.4.: There is a separate line of infinitesimal numbers attached to every single
point.

“Nice enough” here means
that when you zoom in,
linear algebra begins to
apply. The collection of
spaces for which this is

possible are called
manifolds.

These definitions look very similar, and invite an immediate generalization. If 𝑋 is any
nice enough space, we can define the tangent space at every point as a vector space
attached to that point, with the same dimension as 𝑋 . We will make use of this more
and more as the book progresses.

To keep things straight, its useful to have some notation for tangent vectors, that will
help us remember where they are based at.

Definition 5.3. Let 𝑋 be a space (the line, the plane, etc) and let 𝑝 be a point of 𝑋 . Then
we denote the tangent space at 𝑝 as 𝑇𝑝𝑋 , and when we need to be extra-precise, we put
𝑝 a subscript even on individual vectors, to show they live in 𝑇𝑝𝑋 . For example

𝑣𝑝 = ⟨1, 2⟩𝑝 = (12)𝑝

A warning - if you don’t keep careful track of where a vector is based, its easy to get
confused! The vector ⟨1, 1⟩ may represent an infinitesimal vector based at 𝑝 = (1, 1)
or an infinitesimal vector based at 𝑞 = (0, 1): but these two infinitesimal vectors are
different!

This will feel much more natural once we start actually doing calculus in this way.

5.2. Implementation

In broad strokes, modern applications of calculus follow closely Archimedes template.
Given a difficult, nonlinear problem, the first step is to zoom in: to look infinitesimally
in the tangent space of every point, where the problem simplifies and becomes linear.
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5.2. Implementation

Figure 5.5.: Tangent vectors at different points truly live in different spaces, even if they
have the same description with coordinates. It’s aways important to keep
track of where a vector is based.

Figure 5.6.: Zooming in to each tangent space replaces the original functionwith a linear
function.
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5. Fundamental Strategy

While zoomed in, we work infinitesimally and simplify the probelm as much as pos-
sible, taking advantage of the linear mathematics we now have to work with.

Figure 5.7.: Working infinitesimally often involves linear equations.

Once we have succeeded at this, we zoom out: pieceing back together the infinitesimal
linear information from all the relevant points into finite information answering the
original question.

Figure 5.8.: Zooming out: combining infinitely many linear problems to solve one non-
linear problem.

These steps may look different from problem to problem, but the overall strategy re-
mains unchanged. Most of the time the zoom in step involves some form of differentia-
tion, or tangent line approximation, but the zoom out step can be more varied. The most
common means of zooming out is integration combining infinitesimal information from
an infinite continnuum of points. But infinite summation is also a means of zooming
out - combining together an infinite sequence of infinitesimal terms. And sometimes,
zooming out requires no extra work at all: if we can solve the problem completely at
the infinitesimal level, our zoom out is only to come back up to reality and report the
answer.

Below are several familiar examples of the fundamental strategy in action, so you can
see the variety of methods fitting this general framework.

Example 5.1 (Area Under a Curve). Starting with a continuous function on an interval
[𝑎, 𝑏] in the real line, the goal is to find the area between the graph of 𝑓 and the 𝑥−axis,
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from 𝑥 = 𝑎 to 𝑥 = 𝑏:
Zoom In: If we look infinitesimally near a single point 𝑥 , we can approximate 𝑓 as
constant (even better than linear!).

Work Infinitesimally: Thus the infintesimal area is given by an infinitesimal rectangle
as the top side is no longer curved.

Zoom Out: To get the total area, we need to combine together (sum up) the areas of
these infinitesimal rectangles. At any finite level of zoom this would be a (Riemann)
sum, but at the inifnite level of zoom of calculus, this becomes an integral!

Area = ∫
𝑏

𝑎
𝑓 (𝑥)𝑑𝑥

Example 5.2 (Archimedes’ Parabola). To find the area under a parabolic segment,
Archimedes followed a similar approach, though without the modern theory of
integration. This makes the application of the fundamental strategy even more clear.

Zoom In: Fill the parabolic segment with more and more triangles. As the triangles
get smaller, they zoom in more and more on smaller segments of the parabola, which
are better and better approximated by the straight edges of the triagnles.

Work Infinitesimally: The area of each triangle is easy to calculate, and the relation-
ships between the areas of different triangles (for instance, those in level 𝑛 vs those in
level 𝑛+1) is deducible using Euclidean geometry. It turns out, the areas of the triangles
follow a pattern - at each level the new contribution is 1/4 the area of the previous.

ZoomOut: To find the area of the entire parabola, we must sum the areas accumulated
at every level. Its no longer relevant where these numbers came from as we know the
pattern: each number in the list is 1/4𝑡ℎ the previous. Its a geometric series! So zooming
out requires us only to sum this series - the sum gives the total area.

Example 5.3 (Computing Function Values). Consider the problem of evaluating a func-
tion line sin(𝑥): what is the value of sin(0.23)? Unlike polynomials the sine doesn’t seem
to have a nice formula that we can just plug 0.23 into…so, we use calculus to find one!

Zoom In: Some values of sin(𝑥)we do know how to calculate well: the simplemultiples
of 𝜋 that appear on the unit circle. So, we will zoom in on one of these: here choosing
𝑥 = 0 (as its close to 0.23). At this point, we cannot see anything about sin(𝑥) except its
value, and the value of its derivatives at 0.
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5. Fundamental Strategy

Work Infinitesimally: Differentiating sin repeatedly we see a pattern: its derivative
cycles through the following list: sin, cos, − sin, − cos and then repeats. We know how
to evaluate both sin and cos at 𝑥 = 0, so we can evaluate all the derivatives:

𝑓 (0) = 0, 𝑓 ′(0) = 1, 𝑓 ′′(0) = 0, 𝑓 ′′′(0) = −1, 𝑓 ′′′′(0) = 0⋯

Zoom Out: Now that we know the infinitesimal pattern, we must assemble all this
information into a function. Its easy to write down a linear function with 𝑓 (0) = 0,
𝑓 ′(0) = 1, jsut take 𝑓 (𝑥) = 𝑥 . To also get 𝑓 ′′(0) = 0 and 𝑓 ′′′(0) = −1 we need a cubic
function: 𝑓 (𝑥) = 𝑥 − 1

6𝑥3. And to get all the derivatives right we need an infinite series!

sin(𝑥) = 𝑥 − 1
3!𝑥

3 + 1
5!𝑥

5 − 1
7!𝑥

7 + ⋯

Summing this series at any point 𝑥 gives the value of sin at that point - even though we
only used the infinitesmal information at 𝑥 = 0 to derive it! With this formula, its no
trouble to evaluate sin(0.23), or any other value.

Example 5.4 (Maximizing a Function). Given a smoothly varying function 𝑓 (𝑥) on an
interval [𝑎, 𝑏], a difficult problem is to find the point 𝑥0 at which 𝑓 (𝑥) is largest.
Zoom In: Our main insight is that when a function has reached its maximum value, it
changes from increasing (before the peak) to decreasing (after the peak). Zooming in at
some point 𝑥 inside the interval (𝑎, 𝑏), the rate of change of 𝑓 at that point is captured
by the derivative. So we just need to study the derivative.

Work Infinitesimally: If a function is increasing the derivative is positive, and when
its decreasing it’s negative. So, when it switches from increasing to decreasing, we must
have 𝑓 ′(𝑥) = 0. This has replaced a calculus problem (maximization) with an algebra
problem (solving for the zero of a function).

Zoom Out: To zoom back out, we need to consider the entire interval and make sure
we have found the answer. The calculus procedure above let us find all the points where
𝑓 ′(𝑥) = 0 inside the interval - these are potential places for the maximum to occur. The
other potential places are at teh endpoints of the interval. So, we need to compare the
value of 𝑓 all these points, and report the largest value we found.

In this Part of the book, we will do a deep dive into these three components of the fun-
damental strategy, so that we can utilize this powerful tool in the rest of our geometric
investigations. First, we will learn about working infintiesimally - that is, what linear
functions look like in one and two dimensions. Then we will learn how to zoom in -
starting with a nonlinear function and differentiating it to get something linear. And
finally, we will review methods of zooming out: integration and power series.
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5.3. Beyond Calculus

Of course, this is not the end of the mathematical story: the fundamental strategy of
calculus is not an axiom declaring that all functions are locally linear, but rather a guide,
saying that when you don’t knowwhat to do, try zooming in, and if the function appears
linear - then there is an entire new set of tools waiting to be used.

Mathematicians knew from the beginning that there were functions which did not al-
ways look linear up close: for instance, |𝑥| looks locally like a 𝑣 shape at the origin, not
like a line. But of course, this function is locally linear everywhere else. It wasn’t until
1872 that the first example of a function that was provably continuous, but differentiable
nowhere was discovered - by Karl Weierstrass.

These days, after the advent of modern computing technology, we have been able to
explore the collection of functions for which calculus does not work more deeply, and
have found truly beautiful mathematics lurking among the shadows.

However, even with the acknowledgement of such weird and wonderful creatures, cal-
culus still reigns supreme. Our best understanding of the world, and our entire modern
theory of geometry - is built upon its foundation.
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6. Working Infinitesimally

To use the fundamental strategy of calculus, we need to get good at zooming in - replac-
ing a function with its linearization, as well as zooming out - putting these linearizations
back together to answer our question. Fundamental to both of these tasks is understand-
ing linear things themselves, so this is where we beigin.

This class does not assume any previous knowledge of linear algebra, and we will intro-
duce everything we need along the way (which is not that much! Wewill be using linear
algebra as a tool, not delving into it deeply as the object of study itself). In this chapter
I’ve collected the essential pieces of linear algebra that will come up throughout the
course. For any of you who have taken linear algebra in the past, I would recommend
you skim through this chapter to refresh your memory. For those of you who have not
- there is no need to read the whole thing right now. Treat this chapter as a reference
that you can return to time and again, as our toolkit in class expands. For now, its only
necessary to read the section on vectors and the section on matrices.

6.1. Vectors

Vectors are a specific way to describe points in space. To picture vectors, often arrows
are drawn based at a fixed point, called the origin. The length of the vector is called
its magnitude, and we interpret this arrow as storing the data of a magnitude and a
direction based at this origin. A one dimensional vector is an arrow on the line. If we
call its origin zero, then We can think of it as ending at some particular real number:
the size (or absolute value) of the number gives its magnitude, and the sign (positive or
negative) is the direction.

For students familiar with
linear algebra, this means
we are essentially fixing
the basis ⟨1, 0⟩, ⟨0, 1⟩

Vectors do not exist all by their lonesome, but instead come together in a collection
called a vector space. The subject of linear algebra is really the study of vector spaces,
and the power that this level of abstraction can provide. However, we will be much
more pragmatic in this course: the only vector spaces we will ever need are the spaces ℝ
(the real line), ℝ2 (the plane), and ℝ3 (three dimensional space). Because of this, we will
always be able to describe vectors in cartesian coordinates, writing them unambiguously
as 𝑛-tuples of real numbers like this:
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6. Working Infinitesimally

𝑣 = ⟨𝑎, 𝑏⟩ = (𝑎𝑏)

Definition 6.1 (Standard Basis). For the vector space ℝ𝑛, the standard basis is the list
of vectors all of whose entries are zero except for a single entry, which is equal to 1. For
example, the standard basis for ℝ2 is

𝑒1 = (1, 0) 𝑒2 = (0, 1)

And the standard basis for ℝ3 is

𝑒1 = (1, 0, 0) 𝑒2 = (0, 1, 0) 𝑒3 = (0, 0, 1)

6.1.1. Vector Arithmetic

Vectors, much like numbers, can be combined and modified using operations: they can
be summed up using vector addition, and multiplied by numbers using scalar multiplica-
tion.

Definition 6.2 (Vector Addition). If 𝑢, 𝑣 are two vectors, then their sum is the vector
whose tip lies at the opposite side of the paralleogram spanned by 𝑢 and 𝑣 . In coordi-
nates, this is just the component-wise sum of the two vectors:

𝑢 = ⟨𝑎, 𝑏⟩ 𝑣 = ⟨𝑐, 𝑑⟩

𝑢 + 𝑣 = (𝑎𝑏) + (𝑐𝑑) = (𝑎 + 𝑐
𝑏 + 𝑑)

Wewill often see vector addition as a means of performing a translation: adding a vector
𝑣 shifts a point 𝑝 in the plane to a new point 𝑝 + 𝑣 . Doing this simultaneously to all
points in the plane slides the entire plane by the vector 𝑣 . For example, if 𝑣 = ⟨1, 2⟩ then
translation by v$ is the function

(𝑥, 𝑦) ↦ (𝑥𝑦) + (12) = (𝑥 + 1
𝑦 + 2)

The second operation we can do to vectors is called scalar multiplication: thischanges
the length of a vector, without changing its direction (though, it flips the vector around
backwards when the scalar is negative).
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Figure 6.1.: Vector Addition

Definition 6.3 (Scalar Multiplication). If 𝑣 is a vector and 𝑘 is a number (scalar), we
can create a new vector 𝑘𝑣 which points in the direction of 𝑣 , but is 𝑘 times as long. In
coordinates, if 𝑣 = ⟨𝑎, 𝑏⟩ then

𝑘𝑣 = 𝑘 (𝑎𝑏) = (𝑘𝑎𝑘𝑏)

The collection of all scalar multiples of a nonzero vector 𝑣 trace out the line through
the origin, containing the vector 𝑣 . Combining this with vector addition to allow for
translations, we can easily describe lines in space in the language of linear algebra.

Definition 6.4 (Affine Lines). An affine line in a vector space is a function of the form

ℓ⃗(𝑡) = 𝑝 + 𝑡𝑣

We can refer to such a line as the line through 𝑝 in direciton 𝑣 .
The youtuber 3Blue1Brown has put together an excellent video series called the
“Essence of Linear Algebra”. While much if it is beyond what we need for this course -
I highly recommend watching the entire series! I’ll post throughout this article a few
of the installments that are particulalrly relevant: here’s the introductory video on
vectors.

https://youtu.be/fNk_zzaMoSs?feature=shared
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Figure 6.2.: Scalar Multiplication

Figure 6.3.: Affine Lines
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6.2. Linear Maps

The operations of addition and scalar multiplication are of fundamental importance to
vectors. Because of this, functions which play nicely with addition and scalar multipli-
cation will

Definition 6.5 (Linear Maps). A function 𝐹 between vector spaces is a linear map if:

• It preserves addition: 𝐹(𝑢 + 𝑣) = 𝐹(𝑢) + 𝐹(𝑣) for all vectors 𝑢, 𝑣 .
• It preserves scalar multiplication: 𝐹(𝑐𝑣) = 𝑐𝐹(𝑣) for all scalars 𝑐 and all vectors 𝑣 .

It’s easy to find examples of functions which are not linear: all they have to do is violate
one of these two properties. For example, 𝑓 (𝑥) = 𝑥2 is not linear since 𝑓 (𝑥 + 𝑦) =
(𝑥 + 𝑦)2 = 𝑥2 + 𝑦2 + 2𝑥𝑦 and 𝑓 (𝑥) + 𝑓 (𝑦) = 𝑥2 + 𝑦2, so 𝑓 (𝑥 + 𝑦) ≠ 𝑓 (𝑥) + 𝑓 (𝑦). In fact,
most functions are nonlinear.

Example 6.1 (1 Dimensional Linear Map). The single variable function 𝑓 (𝑥) = 2𝑥 is a
linear map. To see this, we check both addition and scalar multiplication:

𝑓 (𝑥 + 𝑦) = 2(𝑥 + 𝑦) = 2𝑥 + 2𝑦 = 𝑓 (𝑥) + 𝑓 (𝑦)
𝑓 (𝑐𝑥) = 2𝑐𝑥 = 𝑐2𝑥 = 𝑐𝑓 (𝑥)

Of course, nothing about the 2 above is special the functions 𝑓 (𝑥) = 𝑚𝑥 - which we
know from algebra classes to describe lines through the origin - are all examples of
linear maps. Examples get more interesting in two dimensions:

Example 6.2 (2 Dimensional Linear Map). The function 𝐹(𝑥, 𝑦) = (2𝑥, 𝑥 +𝑦) is a linear
map. Again, we just need to check addition and scalar multiplication. Let 𝑢 = ⟨𝑢1, 𝑢2⟩,
𝑣 = ⟨𝑣1, 𝑣2, and 𝑐 be any constant. Then check, using the rules we learned above, that

𝐹(𝑢 + 𝑣) = 𝐹(𝑢) + 𝐹(𝑣)
𝐹(𝑐𝑢) = 𝑐𝐹(𝑢)

Below is one relatively straightforward warm-up proposition using the definition of
linearity, which nonetheless proves very useful: linear transformations send lines to
lines.

Proposition 6.1 (Linear Maps Preserve Lines). If ℓ(𝑡) = 𝑝 + 𝑡𝑣 is an affine line and 𝐹 is
a linear map, then 𝐹(ℓ(𝑡)) is also an affine line.
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Proof. This is just a computation, together with the definition of linear map and affine
line. Plugging in ℓ(𝑡), we use that 𝐹 preserves addition, so𝐹(𝑝 + 𝑡𝑣) = 𝐹(𝑝)+𝐹(𝑡𝑣). Next
we use that 𝐹 preserves scalar multiplcation, so 𝐹(𝑡𝑣) = 𝑡𝐹 (𝑣). Putting it all together,

𝐹(𝑝 + 𝑡𝑣) = 𝐹(𝑝) + 𝑡𝐹(𝑣)

Since 𝐹(𝑝) and 𝐹(𝑣) are constant vectors, this result is of the form

vector + 𝑡 ⋅ vector

which is the same form we started with: so its also an affine line.

Figure 6.4.: 2D Linear Maps send lines to lines, so we can visualize them as squeezing
or stretching a grid

Here’s 3Blue1Brown’s video on Linear Transformations and Matrices: it does an abso-
lutely excellent job of displaying the geometric meaning of linear maps we just discov-
ered above, as well as motivating the definition of matrices (which we define below).

https://youtu.be/kYB8IZa5AuE?feature=shared

6.3. Matrices

Linear maps are very constrained objects: the fact that they preserve addition and scalar
multiplication tells us that its possible to reconstruct exactly what they do to any point
whatsoever from very little data. We will mostly be concerned with linear maps from
ℝ2 → ℝ2, so I’ll use this as an example.
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Say we know that 𝐿 is a linear map, and we also know what happens when we plug in
the vectors (1, 0) and (0, 1).

𝐿(1, 0) = (2, 3) 𝐿(0, 1) = (−1, 1)

How can we figure out what happens to (𝑥, 𝑦) after applying 𝐿? Well, first we use
addition and scalar multiplication to break down the vector (𝑥, 𝑦) into simpler pieces.

(𝑥, 𝑦) = (𝑥, 0) + (0, 𝑦) = 𝑥(1, 0) + 𝑦(0, 1)
Then we can feed this linear combination into the function 𝐿, and use the fact that it
preserves these operations to our advantage:

𝐿(𝑥, 𝑦) = 𝐿(𝑥(1, 0) + 𝑦(0, 1))
= 𝐿(𝑥(1, 0)) + 𝐿(𝑦(0, 1))
= 𝑥𝐿(1, 0) + 𝑦𝐿(0, 1)
= 𝑥(2, 3) + 𝑦(−1, 1)

We can further simplify this answer by using addition and scalar multiplication
(again!):

𝑥(2, 3) + 𝑦(−1, 1) = (2𝑥, 3𝑥) + (−𝑦, 𝑦)
= (2𝑥 − 𝑦, 3𝑥 + 𝑦)

Thus, from knowing only what 𝐿 does to the vectors (1, 0) and (0, 1), we can deduce the
entire formula for 𝐿

𝐿(𝑥, 𝑦) = (2𝑥 − 𝑦, 3𝑥 + 𝑦)

The takeaway from this computation is that remembering what a linear map does to
the standard basis vectors is of fundamental importance. In fact, this is exactly what the
notation of a matrix is all about!
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Definition 6.6 (Matrix). A matrix is an array of numbers. The following are all exam-
ples of matrices

(1 2) (37) (1 2
3 4) (

1 2
3 4
5 6

)

Definition 6.7 (Matrix of a Linear Map). If 𝐿 is a linear map, the matrix for 𝐿 has its
first column equal to the image of the first basis vector, the second column equal to the
image of the second basis vector etc. In symbols, for a map from ℝ2:

(
| |

𝐿(1, 0) 𝐿(0, 1)
| |

)

Example 6.3 (Matrix of a Linear Map). Consider the linear transformation 𝐿(𝑥, 𝑦) =
(2𝑥 −𝑦, 𝑥 + 𝑦). To find the matrix representation of 𝐿, we just need to compute 𝐿 on the
basis vectors (1, 0) and (0, 1):

𝐿(1, 0) = (21) 𝐿(0, 1) = (−11 )

The first of these is the first column of the matrix, and the second is the second column:
that’s all there is to it!

𝐿 = (2 −1
1 1 )

Exercise 6.1 (Matrix of a Linear Map). Find a matrix for the following linear maps:

• 𝐿 ∶ ℝ2 → ℝ2 which has the equation $𝐿(𝑥, 𝑦) = (4𝑥 − 3𝑦, 2𝑥 + 2𝑦)
• 𝑀 ∶ ℝ2 → ℝ which has the equation 𝐿(𝑥, 𝑦) = 2𝑥 − 6𝑦 .
• 𝑁 ∶ ℝ2 → ℝ3 with 𝐿(𝑥, 𝑦) = (𝑥 − 𝑦, 𝑥 + 𝑧, 𝑦 − 𝑧).

One of the best ways to understand linear maps is to visualize by hand how the trans-
form the plane. Below is a picture drawn on the Euclidean plane.

Applying the linear transformationwithmatrix ( 2 00 1 ) to this image turns the unit square
of rectangles with sides ⟨2, 0⟩ and ⟨0, 1⟩. This transforms our image as below

Similarly, the transformation ( −1/2 0
0 1 ) reflects the 𝑥 axis, while leaving the 𝑦 direction

unchanged.

But all sorts of changes can happen! Linear mpas can rotate, stretch, and squish our
oroginal square / image into any sort of parallelogram!
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Figure 6.5.: Stretching an image via a linear transformation.

Figure 6.6.: Compressing and reflecting an image via a linear transformation.

Exercise 6.2. Choose your own image on the plane (hand-drawn is great!), and draw
a reference image of it undistorted, inside the unit square. Then draw its image under
each of the following linear transformations:

(2 0
0 2) (1 1

0 1) (2 1
1 1) (0 −1

1 0 )

6.3.1. Composition & Multiplication

Now we have at our disposal an easy-to-remember, easy-to-write notation for linear
maps. All we do is store the results of the map on the standard basis! But how do we
use this? How can we actually apply this linear maps to points? Looking back to our
explicit example where ( 2 −11 1 ) corresonds to 𝐿(𝑥, 𝑦) = (2𝑥 − 𝑦, 𝑥 + 𝑦), its clear: the
first row stores the 𝑥 and 𝑦 coefficients of the first component, and the second row the
coefficients of the second component.

Definition 6.8 (Applying a Matrix to a Vector). Given the matrix 𝐿 = ( 𝑎 𝑏𝑐 𝑑 ), the linear
transformation associated to this is

𝐿(𝑥, 𝑦) = (𝑎 𝑏
𝑐 𝑑) (

𝑥
𝑦) = (𝑎𝑥 + 𝑏𝑦

𝑐𝑥 + 𝑑𝑦)
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This formula is called the multiplication of a matrix by a vector.

Now we know how to apply a linear transformation, but how do we compose them? If
I have two linear transformations, which are each a function ℝ2 → ℝ2, I can do one
after the other and get a new linear transformation. Abstractly, this is no problem. But
if I actually want to compute things? Each linear transformation is represented by a
matrix, how do I combine together two matrices in the right way to make a matrix for
the result?

Example 6.4. Its perhaps most instructive to do this directly yourself. Start wtih two
linear transformations, say 𝐿(𝑥, 𝑦) = (𝑥 − 𝑦, 2𝑥 + 𝑦) and 𝑀(𝑥, 𝑦) = (3𝑥 + 𝑦, 2𝑥 − 5𝑦),
and compose them, simplifying the result as much as you can. What are the matrices
for the three transformations 𝐿,𝑀 and 𝑀 ∘ 𝐿?

If you keep track of what you are doing during your simplificatoin process, you’ll notice
a pattern: you can deduce the matrix for the composition directly from the matrices of
the transformations themselves!

Definition 6.9 (Matrix Multiplication). If 𝐿 and 𝑀 are linear transformations with the
following two matrix representations

𝐿 = (𝑎 𝑏
𝑐 𝑑) 𝑀 = (𝑒 𝑓

𝑔 ℎ)

Then the linear transformation 𝐿 ∘ 𝑀 has the following matrix:

𝐿 ∘ 𝑀 = (𝑎 𝑏
𝑐 𝑑) (

𝑒 𝑓
𝑔 ℎ) = (𝑎𝑒 + 𝑏𝑔 𝑎𝑓 + 𝑏ℎ

𝑐𝑒 + 𝑑𝑔 𝑐𝑓 + 𝑑ℎ)

The 𝑖𝑗-entry of this matrix are formed by multiplying the 𝑖𝑡ℎ row of the first by the 𝑗 𝑡ℎ
column of the second element-wise, and adding up the results.

Early on in the course we will not have too much use for composing linear transforma-
tions explicitly, but once we reach the chapter on hyperbolic geometry - we will find
this operation extremely useful to help explore spaces we struggle to visualize.
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6.3.2. Inversion

How can we undo the behavior of a linear map?

Exercise 6.3. Given linear transformation 𝐿(𝑥, 𝑦) = (𝑥 + 𝑦, 𝑥 − 2𝑦), what vector does
𝐿 send to ⟨3, 4⟩?

In the exercise above, we attempted to undo the behavoir of 𝐿 for a single vector. If we
tried to do this for all vectors we would have a function that undoes the action of 𝐿. We
call this an inverse function

Definition 6.10 (Inverses). If 𝐿∶ 𝑋 → 𝑌 is a function, an inverse to 𝐿 is a function
𝑀 ∶ 𝑌 → 𝑋 which undoes the behavior of 𝐿. That is, for every 𝑥 ∈ 𝑋 , if we apply 𝐿 to
get 𝑦 = 𝐿(𝑥) ∈ 𝑌 , the inverse𝑀 takes 𝑦 back to 𝑥 . Similarly if we start with𝑀 and then
apply 𝐿 they undo eachother, so nothing changes. In symbols

𝑀(𝐿(𝑥)) = 𝑥 ∀𝑥 ∈ 𝑋 𝐿(𝑀(𝑦)) = 𝑦 ∀𝑦 ∈ 𝑌

Exercise 6.4. Try to invert the linear map from above: 𝐿(𝑥, 𝑦) = (𝑥 + 𝑦, 𝑥 − 2𝑦). Find
a function 𝑀(𝑥, 𝑦) = (𝑝𝑥 + 𝑞𝑦, 𝑟𝑥 + 𝑠𝑦) such that 𝑀(𝐿(𝑥, 𝑦)) = (𝑥, 𝑦) and vice versea.

If you do the above exercise carefully, you’ll find that the fact that the original linearmap
was (𝑥, 𝑦) ↦ (𝑥+𝑦, 𝑥 −2𝑦) did not matter: you could have used any constants at all, and
ran the same sort of argument for any linear transformation (𝑥, 𝑦) ↦ (𝑎𝑥+𝑏𝑦, 𝑐𝑥+𝑑𝑦) at
all! We will never have need to invert anything besides a 2 × 2 matrix, so the important
takeaway from this sectoin is the following general formula.

Proposition 6.2 (Inverse of a 2×2). If 𝐿 = ( 𝑎 𝑏𝑐 𝑑 ) is a linear transformation, it is invertible
if 𝑎𝑑 − 𝑏𝑐 ≠ 0, and the inverse has matrix

𝐿−1 = 1
𝑎𝑑 − 𝑏𝑐 (

𝑑 −𝑏
−𝑐 𝑎 )
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6. Working Infinitesimally

6.4. Determinants

In the formula for inverting a linear transformation above, a strange looking linear
factor showed up in front of the matrix: the reciprocal of 𝑎𝑑 − 𝑏𝑐. What does this
quantity measure?

A linear tranformation 𝐿 of the plane takes a square (spanned by the unit basis vectors
𝑒1, 𝑒2) to a parallelogram (spanned by the images of the basis vectors 𝐿(𝑒1) and 𝐿(𝑒2)). So,
ratio by which 𝐿 scales areas in the plane is captured by the area of the parallelogram
spanned by 𝐿(𝑒1) and 𝐿(𝑒2). How can we find this area? It helps to draw a picture of the
parallelogram we want. If 𝐿 = ( 𝑎 𝑏𝑐 𝑑 ), then 𝐿 sends the first basis vector to ⟨𝑎, 𝑐⟩ and the
second to ⟨𝑏, 𝑑⟩:

Figure 6.7.: The determinant measures the change in area under a linear map.

We can actually find this area in a pretty satisfying way using just what we’ve proven
about Euclidean geometry so far. We know the areas of squares, rectangles, and right
triangles, so let’s try to write the area we are after as a difference of things we know:

Exercise 6.5. Show the area of the parallelogram spanned by ⟨𝑎, 𝑐⟩ and ⟨𝑏, 𝑑⟩ is 𝑎𝑑 − 𝑏𝑐,
using the Euclidean geometry we have done, and the diagram above.

Definition 6.11 (Determinant). The determinant of a linear transformation𝑀 = ( 𝑎 𝑏𝑐 𝑑 )
is

det𝑀 = |𝑎 𝑏
𝑐 𝑑| = 𝑎𝑑 − 𝑏𝑐

Thus, the quantity we saw in the definition of the 2 × 2 matrix inverse was just 1/ det.
This makes sense: if 𝐿 scales up the area by a certain factor, then its inverse must undo
that scaling, it must scale by the reciprocal!
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Figure 6.8.: A formula for the determinant can be found knowing only the area of
squares, rectangles, and right triangles. (I learned this awesome diagram
from Prof Daniel O’Connor!)

Theorem 6.1 (Invertibility & The Determinant). A linear transformation is invertible if
and only if its determinant is nonzero.

This theorem lets us think of the determinant as a tool to detect invertibility. If the
determinant is zero, then the linear transformation takes a square to something of zero
area: a point, or a line segment! And then information has been lost - the square has
been crushed onto a smaller dimensional space - and there’s no undoing that.

So far we’ve figured out the meaning of the determinant when it is a positive number.
But it can also be negative: what does it mean to scale area by a negative number? It’s
easiest to see via an exmaple - the matrix ( −1 00 1 ) has determinant −1, and it flips an
image upside down across the 𝑥-axis. This is the meaning of a negative determinant - a
reflection!

We often refer to this concept formally with the term orientation. We say a function is
orientation preserving if it does not reflect, or flip an image, and orientation reversing if
it does. Thus, the determinant is not only an invertibility detector, but an orientation
detector as well.

Definition 6.12 (Orientation Preserving). A linear transformation is orientation pre-
serving if its determinant is a positive number.
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Figure 6.9.: Determinants: the first map expands the area by a factor of three, and the
second map expands by a factor of two but also reverses orientation, reflect-
ing the image.

6.5. Inner Products

Definition 6.13 (Euclidean Inner Product).

Definition 6.14 (Norm).
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7. Zooming In

7.1. Single-Variable Calculus

Given this new picture of where the infinitesimals of calculus live, its helpful to briefly
turn our gaze backwards and consider the calculus we already know in a new light.
Instead of drawing a function 𝑓 (𝑥) as a graph on 𝑥 and 𝑦 axes, we will start by thinking
of it as a rule, telling us how to move around points on the line. Here’s a depiction of
𝑦 = 𝑥2 from this perspective.

Figure 7.1.: The function 𝑓 (𝑥) = 𝑥2 as a rule taking points on the line to other points on
the line, visualized for points between −1.25 and 1.25.

This may be a bit hard to interpret at first, mostly because of all the crossing lines: the
squaring operation folds the line in half, sending all the negative numbers to positive
numbers, which clutters our view. The same point can be made more clearly with a
function that does not do this, such as 𝑦 = 𝑥3:

Figure 7.2.: The function 𝑓 (𝑥) = 𝑥3 as a mapping from the line to itself.
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It’s quite easy to see from this map that our function 𝑓 (𝑥) = 𝑥3 is stretching the line at
some points, and compressing it at others. The gray lines connecting inputs to outputs
guide our eyes in this qualitative judgement, where we see that points very near the ori-
gin are getting pulled closer and closer together, whereas points further out are getting
pulled apart.

But this is all an analysis of finite points along the line: what we are really interested
in of course, is the infinte level of zoom required by calculus. To see this, we need to
imagine the infinitesimal tangent spaces at each point. Below, I’ve illustrated this near
a point undergoing infinitesimal stretch, as well as a point undergoing infinitesimal
compression.

Figure 7.3.: The effect of a function on tangent spaces at each point is a linear stretch or
compression

After passing to the tangent space, we expect (via the Fundamental Strategy) that our
function becomes a linear function. But the tangent spaces are just lines, and whats a
linear map from a line to a line? It’s just multiplication by a constant (a 1 × 1 matrix…).
Which constant? The derivative, of course! For the example at hand we have

𝑓 ′(𝑥) = 3𝑥2

Here we interpret the derivative not as a slope, but as the infinitesimal stretch factor:
the fact that 𝑓 ′(1) = 3 ⋅ 12 = 3 means that near the point 1, infinitesimal lengths are
being expanded by a factor of 3. The fact that 𝑓 ′(0.1) = 3 ⋅ (0.1)2 = 0.03means that near
the point 1, distances are stretched by 0.03 - that is, compressed by a factor of 33!
It would be great to have a good mental picture of this before we go too far into the
weeds. And we are incredibly fortunate that 3Blue1Brown has anticipated our needs,
and produced a beautiful video on this topic! This is his final installment in the series
“Essence of Calculus”, and while it is the one most relevant to our course (the series
focuses on the concepts of Calculus 1 and 2) I wholeheartedly recommend taking some
time to refresh your knowledge by watching the entire thing!

https://youtu.be/CfW845LNObM?feature=shared
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7.2. Linearizing Curves

7.2. Linearizing Curves

Now we know how to linearize space, how do we find the linearizations of functions
at the infinite level of zoom we desire? Its perhaps easiest to start with curves. Curves
are functions from some interval 𝐼 ⊂ ℝ into ℝ2 or ℝ3. Thus we can write them with
components, like 𝛾 (𝑡) = (𝑥(𝑡), 𝑦(𝑡)).

Proposition 7.1 (Differentiating Curves). Let 𝛾 ∶ ℝ2 be a curve. Then at a fixed time 𝑡
(and thus a specified point 𝛾 (𝑡)), the linearization of the curve is given by the vector

𝛾 ′(𝑡) = lim𝜖→0
𝛾 (𝑡 + 𝜖) − 𝛾(𝑡)

𝜖
in the tangent space 𝑇𝛾 (𝑡)ℝ2. If this limit does not exist, the curve is said to be not differen-
tiable at that point.

First, we check that this definition makes sense. If 𝜖 is some small (but finite) number,
the points 𝛾 (𝑡 +𝜖) and 𝛾 (𝑡) are two points along the curve, very near to each other. Their
difference is a vector based at 𝛾 (𝑡)! Taking the limit as 𝜖 → 0 makes this vector shrink
to zero length, but rescaling by 1/𝜖 lets us zoom in, and the result is a *tangent vector
based at 𝛾 (𝑡)!

Exercise 7.1. Show that if we write the curve 𝛾 (𝑡) = (𝑥(𝑡), 𝑦(𝑡)) in coordinates, that
we can use the rules of vector addition and scalar multiplication to simplify this calcula-
tion. Indeed, the tangent vector at 𝛾 (𝑡) is just given by the derivaties of the coordinate
functions

𝛾 ′(𝑡) = ⟨𝑥′(𝑡), 𝑦 ′(𝑡)⟩

Geometrically, we should interpet this derivative as being a way of taking an infintes-
imal piece of the 𝑡 line based at the point 𝑡 , and placing it into the tangent space at
𝛾 (𝑡):

Example 7.1. The curve 𝑓 (𝑡) = (𝑡, 𝑡2) traces out the standard parabola in the plane.
This passes through the point (2, 4) when 𝑡 = 2. The derivative of 𝑓 is the function
𝑓 ′(𝑡) = ⟨1, 2𝑡⟩, so the tangent vector to 𝑓 when 𝑡 = 2 is the vector

𝑓 ′(2) = ⟨1, 4⟩
in the tangent space 𝑇(2,4)ℝ2.

Exercise 7.2. Differentiate the following curves:

• Tangent vector to (𝑡, sin(𝑡)) in 𝑇(𝜋/2,1)ℝ2.
• Tangent vector to 𝑓 (𝑡) = ( 1

𝑒𝑡−1 , √𝑡 + 1) when 𝑡 = 2. Which tangent space is it in?
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7. Zooming In

Figure 7.4.: The derivative to a curve is a linear map taking infinitesimal pieces of the
line onto infinitesimal pieces of the curve.

7.3. Linearizing Multivariable Functions

Besides curves, the other main type of function we will be interested in are functions
from a 2-dimensional space back to itself. These are things like rotations of the plane,
translations of the plane, but also include even weirder things, that move points about
the plane in strange ways.

Definition 7.1 (Multivariable Function). A function 𝜙 from the plane to itself is a func-
tion whose input is a point 𝑝 ∈ ℝ2 and its output is another point in the same space:
𝜙(𝑝) ∈ ℝ2.

We can make this more concrete by writing both the domain and the range in cooridi-
nates: since 𝑝 ∈ ℝ2 we can write 𝑝 = (𝑥, 𝑦) for two numbers 𝑥, 𝑦 . Thus, we can write
𝜙(𝑝) = 𝜙(𝑥, 𝑦). But since 𝜙(𝑥, 𝑦) is also in the plane, we can write it in components as
well, say 𝜙(𝑥, 𝑦) = (𝑎, 𝑏). Since the output *depends on 𝑥, 𝑦 we see that the coordinate 𝑎
is a function of both 𝑥 and 𝑦 , as is 𝑏. Thus its more helpful to write them as 𝑎(𝑥, 𝑦) and
𝑏(𝑥, 𝑦) to remember this.

Definition 7.2. If 𝜙 is a function from the plane to itself, we can write it in components
as two separate real-valued functions of 𝑥 and 𝑦 . Often to aid in readability, we name
the component functions with the same letter a the overall funcdtion:

𝜙(𝑥, 𝑦) = (𝜙1(𝑥, 𝑦), 𝜙2(𝑥, 𝑦))
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What should the linearization of such functions look like upon zooming in? Well, we
already know how curves work, so a good place to start is by looking for curves. If we
hold 𝑥 constant in the domain, we get a line parallel to the 𝑦 axis through 𝑝. Similarly,
holding 𝑦 constant we get a line parallel to the 𝑥 axis through 𝑃 . Plugging these into 𝜙,
we get two curves passing through 𝜙(𝑝).

curve1(𝑥) = (𝜙1(𝑥, 𝑏), 𝜙2(𝑥, 𝑏))
curve2(𝑦) = (𝜙1(𝑎, 𝑦), 𝜙2(𝑎, 𝑦))

Figure 7.5.: Understanding a multivariate function by looking at curves through a point,
and their linearizations.

Zooming in, the linearization of these curves are two vectors in 𝑇𝜙(𝑝)ℝ2, which we can
compute explicitly in coordinates:

𝑣𝑥 = curve1′(𝑥) = (
𝜕
𝜕𝑥 𝜙1(𝑥, 𝑏)𝜕
𝜕𝑥 𝜙2(𝑥, 𝑏)

)

𝑣𝑦 = curve2′(𝑦) = (
𝜕
𝜕𝑦 𝜙1(𝑎, 𝑦)𝜕
𝜕𝑦 𝜙2(𝑎, 𝑦)

)

These are each vectors that lie in the tangent space 𝑇𝜙(𝑝)ℝ2, and so they span a par-
allelogram there. Indeed, we see that upon zooming in, the map 𝜙 seems to take an
infinitesimal square with sides ⟨1, 0⟩, ⟨0, 1⟩ based at 𝑇𝑝ℝ2 to an infinitesimal parallelo-
gram in the range’s tangent space.

ANIMATION

This is the behavior of a linear map! And even better, we know exactly how to write
down a linear map as a matrix if we are given what it does to the standard basis!
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Here the symbol 𝜕 denotes
a partial derivative: that

means, we treat all the
other variables as

constnats, and only
differentiate the specified
one. It’s easiest to see via
example, 𝜕

𝜕𝑥 (3𝑥2𝑦 + 𝑎𝑥 +
𝑏𝑦) = 6𝑥𝑦 + 𝑎 + 0 where
here we have treated 𝑦 , 𝑎
and 𝑏 as constants, and

taken only the derivative
with respect to 𝑥

Definition 7.3. Let 𝜙 ∶ 𝔼2 → 𝔼2 be a multivariable function, written in components as

𝜙(𝑥, 𝑦) = (𝜙1(𝑥, 𝑦), 𝜙2(𝑥, 𝑦))
Then at a point 𝑝 ∈ 𝔼2, the derivative of 𝜙 at a point 𝑝 is a 2 × 2 matrix given by the 𝑥
and 𝑦 derivatives of its two component functions:

𝐷𝜙𝑝 = (
𝜕𝜙1
𝜕𝑥

𝜕𝜙1
𝜕𝑦

𝜕𝜙2
𝜕𝑥

𝜕𝜙2
𝜕𝑦

)

Where after taking the derivatves, we plug in the point 𝑝 to each entry of the matrix,
to get a matrix of numbers. This is a linear map from the tangent space 𝑇𝑝ℝ2 to the
tangent space 𝑇𝜙(𝑝)ℝ2.

To lighten notation, sometimes we will just write 𝜕𝑥 for 𝜕
𝜕𝑥 , and we will write a vertical

bar for evaluation, much as in calculus:

Example 7.2. The derivative of 𝜙(𝑥, 𝑦) = (𝑥 + 𝑦, 𝑥𝑦 ) at the point (4, 7) is given by

𝐷𝜙 = (𝜕𝑥 (𝑥 + 𝑦) 𝜕𝑦 (𝑥 + 𝑦)
𝜕𝑥 (𝑥/𝑦) 𝜕𝑦 (𝑥/𝑦) ) = ( 1 1

1/𝑦 −𝑥/𝑦2)

Plugging in the point,

𝐷𝜙(4,7) = ( 1 1
1/𝑦 −𝑥/𝑦2) |(4,7)

= ( 1 1
1/7 −4/49)

Because 𝜙 takes the point (4, 7) to the point

𝜙(4, 7) = (4 + 7, 4/7) = (11, 4/7)
this is a linear map from 𝑇(4,7)ℝ2 to 𝑇(11,4/7)ℝ2

The usual calculus rules hold: differentiation of a sum of functions is a sum of their
derivative matrices, and you can pull scalars out from the derivative

Exercise 7.3. Find the derivatives of the following functions, at the specified points.

• The function 𝑓 (𝑥, 𝑦) = (𝑥𝑦, 𝑥 + 𝑦) at the point 𝑝 = (1, 2).
• The function 𝜙(𝑥, 𝑦) = (𝑥𝑦2 − 3𝑥, 𝑥

𝑦2+1) at the point 𝑞 = (3, 0).
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7.3.1. Compositions

In single varaible calculus, we often made use of the chain rule to take derivatives. This
let us remember less things, as we were able to construct derivatives of complicated
functions from simpler pieces. It’s instructive to take a look back at the formula:

(𝑓 ∘ 𝑔(𝑥))′ = 𝑓 ′(𝑔(𝑥))𝑔′(𝑥)

What is this saying in our new language of linearizations? Recall that the number line
itself has tangent spaces, just like the plane, and we should interpret something like
𝑔′(𝑥) as saying the linearization of 𝑔 at 𝑥 . From this perspective, in words this says

The linearization of 𝑓 ∘ 𝑔 at 𝑥 is the result of linearizing 𝑔 at 𝑥 , and multi-
plying by the linearization of 𝑓 at 𝑔(𝑥).

This makes perfect sense geometrically, where we start with an infinitesimal piece of
the line based at 𝑥 , apply 𝑔 so it gets stretched by a factor of 𝑔′(𝑥), and moved to be
located at 𝑔(𝑥). Then we apply 𝑓 : this further stretches by a factor of 𝑓 ′(𝑔(𝑥))! So the
multipliation we see in the formula is really a composition: its saying first stretch by 𝑔,
and then stretch by 𝑓 .
This has a direct analog in higher dimensions, if we remember that the way to compose
linear transformations is by matrix multiplication.

Proposition 7.2 (Differentiating Compositions). If 𝐹 , 𝐺 are both transformations of the
plane, the derivative of 𝐹 ∘ 𝐺 at the point 𝑝 is the composition of the derivative of 𝐺 at 𝑝
with the derivative of 𝐹 at 𝐺(𝑝):

𝐷(𝐹 ∘ 𝐺)𝑝 = 𝐷𝐹𝐺(𝑝)𝐷𝐺𝑝

Example 7.3. If 𝐺(𝑥, 𝑦) = (𝑥𝑦, 𝑥 + 𝑦) and 𝐹(𝑥, 𝑦) = (2𝑥 − 𝑦, 𝑥𝑦) then we compute the
derivative of 𝐹 ∘ 𝐺 at (1, 2) as follows: First, we find the derivative of 𝐺 at (1, 2):

𝐷𝐺(1,2) = ( 𝑦 𝑥
1 + 𝑦 1 + 𝑥) |(1,2)

= (2 1
3 2)

Then, since 𝐺 takes (1, 2) to the point 𝐺(1, 2) = (1 ⋅ 2, 1 + 2) = (2, 3), we need the
derivative of 𝐹 at (2, 3):
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𝐷𝐹(2,3) = (2 − 𝑦 −1
𝑦 𝑥 ) |

(2,3)
= (−1 −1

3 2 )

Finally, we compose these linear maps with matrix multiplication (making sure to be
careful about the order!)

𝐷𝐹(2,3)𝐷𝐺(1,2) = (−1 −1
3 2 ) (2 1

3 2) = (−5 −3
12 7 )

Exercise 7.4. If 𝐹 , 𝐺, 𝐻 are the following multivariate functions

𝐹(𝑥, 𝑦) = (𝑥 − 𝑦, 𝑥𝑦)

𝐺(𝑥, 𝑦) = (−𝑦, 𝑥)
𝐻(𝑥, 𝑦) = (𝑥3, 𝑦3)

Differentiate the following compositions:

• 𝐹 ∘ 𝐺 at (1, 1)
• 𝐺 ∘ 𝐺 at (0, 2)
• 𝐹 ∘ 𝐺 ∘ 𝐻 at (−1, 3).

7.3.2. Inverses

Inverse of 𝐹 is a function 𝐻 with 𝐻(𝐹(𝑥)) = 𝑥 , which ‘undoes’ the action of 𝐹 at each
point. Familar one dimensional examples include squaring and the square root, expo-
nentials and logarithms, as well as trigonometric functions and their arc-versions (sin
and arcsin for example). One nice consequence of the chain rules is that it’s possible to
differentiate an inverse function, even if you don’t have an explicit formula for it!

The same reasoning applies directly in higher dimensions: if 𝐹 is a multivariable func-
tion with inverse 𝐻 , then the composition 𝐻𝐹 = 𝐼 is the identity function, sending
every point 𝑝 to itself. This is straightforward to differentiate: if 𝐼 (𝑥, 𝑦) = (𝑥, 𝑦) then

𝐷𝐼 = (𝜕𝑥𝑥 𝜕𝑦𝑥
𝜕𝑥𝑦 𝜕𝑦𝑦) = (1 0

0 1)

Note that the matrix we got by differentiating is constant - it has no 𝑥 ’s or 𝑦 ’s in it:
thus this matrix represents the derivative of the identity function at every point in the
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plane. Now, using the multivariate chain rule we can differentiate the equation 𝐻𝐹 = 𝐼
to get

𝐷(𝐻𝐹)𝑎 = 𝐷𝐻𝐹(𝑎)𝐷𝐹𝑎 = (1 0
0 1)

But this says that the two matrices, 𝐷𝐻 at 𝐹(𝑎) and 𝐷𝐹 at 𝑎 multiply to give the identity
matrix! This is the definition of being inverse matrices, so we have

Theorem 7.1. If 𝐹 is an invertible multivarible function, its inverse function 𝐻 has the
following derivative:

𝐷𝐻𝐹(𝑎) = (𝐷𝐹𝑎)−1

Note that this theorem only tells us how to find the derivative at the point 𝐹(𝑎): to find
it at a point 𝑝 we want, we need to do some more work, and figure out which point 𝐹
sends to 𝑝.

Example 7.4. Let 𝐹(𝑥, 𝑦) = (𝑥3, 𝑥2𝑦), and let 𝐻 be its inverse where defined. To find
the derivative of 𝐻 at (8, 4), we first find the derivative matrix of 𝐹

𝐷𝐹 = ( 𝜕𝑥 (𝑥3) 𝜕𝑦 (𝑥3)
𝜕𝑥 (𝑥2𝑦) 𝜕𝑦 (𝑥2𝑦)) = (3𝑥

2 0
2𝑥𝑦 𝑥2)

Then, we invert this, using the formula for 2 × 2 matrix inverses

(𝐷𝐹)−1 = 1
3𝑥2 ⋅ 𝑥2 − 0 ⋅ 2𝑥𝑦 ( 𝑥2 0

−2𝑥𝑦 3𝑥2)

= 1
3𝑥4 (

𝑥2 0
−2𝑥𝑦 3𝑥2)

By Theorem 7.1, this is the derivative of the inerse 𝐻 at the point 𝐹(𝑥, 𝑦). We want to
find the derivative at (8, 4), so we need to knowwhich values of (𝑥, 𝑦) to plug in. That is,
we need to solve for which (𝑥, 𝑦) satisfies 𝐹(𝑥, 𝑦) = (8, 4). This is a system of equations:

𝐹(𝑥, 𝑦) = ( 𝑥3
𝑥2𝑦) = (84)
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The first equation tells us that 𝑥 = 2, as that’s the only real number that cubes to 8. Now
we can plug this into the second equation, which says 22𝑦 = 4, so 𝑦 = 1. Plugging in
(2, 1) gives the result

𝐷𝐻(8,4) = (𝐷𝐹(2,1))−1 = 1
3 ⋅ 24 (

22 0
−2 ⋅ 2 ⋅ 1 3 ⋅ 22)

= 1
48 (

4 0
−4 12)

As a review of Calculus I, try this out for a function of a single variable yourself:

Exercise 7.5. Consider the function 𝑓 (𝑥) = arccos(𝑥) what is its derivative at 𝑥 = 1
2?

7.3.3. Differentiating Linear Maps

We won’t actually have that many opportunities during the course where we will need
to find the explicit derivatives of an inverse function as we did above. But during the
proof of Theorem 7.1, we noticed an interesting fact: the derivative of many maps we
have calculated depends on which point (𝑥, 𝑦) we were differentiating them at. But not
the map 𝐼 (𝑥, 𝑦) = (𝑥, 𝑦): its’ derivative was a constant! If you look at our computation
you’ll notice this can certainly be generalized: for instance the derivative of 𝑓 (𝑥, 𝑦) =
(2𝑥 + 𝑦, 𝑥 − 𝑦) is a constant matrix for the same reason.

Proposition 7.3 (Derivative of a Linear Map). If 𝜙 is a linear map, then 𝐷𝜙 is constant,
and equal to 𝜙.

Exercise 7.6. Prove Proposition 7.3.

While the symbolic proof of this is relatively straightforward, its good to pause for a
minute and contemplate what it means. The derivative at a point is supposed to be the
best linear approximation to the function at that point. But what happens if the function
is already linear? Well - then the best linear approximation at that point is itself ! And
this is true at every point - so the derivative is the same as the map at every point!

In symbols, if𝑀 is a matrix and our linear function is 𝑓 (𝑝) = 𝑀𝑝, then the derivative is
𝐷𝑓𝑝 = 𝑀 . We ar already very familiar wtih this from single-variable calculus, although
perhaps we did not think through the meaning carefully at the time. Afterall, what is
the derivative of the linear function 𝑦 = 𝑚𝑥? Its the constant 𝑦 = 𝑚: which is just
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7.3. Linearizing Multivariable Functions

saying that infinitesimally near every 𝑥 , the function 𝑦 = 𝑚𝑥 is scaling things up by a
factor of 𝑚.

Can we characterize which maps have this property? If 𝜙 = (𝜙1(𝑥, 𝑦), 𝜙2(𝑥, 𝑦)), when is
it the case that 𝐷𝜙(𝑥,𝑦) is a constant matrix?

Exercise 7.7 (When the derivative is constant). Prove that a function 𝜙 ∶ ℝ2 → ℝ2
has a constant derivative if and only if the function is affine: that is, a linear map plus
constants.
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8. Zooming Out

8.1. One Variable Integration

The quintessential ‘zoom out’ technique in mathematics is integration. It allows us to
add up, or integrate together a continuum of infinitesmally small changes into a single
finite change. While its definition is in terms of a limit (a Riemann sum, as we reviewed
in the chapter on the Fundamental Strategy) the true power of calculus is that we do
not need to compute this limit, but instead can antidifferentiate!

In calculus classes we often
write integration over an
interval [𝑎, 𝑏] by putting
the bounds on the top and
bottom of the integration
sign, like ∫𝑏𝑎 . You are
welcome to continue using
this notation, however I
will sometimes opt to put
the entire interval in the
subscript as ∫[𝑎,𝑏] This fits
better with notation for
double integrals like ∬𝑅
and other generalizations,
where the domain usually
appears as a subscript.

Theorem 8.1 (The Fundamental Theorem of Calculus). Let 𝑓 be a function defined on
[𝑎, 𝑏], and 𝐹 be an antiderivative of 𝑓 - that is, a function such that 𝐹 ′(𝑥) = 𝑓 (𝑥). Then
we may integrate 𝑓 using this antiderivative:

∫[𝑎,𝑏] 𝑓 (𝑥)𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎)

Becasue of this, we will use the indefinite integral ∫ 𝑓 𝑑𝑥 as a notation for the collection
of antiderivatives of 𝑓 . In this class we’ll assume familiarity with the 1-dimensional
integral as seen in a Calculus I and II course. That means, we’ll be free to use antidiffer-
entiation, u-substitution, integration by parts, etc where helpful.

Exercise 8.1. Compute the following integrals, as a refresher of your calculus skills:

∫ sin(2𝑞 − 3)𝑑𝑞 ∫ 𝑥
𝑥 + 1𝑑𝑥

∫ 𝑦2𝑒𝑦3𝑑𝑦 ∫ 𝑡2𝑒𝑡𝑑𝑡

Besides calculation, theoretical properties of the integral will also be useful in helping
us prove things. Two of fundamental properties of the integral are below.
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Proposition 8.1 (Subdividing Intervals). If 𝑓 is an integrable function on the interval
[𝑎, 𝑏] and 𝑐 is some point inside the interval (that is, 𝑎 < 𝑐 < 𝑏), then

∫[𝑎,𝑏] 𝑓 𝑑𝑥 = ∫[𝑎,𝑐] 𝑓 𝑑𝑥 + ∫[𝑐,𝑏] 𝑓 𝑑𝑥

When we interpret the integral as area, this theorem is is one of the greek area axioms
- but is now not an assumption but rather something we can prove! There’s one other
property of the integral that is rather straightforward from its interpretation as area: an
integral of a function that has some positive area, but no negative area to cancel it out
must be postivive!

Proposition 8.2 (Integrating Positive Functions). Let 𝑓 be a continuous function, and
[𝑎, 𝑏] an interval.

• If 𝑓 (𝑥) ≥ 0 for all 𝑥 , then ∫𝑏𝑎 𝑓 (𝑥)𝑑𝑥 ≥ 0.
• If 𝑓 (𝑥) > 0 for all 𝑥 , then ∫𝑏𝑎 𝑓 (𝑥)𝑑𝑥 > 0.

As a consequence of this, if we have a continuous function 𝑓 which is nonnegative on
an interval, and we know to be positive at some point, then we know the integral of
that function must be positive. This will prove useful to us, so we’ll separate it off as a
corollary:

Corollary 8.1. If 𝑓 is continuous and nonnegative on [𝑎, 𝑏], and 𝑓 is nonzero at some
point, then

∫
𝑏

𝑎
𝑓 (𝑥)𝑑𝑥 > 0

Proof. Say 𝑓 is nonnegative on an interval [𝑎, 𝑏], and is nonzero (so, necessairly positive)
at some point 𝑐. Then since 𝑓 is continuous there is some small interval [𝑙, 𝑟] around 𝑐
where 𝑓 is positive, and we can break our original interval into three pieces:

[𝑎, 𝑏] = [𝑎, 𝑙] ∪ [𝑙, 𝑟] ∪ [𝑟 , 𝑏]
By Proposition 8.1, we can break the integral over [𝑎, 𝑏] into a sum of integrals over each
of these three intervals:

∫[𝑎,𝑏] 𝑓 𝑑𝑥 = ∫[𝑎,𝑙] 𝑓 𝑑𝑥 + ∫[𝑙,𝑟] 𝑓 𝑑𝑥 + ∫[𝑟 ,𝑏] 𝑓 𝑑𝑥

The first and last of these are nonnegative by Proposition 8.2, since 𝑓 is nonnegative on
the whole interval. But the middle one is strictly positive as 𝑓 is positive on the entire
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interval [𝑙, 𝑟]. Thus the overall integral is a sum of a positive number and two others
which are either postive or zero: the result is positive! And hence,

∫[𝑎,𝑏] 𝑓 𝑑𝑥 > 0

8.2. Multi-Variable integration

If integrals are a means of ‘zooming out’ along a line, how do we zoom out in the plane?
We need a higher dimensional analog of the integral, a double integral

Definition 8.1 (Double Integral Riemann Sum).

Are we going to need a whole new theory of calculus for this? Two dimensional Rie-
mann sums, two dimensional integrals, and a two dimensional fundamental theorem?
Happily no! It turns out much of two-dimensional integration can be summed up by
saying “do one dimensional integration, but twice”.

Proposition 8.3 (Fubini’s Theorem). An integral over the plane can be computed as two
one dimensional integrals, one for the 𝑥 variable and one for the 𝑦 :

∫𝐼 ×𝐽 𝑓 (𝑥, 𝑦)𝑑𝐴 = ∫𝐼 (∫𝐽 𝑓 (𝑥, 𝑦)𝑑𝑦) 𝑑𝑥

Thus, there is nothingmore to the theroy of double integrals than doing a single-variable
integral twice! It’s easiest to see via example:

Example 8.1 (Iterated Integrals). Let 𝑅 = [0, 2] × [0, 3] be a rectangle in the 𝑥, 𝑦 plane.
To compute the integral ∬𝑅 𝑥𝑦 + 1 𝑑𝐴, we write this as an integral for 𝑥 from 1 to 2 and
an integral of 𝑦 from 0 to 3:

∫[0,2] (∫[0,3] 𝑥𝑦 + 1𝑑𝑦) 𝑑𝑥

We now compute the inside integral (with respect to 𝑦 ) first:

∫[0,3] 𝑥𝑦 + 1𝑑𝑦 = 𝑥 𝑦
2

2 + 𝑦|
𝑦=3

𝑦=0
= 9

2𝑥 + 3
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Then, we integrate this with respect to 𝑥 :

∫[0,2]
9
2𝑥 + 3𝑑𝑥 = 9

4𝑥
2 + 3𝑥|

𝑥=2

𝑥=0
= 15

Its even possible to have the bounds of the first integral contain the variables of the
second integral:

Example 8.2. Compute the iterated integral below:

∫
1

0 ∫
𝑥2

𝑥−3
𝑥(2𝑦 + 1)𝑑𝑦𝑑𝑥

We begin with the inner integral, which is 𝑑𝑦 , so the 𝑥 is (temporarily) a constant:

∫
𝑥2

𝑥−3
𝑥(2𝑦 + 1)𝑑𝑦 = 𝑥 (𝑦2 + 𝑦) |

𝑥2

𝑥−3

= 𝑥 ((𝑥2)2 + (𝑥2)) − 𝑥 ((𝑥 − 3)2 + (𝑥 − 3))

= 𝑥5 − 5𝑥2 − 6𝑥

Now we’ve finished the inner integral, and we need to proceed to the next one:

∫
1

0
𝑥5 − 5𝑥2 − 6𝑥𝑑𝑥 = 𝑥6

6 − 5
3𝑥

3 − 3𝑥2|
1

0

= 1
6 − 5

3 − 3 = −9
2

Exercise 8.2 (Iterated Integrals). For practice, compute the following interated inte-
grals.
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8.3. Power Series

Named after Brook Taylor,
who introduced them in
1715. However many such
series were known earlier,
used in the works of Issac
Newton in the 1600s, and
Madhava in the 1300s

Besides integration, the other zoom-out type techinque we saw time and again in in-
troductory calculus was the construction of a power series from the derivatives of a
function. Power series constructed this way are often called Taylor Series.

Definition 8.2 (Power Series: Taylor’s Version). A power series is an infinite series of
the form∑∞

𝑛=0 𝑎𝑛𝑥𝑛 for some constants 𝑎𝑛. If 𝑓 (𝑥) is a function, the Taylor series for 𝑓 is
a power series that represents the function 𝑓 (𝑥) in terms of its derivatives at 𝑥 = 0:

𝑓 (𝑥) = 𝑓 (0) + 𝑓 ′(0)𝑥 + 𝑓 ′′(0)𝑥
2
2 + 𝑓 ′′′(0)𝑥

3
3! + ⋯

=
∞
∑
𝑛=0

𝑓 (𝑛)(0)
𝑛 𝑥𝑛

Example 8.3 (Power Series for 𝑒𝑥 ). Because the derivative of 𝑒𝑥 is itself, and 𝑒0 = 1,
every derivative of 𝑒𝑥 at 𝑥 = 0 is equal to 1, and its power series is

𝑒𝑥 =
∞
∑
𝑛=0

1
𝑛!𝑥

𝑛

One of the reasons that power series are such a powerful tool in calculus is the abilitiy
to do math with them: we can treat them like any other function; composing them with
other functions, differentiate them and integrate them!

Example 8.4. Given that the power series for 1
1−𝑥 is∑𝑥𝑛, we can find the power series

for 1/(1 − 2𝑥2) by substituting 2𝑥2 for 𝑥 :

1
1 − 2𝑥2 =

∞
∑
𝑛=0

(2𝑥2)𝑛 =
∞
∑
𝑛=0

4𝑛𝑥2𝑛

Proposition 8.4 (Calculus With Power Series). Given a power series 𝑓 (𝑥) = ∑𝑛 𝑎𝑛𝑥𝑛 we
can differentiate and integrate the series term-by-term:

𝑓 ′(𝑥) =
∞
∑
𝑛=0

𝑎𝑛(𝑥𝑛)′ =
∞
∑
𝑛=0

𝑛𝑎𝑛𝑥𝑛−1

∫𝑓 𝑑𝑥 =
∞
∑
𝑛=0

𝑎𝑛 (∫ 𝑥𝑛𝑑𝑥) =
∞
∑
𝑛=0

𝑎𝑛
𝑛 + 1𝑥

𝑛+1
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8. Zooming Out

Example 8.5 (The power series for arctan(𝑥)). Given the power series 1
1−𝑥 = ∑𝑥𝑛, we

can create the power series for 1
1+𝑥2 by substituting −𝑥2 for 𝑥 :

1
1 + 𝑥2 =

∞
∑
𝑛=0

(−𝑥2)𝑛 =
∞
∑
𝑛=0

(−1)𝑛𝑥2𝑛

Now, since 1
1+𝑥2 is the derivative of arctan(𝑥), we need only antidifferentiate this series

term by term to find the Taylor series for the arctangent:

arctan(𝑥) = ∫ 1
1 + 𝑥2 𝑑𝑥

= ∫
∞
∑
𝑛=0

(−1)𝑛𝑥2𝑛 𝑑𝑥

=
∞
∑
𝑛=0

(−1)𝑛 ∫𝑥2𝑛𝑑𝑥

=
∞
∑
𝑛=0

(−1)𝑛 𝑥
2𝑛+1

2𝑛 + 1

= 𝑥 − 𝑥3
3 + 𝑥5

5 − 𝑥7
7 ⋯

Exercise 8.3. Find Power series for the following functions

All of these techniques make power series a very useful tool indeed. But of course those
of you who remember Calculus 2 well know that we have so far left out an important
and subtle piece of the story: when do power series work at all? Series don’t always
converge, and to tell when they do we have a variety of different convergence tests to
help us out. Happily, all the series wewill come across are power series, where checking
convergence is straightforward.

Theorem 8.2 (Radius of Convergence). If 𝑓 (𝑥) = ∑ 𝑎𝑛𝑥𝑛 is a power series, let

𝛼 = lim𝑛→∞ | 𝑎𝑛+1𝑎𝑛
|

Then 𝑓 converges by the ratio test at 𝑥 if |𝛼𝑥| < 1, or |𝑥| < 1
𝛼 .

Warning: not all functions
have power seires, and
those that do are called
analytic. Happily all

functions we will encounter
in this course are analytic,

so we can push this concern
to the back of our minds

This value 𝑅 = 1
𝛼 is called the radius of convergence. Many of the series that will be of

use to us in this class (sine, cosine, and their hyperbolic counterparts) converge on the
entire real line, and we will not have to worry about such things.
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The Plane
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9. Foundations

Definition 9.1 (Points of 𝔼2). The points of the Euclidean plane are pairs 𝑝 = (𝑥, 𝑦) of
real numbers: that is

𝔼2 = {(𝑥, 𝑦) ∣ 𝑥, 𝑦 ∈ ℝ} ≅ ℝ2

Figure 9.1.: The Plane is built out of the points of ℝ2, together with a tangent space at
each point.

We use the notation 𝔼2 for the geometry even though the underlying point set is just
the plane ℝ2 This is because ordered pairs of real numbers can represent many different
things (see ?@sec-maps) and we wish to make it clear here that right now we mean
their original usage, to describe the geometry of Euclid.

Definition 9.2 (Vectors of 𝔼2). At each point 𝑝 of the Euclidean plane, the set of
tangent vectors is another copy of ℝ2.

𝑇𝑝𝔼2 = {(𝑣1, 𝑣2) ∣ 𝑣𝑖 ∈ ℝ} ≅ ℝ2

Vectors are just pairs of real numbers as we are used to, but we do need to be careful
about keeping track of where they are based. Hence, we will often write a subscript
on a vector to denote where it lives: ⟨1, 2⟩(1,5) is the vector ⟨1, 2⟩ based at (1, 5) ∈ 𝔼2,
whereas ⟨1, 2⟩(−2,3) is the vector with teh same coordinates, but based at (−2, 3).
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The origin is the point with coordinates (0, 0) in the plane. Because these zeroes will
make some calculations easier, we will often find ourselves doing things at the origin,
and so its useful to have a shorthand notation. We will write 𝑂 = (0, 0) for this point,
and denote vectors based at 𝑂 with the subscript 𝑣𝑜 , consistent with the above.

Now we have a precise definition of what the Euclidean plane is made out of (points)
and its infinitesimal pieces ( vectors), so we can precisely define things like curves and
their tangents.

Figure 9.2.: A curve is a function from an interval in ℝ into the Plane.

Definition 9.3 (Curves). A curve in the Euclidean plane is a function 𝛾 ∶ 𝐼 → 𝔼2 for 𝐼
an interval in the real line (or possibly all of ℝ). The tangent to 𝛾 (𝑡) = (𝑥(𝑡), 𝑦(𝑡)) at time
𝑡0 is its coordinate-wise derivative

𝛾 ′(𝑡0) = ⟨𝑥′(𝑡0), 𝑦 ′(𝑡0)⟩ ∈ 𝑇𝛾 (𝑡0)𝔼2

A curve is regular if its derivative is never equal to the zero vector for ant 𝑡 ∈ 𝐼 .

But to make real progress, we need the tools to be able to measure length.

9.1. Length of Curves

Our new formulation of geometry puts all curves on an equal footing - an allows us to
measure their lengths using the ideas of calculus. This was the dream of Archimedes,
realized only nearly two millenia after his death.
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Idea: infinitesimally, geometry looks like what was studied by the greeks, as if you
zoom in on any curve it appears as a line. To impose this fact on our new geometry we
will measure infinitesimal distances via the pythagorean theorem. This will be our only
geometric axiom - from this alone (together with the toolset of calculus) we will rebuild
all of geomery.

Figure 9.3.: The fundamental axiom of the plane - the Pythagorean Theorem is true in-
finitesimally, in each tangent space.

Definition 9.4 (Infinitesimal Length in 𝔼2). If 𝑣 is a tangent vector based at 𝑝 ∈ 𝔼2
then its infinitesimal length is given by the pythagorean theorem on the tangent space
𝑇𝑝𝔼2.

‖𝑣‖ = √𝑣21 + 𝑣22

To measure a curve we take inspiration from Archimedes’ measurement of the circle and
approximate it with small line segments. A curve is called rectifiable if these approxi-
mate lengths converge as their number tends to infinity. It’s a consequence of calculus
that regular curves are rectifiable.

Then we define the length of real curves by zooming out (integrating) their zoomed-in
(differential) lengths. Unlike in Euclid’s formulation, now all curves are on an equal
footing: all lengths are determined by infinitesimal integration!

Definition 9.5 (Length in 𝔼2). If 𝛾 is a curve which is differentiable, then we can mea-
sure the length of 𝛾 (𝑡) from 𝑡 = 𝑎 to 𝑡 = 𝑏 by integrating the infinitesimal lengths of its
tangent vectors:

length(𝛾 ) = ∫
𝑏

𝑎
‖𝛾 ′(𝑡)‖𝑑𝑡
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Figure 9.4.: The spirit of Archimedes: we can figure out how to define the length of a
curve by thiking about approximations to it.

Figure 9.5.: The derivative 𝛾 ′(𝑡) is a linear map taking an infinitesimal vector at 𝑡 to an in-
finitesimal piece of arc at 𝛾 (𝑡). Integrating the lengths of these infinitesimal
vectors is how we define the length of a curve.
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9.1. Length of Curves

Its helpful to write this definition out in full: if 𝛾 (𝑡) = (𝑥(𝑡), 𝑦(𝑡)) then 𝛾 ′(𝑡) =
⟨𝑥′(𝑡), 𝑦 ′(𝑡)⟩ and so ‖𝛾 ′(𝑡)‖ = √𝑥′(𝑡)2 + 𝑦 ′(𝑡)2. Thus

length(𝛾 ) = ∫
𝑏

𝑎 √𝑥′(𝑡)2 + 𝑦 ′(𝑡)2𝑑𝑡

Such integrals can be difficult to do in practice because of that nasty square root that
shows up in their definition. And when they are possible, these often need several
calculus tricks to succeed:

Exercise 9.1 (The Length of a Parabola). Find the length of the parabola 𝑦 = 𝑥2 between
from 𝑥 = 0 to 𝑥 = 𝑎, following the steps below.

• Paramterize the curve as 𝑐(𝑡) = (𝑡, 𝑡2), show the arclength integral is 𝐿(𝑎) =
∫[0,𝑎] √1 + 4𝑡2

• Perform the trigonometric substitution 𝑥 = 1
2 tan 𝜃 to convert this to some multi-

ple of the integral of sec3(𝜃).
• Let 𝐼 = ∫ sec3(𝜃)𝑑𝜃 and do integration by parts with 𝑢 = sec 𝜃 and 𝑑𝑣 = sec2 𝜃 .
• After parts, use the trigonometric identity tan2 𝜃 = sec2 𝜃 − 1 in the resulting
integral to get another copy of 𝐼 = ∫ sec3 𝜃𝑑𝜃 to appear.

• Get both copies of 𝐼 to the same side of the equation and solve for it! To check
your work at this stage, you should have found that

∫ sec3 𝜃𝑑𝜃 = 1
2 sec 𝜃 tan 𝜃 + 1

2 ln |sec 𝜃 + tan 𝜃|

• Relate this back to your original integral, and undo the substitution 𝑥 = 1
2 tan 𝜃 :

can you use somet trigonometry to figure out what sec 𝜃 is?
• Finally, you have the antiderivative in terms of 𝑥! Now evaluate from 0 to 𝑎.

Ourmain use isn’t to compute the lengths of a bunch of random curves. Instead, its more
theoretical - the integral gives a precise definition for the length of any differentiable
curve, and a simple definition at that! This will be extremely useful in building geometry
back from our small foundations.

9.1.1. Parameterization Invariance

All seems well and good with this definition, but the mathematician in us should be a
little worried: we defined the length of a curve in terms of a parameterization, but the
curve itself doesn’t care how we parameterize it!
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9. Foundations

To get a sense of this its easiest to look at an explicit example: below are four different
curves which all trace out the same set of points in the plane: the segment of the 𝑥 axis
between 0 and 4.

𝛼(𝑡) = (𝑡, 0) 𝑡 ∈ [0, 4]
𝛽(𝑡) = (2𝑡, 0) 𝑡 ∈ [0, 2]
𝛾 (𝑡) = (𝑡2, 0) 𝑡 ∈ [0, 2]

Because these all describe the same set of points, we of course want them to have the
same length! But our definition of the length function involves integrating infinitesimal
arclengths (derivatives), and these curves don’t all have the same derivative! Thus, to
really make sure our definition makes sense, we need to check that it doesn’t matter
which parameterization we use, we will always get the same length.

Exercise 9.2. Check these three parameterizations of the segment of the 𝑥-axis from 0
to 4 all have the same length.

Two curves are said to have the same image if the set of points they trace out in the
plane are the same. So, all three of the curves above have the same image, and the same
length. This requires a bit more calculus to check in general, but remains true.

Figure 9.6.: Two curves 𝛽 and 𝛾 with the same image.

Theorem 9.1 (Length & Parameterization Invariance). If 𝛽 and 𝛾 are two curves with
the same image, then

length(𝛽) = length(𝛾 )

104



9.1. Length of Curves

There are some things we
need to be careful on here:
the curves 𝛽 and 𝛾 are
regular - their derivatives
are never zero - which
implies that they trace the
curve from start to finish
without stopping or
doubling back. This,
together with the fact that
the curves are traced in the
same direction implies that
𝑠′(𝑡) is always positive,
which justifies the use of
𝑢-substitution.

Proof. Let 𝛽(𝑠)∶ [𝑎, 𝑏] → 𝔼2 and 𝛾 (𝑡)∶ [𝑐, 𝑑] → 𝔼2 be two curves with the same image.
That means they trace out the same set of points in the plane, so for every value of the
parameter 𝑡 for 𝛾 there is some value of 𝑠 for 𝛽 where 𝛽(𝑠) = 𝛾(𝑡). Write 𝑠(𝑡) for the
function that does this - chooses the matching 𝑠 parameter for each 𝑡 .

Figure 9.7.: The function 𝑠(𝑡) which takes the 𝑡 parameter for the curve 𝛾 , and returns
the 𝑠 parameter for the curve 𝛽 which maps to the same point in 𝔼2.

We can use this to wite the curve 𝛾 *in terms of 𝛽 , as 𝛾 (𝑡) = 𝛽(𝑠(𝑡)). We now calculuate
the length of 𝛾 using the definition:

length(𝛾 ) = ∫[𝑐,𝑑] ‖𝛾
′(𝑡)‖𝑑𝑡

= ∫[𝑐,𝑑] ‖𝛽(𝑠(𝑡))
′‖𝑑𝑡

= ∫[𝑐,𝑑] ‖𝛽
′(𝑠(𝑡))𝑠′(𝑡)‖𝑑𝑡

Where we used the chain rule in the last step to differentiate the composition. Now, 𝛽′
is a vector, but 𝑠(𝑡) was a scalar function so 𝑠′(𝑡) is a scalar, and we can pull it out of the
norm, and do a 𝑢-substitution! Picking up from where we left off,
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9. Foundations

= ∫[𝑐,𝑑] ‖𝛽
′(𝑠(𝑡))‖𝑠′(𝑡)𝑑𝑡

= ∫[𝑠(𝑐),𝑠(𝑑)] ‖𝛽
′(𝑠)‖𝑑𝑠

= ∫[𝑎,𝑏] ‖𝛽
′(𝑠)‖𝑑𝑠

= length(𝛽)
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Besides measuring distance, one of the other most fundamental notions to geometry is
that of an isometry, or a rigid motion of space. This comes from greek meaning same-
measure, as an isometry is a function that does not change lengths.

Definition 10.1 (Isometries in 𝔼2). An isometry of 𝔼2 is a function 𝜙 ∶ 𝔼2 → 𝔼2 which
preserves all infinitesimal lengths of 𝔼2.

What does it mean to preserve infinitesimal lengths? If 𝑣 ∈ 𝑇𝑝𝔼2 is a vector (an infinites-
imal segment of a curve), then while 𝜙 takes 𝑝 to a new point 𝜙(𝑝), infinitesimally it
acts as a linear transformation from 𝑇𝑝𝔼2 to 𝑇𝜙(𝑝)𝔼2. That infinitesimal linear transfor-
mation is the derivative matrix 𝐷𝜙𝑝 , which takes the original vector 𝑣 to 𝐷𝜙𝑝(𝑣). What
we are interested in is whether or not 𝐷𝜙𝑝 changed the length of 𝑣 .

Figure 10.1.: An isometry does not change the length of any infinitesimal vector.

Definition 10.2. A function 𝜙 ∶ 𝔼2 → 𝔼2 preserves infinitesimal lengths if for every
𝑝 ∈ 𝔼2 and every 𝑣 ∈ 𝑇𝑝𝔼2, we have

‖𝑣‖ = ‖𝐷𝜙𝑝(𝑣)‖
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Using this condition, one can showwith some calculus that every isometry is actually an
invertible function: that means, if 𝜙 is an isometry there is a function 𝜙−1 which undoes
the action of 𝜙. We will not prove this theorem here (as it is purely a result of advanced
calculus, and doesn’t help us learn geometry). If you like, you can think of this as an extra
condition we are assuming* about isometries in this course.

Theorem 10.1 (Isometries are Invertible Functions).

Just as one can apply an isometry to points, one can apply it to an entire curve by
composition: if 𝛾 is a curve, the curve 𝜙 ∘ 𝛾 can be thought of as drawing 𝛾 , and then
performing whatever action 𝜙 specifies.

Theorem10.2 (Isometries Preserve Lengths of Curves). Let 𝜙 ∶ 𝔼2 → 𝔼2 be an isometry,
and 𝛾 ∶ 𝐼 → 𝔼2 a curve. Then

length(𝛾 ) = length(𝜙 ∘ 𝛾 )

Proof. Let 𝜙 be an isometry, and 𝛾 ∶ [𝑎, 𝑏] → 𝔼2 be a curve. Then we know the length
of 𝛾 itself is defined as length(𝛾 ) = ∫[𝑎,𝑏] ‖𝛾 ′(𝑡)‖𝑑𝑡 , and we wish to compare this with the
length of 𝜙 ∘ 𝛾

length(𝜙 ∘ 𝛾 ) = ∫[𝑎,𝑏] ‖(𝜙 ∘ 𝛾 )′(𝑡)‖𝑑𝑡

To compute this integral we need to first differentiate 𝜙 ∘ 𝛾 using the chain rule (CITE):

(𝜙 ∘ 𝛾 )′(𝑡) = 𝐷𝜙𝛾 (𝑡)𝛾 ′(𝑡)

Where here recall that 𝐷𝜙𝛾 (𝑡) is a matrix - the linear transformation recording the in-
finitesimal behavior of 𝜙 at a point - and 𝛾 ′(𝑡) is a tangent vector - an infinitesimal piece
of arc. Since we have assumed that 𝜙 is an isometry, it preserves infinitesimal lengths
by definition so

‖𝐷𝜙𝛾 (𝑡)𝛾 ′(𝑡)‖ = ‖𝛾 ′(𝑡)‖
Using this, we can simplify our integral:
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length(𝜙 ∘ 𝛾 ) = ∫[𝑎,𝑏] ‖(𝜙 ∘ 𝛾 )′(𝑡)‖𝑑𝑡

= ∫[𝑎,𝑏] ‖𝐷𝜙𝛾 (𝑡)𝛾
′(𝑡)‖𝑑𝑡

= ∫[𝑎,𝑏] ‖𝛾
′(𝑡)‖𝑑𝑡

= length(𝛾 )

In fact, the converse of this is true as well: if a differentiable function preserves the
lengths of all curves, then it preserves infinitesimal lengths, and is an isometry.

10.1. Translations & Some Rotations

We will go more in-depth in our discussion of isometries later on, but for now it’s good
practice with the definition to find a couple examples that we can use.

Theorem 10.3 (Translations are Isometries). If 𝑣 = ⟨𝑎, 𝑏⟩ is a fixed vector, a translation
by 𝑣 of 𝔼2 is given by the function 𝑇 (𝑝) = 𝑝 + 𝑣 , or, in coordinates,

𝑇 (𝑥, 𝑦) = (𝑥 + 𝑎, 𝑦 + 𝑏)

. This is an isometry of 𝔼2.

Proof. Here we need to compute the derivative of 𝑇 : Since 𝑇 (𝑥, 𝑦) = (𝑥 + 𝑎, 𝑦 + 𝑏) we
get the matrix

𝐷𝑇 = (𝜕𝑥𝑇1 𝜕𝑦𝑇1
𝜕𝑥𝑇2 𝜕𝑦𝑇2)

= (𝜕𝑥 (𝑥 + 𝑎) 𝜕𝑦 (𝑥 + 𝑎)
𝜕𝑥 (𝑦 + 𝑏) 𝜕𝑦 (𝑦 + 𝑏))

= (1 0
0 1)
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Figure 10.2.: A translation of the plane does not change the coordinates of any infinites-
imal vectors: thus it does not change their lengths. Translations are isome-
tries.

This is the identity matrix which means it does nothing to vectors: if 𝑣 = ⟨𝑣1, 𝑣2⟩ is any
vector based at 𝑝 ∈ 𝔼2 then

𝐷𝑇𝑝(𝑣) = (1 0
0 1) (

𝑣1
𝑣2) = (𝑣1𝑣2)

Thus, since 𝐷𝑇 did not change anyting at all about 𝑣 it did not change its length and so
𝑇 is an isometry.

‖𝐷𝑇𝑝(𝑣)‖ = ‖𝑣‖

A particularly nice collection of functions to work with are the linear maps 𝔼2 → 𝔼2.
One of the nicest properties of these they are easy to differentiate: by CITE THEOREM,
if 𝐴 is a matrix representing the linear map 𝜙(𝑣) = 𝐴𝑣 then 𝐷𝜙 = 𝐴 is the same matrix!
So, if we are looking for linear isometries we can save ourselves the work of differentia-
tion.

Example 10.1. The following linear map is an isometry of 𝔼2

𝜙(𝑥, 𝑦) = (0 −1
1 0 ) (𝑥𝑦)
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Figure 10.3.: This linear map affects both points and tangent vectors, but it does not
change the length of any tangent vector. Thus, it is an isometry (this is a
rotation by 90 degrees)

Proof. We check that this preserves all infinitesimal lengths. Denote by 𝐴 the matrix
𝐴 = ( 0 −11 0 ), then 𝜙 is the linear map 𝜙(𝑥) = 𝐴𝑥 , so its derivative is given by the same
linear map, 𝐷𝜙𝑝(𝑣) = 𝐴𝑣 at every point 𝑝.
Thus, to see that 𝜙 is an isometry, all we need to do is check whether or not the length
of 𝐴𝑣 is the same as the length of 𝑣 for an aribtrary vector 𝑣 = ⟨𝑣1, 𝑣2⟩.

𝐴𝑣 = (0 −1
1 0 ) (𝑣1𝑣2) = (−𝑣2𝑣1 )

‖𝐴𝑣‖ = ‖⟨−𝑣2, 𝑣1⟩‖
= √(−𝑣2)2 + (𝑣1)2

= √𝑣21 + 𝑣22
= ‖𝑣‖

As these lengths are the same, 𝜙 is an isometry.

Of course, not all linear maps are isometries: its easy to cook up something that doesn’t
preserve infinitesimal lengths.
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Example 10.2. The following linear map is not an isometry of 𝔼2:

𝜙(𝑥, 𝑦) = (2 1
1 0) (

𝑥
𝑦)

Figure 10.4.: This map does not change the length of the infinitesimal vector ⟨0, 1⟩ at any
point, but it does change the length of ⟨1, 0⟩. Thus it is not an isometry.

Proof. Since 𝜙 is linear, 𝐷𝜙 is equal to the same linear map ( 211 0 ) at each point of 𝔼2.
To prove 𝜙 is not an isometry, all we need to do is find one vector which has its length
changed by 𝐷𝜙. Consider the vector 𝑣 = ⟨1, 0⟩ based at 𝑝 = 𝑂 ∈ 𝔼2. Then

𝐷𝜙𝑝(𝑣) = (2 1
1 0) (

1
0) = (20)

While 𝑣 had unit length 𝐷𝜙𝑝(𝑣) has length 2, so 𝜙 does not preserve all infinitesimal
lengths, and therefore is not an isometry.

What are the conditions on a linear map being an isometry? Well, if it needs to preserve
all infinitesimal lengths, it needs to send the unit vector ⟨1, 0⟩ to some other unit vector,
and same for ⟨0, 1⟩. Since the image of these vectors are the first and second columns of
the matrix representing them, this means that every linear isometry has a matrix whose
rows are unit vectors. Is every such matrix an isometry?

Exercise 10.1. Write down a linear map that sends both ⟨1, 0⟩ and ⟨0, 1⟩ to unit vectors,
but is not an isometry.
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However, if we choose unit vectors correctly, we do get an linear isometry! Intuitively
from our previous experience with the plane we know what to should happen, we are
looking for a rotation! The theorem below confirms that rotations about 𝑂 in the plane
exist: you can fix that point, and perform an isometry that moves ⟨1, 0⟩ to any other
unit tangent vector in 𝑇𝑂𝔼2.

Theorem 10.4. Let 𝑣 be an arbitrary unit vector based at 𝑂 in 𝔼2. Then there exists an
isometry 𝜙 of 𝔼2 which takes fixes 𝑂 and takes ⟨1, 0⟩ to 𝑣 . Such an isometry is called a
rotation about 𝑂.

Proof. Let 𝑣 = ⟨𝑣1, 𝑣2⟩ be a unit vector. Then the vector 𝑣⟂ = ⟨−𝑣2, 𝑣1⟩ is a rotated copy
of 𝑣 by 90 degrees. From these, we can build a linear map which sends ⟨1, 0⟩ to 𝑣 (and
also ⟨0, 1⟩ to 𝑣⟂):

𝑅(𝑥, 𝑦) = (𝑣1 −𝑣2
𝑣2 𝑣1 ) (𝑥𝑦)

Now we check this is an isometry. Let 𝑝 be an arbitrary point in 𝔼2 and 𝑢 = ⟨𝑎, 𝑏⟩ be
an arbitrary tangent vector based at 𝑝. We need to see that ‖𝑢‖ = ‖𝐷𝑅𝑝𝑢‖. Since 𝑅 is a
linear transformation, we know that it is its own derivative (CITE), so

𝐷𝑅𝑝 = (𝑣1 −𝑣2
𝑣2 𝑣1 )

And so we can apply without much trouble to 𝑢:

𝐷𝑅𝑝𝑢 = (𝑣1 −𝑣2
𝑣2 𝑣1 ) (𝑎𝑏) = (𝑣1𝑎 − 𝑣2𝑏

𝑣2𝑎 + 𝑣1𝑏)

Calculating the length is now just a matter of algebra, using the fact that 𝑣 is a unit
vector so 𝑣21 + 𝑣22 = 1. After simplifying, we see

‖𝐷𝑅𝑝𝑢‖ = √𝑎2 + 𝑏2 = ‖𝑢‖

Thus the infinitesimal length of 𝑢 was not changed by the transformation 𝑅, and as 𝑝, 𝑢
were arbitrary this is true for all infintiesimal lengths - 𝑅 is an isometry.

Exercise 10.2. Check the calculation that is skipped in the proof above actually works
out as claimed.
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10.2. Creating Isometries: Conjugation

Some additional exercises to explore deeper the idea of isometries, and practice the chain
rule!

Exercise 10.3 (Composition of Isometries). If 𝜙 and 𝜓 are two isometries of 𝔼2, then
the composition 𝜙 ∘ 𝜓 is also an isometry.

Exercise 10.4 (Inversion of Isometries). If 𝜙 is an isometry of 𝔼2, then its inverse func-
tion 𝜙−1 is also an isometry.

Together these say that the isometries of a space form a group. Being able to compose
and invert isometries is quite useful when you need to create an isometry that does a
specific task out of a limited set of pieces.

As a first example, suppose you wanted to show there is a rotation about 𝑂 that takes
some unit vector 𝑣 ∈ 𝑇𝑂𝔼2 to another unit vector 𝑤 ∈ 𝑇𝑂𝔼2. So far we only have one
theorem about rotations - Theorem 10.4, which tells us thatwe can find one taking ⟨1, 0⟩0
to any vector. We will need to create two of these, and combine them via composition
and inversion:

Proposition 10.1. For any two unit vectors 𝑣 , 𝑤 ∈ 𝑇𝑂𝔼2, there is a Euclidean isometry
which fixex 𝑂 and sends 𝑣 to 𝑤 .

Proof. Let 𝜙𝑣 be a rotation taking ⟨1, 0⟩ to 𝑣 , and 𝜙𝑤 be an rotation taking ⟨1, 0⟩ to 𝑤 :
both of these are linear, and exist by Theorem 10.4. Now, consider the inverse function
𝜙−1𝑣 . This is an isometry (by Exercise 10.4) which undoes the action of 𝜙𝑣 , so it fixes 𝑂
and takes 𝑣 to ⟨1, 0⟩.
Now consider the composition 𝜙𝑤 ∘ 𝜙−1𝑣 . This is a composition of isometries, and hence
an isometry (Exercise 27.26). It fixes 𝑂 since 𝜙−1𝑣 does and 𝜙𝑤 does, so all we need to see
is that it takes 𝑣 to 𝑤 . So, just follow the vector 𝑣 ! We first feed it into 𝜙−1𝑣 , which takes
it to ⟨1, 0⟩, and then we feed the result into 𝜙𝑤 , which takes ⟨1, 0⟩ to 𝑤 !

If you wanted to write this in symbols instead of pictures or words, it looks like this:

𝐷(𝜙𝑤 ∘ 𝜙−1𝑣 )𝑂(𝑣) = (𝐷𝜙𝑤 )𝑂(𝐷𝜙−1𝑣 )𝑂(𝑣)
= (𝐷𝜙𝑤 )𝑂 (⟨1, 0⟩)
= 𝑤
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Figure 10.5.: Rotations taking ⟨1, 0⟩0 to 𝑣𝑜 and 𝑤𝑜 respectively.

Figure 10.6.: The combination 𝜙𝑤𝜙−1𝑣 takes 𝑣𝑜 to 𝑤𝑜 directly. On the left, we see its mo-
tion step by step, passing through the intermediate vector ⟨1, 0⟩0. On the
right, we see the net result.
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Next, we will look at trying to build an isometry that rotates around an aribtrary point
𝑝 in the plane. We already found the isometries that rotate around 0: they are the nice
linear maps of Theorem 10.4. But tracking down isometries that rotate around other
points of the plane sounds more difficult. First of all - they cannot be linear maps!
A linear map fixes the point 𝑂, but a rotation about the point 𝑝 fixes….𝑝! However,
combining a translation taking 𝑝 to zero with a rotation about zero in the right way, we
can succeed!

Theorem 10.5. Let 𝑝 be a point in the Euclidean plane and 𝑣 = ⟨𝑣1, 𝑣2⟩ a tangent vector
based at 𝑝. Then there is an isometry of 𝔼2 which fixes 𝑝, and takes ⟨1, 0⟩ to 𝑣 .

Proof. Let 𝑇 be the translation 𝑇 (𝑞) = 𝑞 + 𝑝: this is an isometry by Theorem 10.3, and it
takes 𝑂 to 𝑝. Also, let 𝑅 be the rotation about 𝑂 which takes the vector ⟨1, 0⟩ based at 𝑂
to the vector 𝑣0 = ⟨𝑣1, 𝑣2⟩ based at 𝑂. (Recall 𝑣𝑜 means a vector with the same coordinates
as 𝑣 = 𝑣𝑝 ∈ 𝑇𝑝𝔼2, but based at 0 instead of 𝑝.

Figure 10.7.: We require a rotation about 𝑂 and a translation from 𝑂 to 𝑝 in order to
build a rotation about 𝑝.

From these, we construct the map 𝜙 = 𝑇 ∘ 𝑅 ∘ 𝑇−1. This is an isometry because its a
composition of isometries and their inverses (Exercise 27.26,Exercise 10.4), so we just
need to check that it does what is claimed.

This fixes the point 𝑝: since 𝑇 takes 𝑂 to 𝑝, its inverse takes 𝑝 to 𝑂. Then 𝑅 fixes 𝑂, and
finally, 𝑇 takes 𝑂 back to 𝑝:

𝜙(𝑝) = 𝑇𝑅𝑇−1(𝑝)
= 𝑇𝑅(𝑂)
= 𝑇 (𝑂)
= 𝑝
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Next, we nee to check it does what we claim to the tangent vectors. To do so, we need
to take the derivative of 𝜙 at 𝑝, and see that it takes ⟨1, 0⟩𝑝 to 𝑣𝑝 . In symbols, we want
to show 𝐷𝜙𝑝(⟨1, 0⟩𝑝) = 𝑣𝑝 .

Figure 10.8.: The composition 𝑇𝑅𝑇 1 fixes 𝑝, and takes ⟨1, 0⟩𝑝 to 𝑣𝑝 . On the left, we see the
step-by-step action of this combination: starting from ⟨1, 0⟩𝑝 we translate
to 𝑂, rotate to 𝑣𝑜 , and then translate back to 𝑣𝑝 . The right shows the net
result: just a rotation at 𝑝.

We know by the proof of Theorem 10.3 that the derivative of 𝑇 is the identity matrix.
Thus, the derivative of 𝑇−1 is also the identity matrix (we differentiate an inverse by
using the inverse of the derivative matrix, by Theorem 7.1). So applying 𝐷𝑇−1 at 𝑝 to
⟨1, 0⟩𝑝 leaves it unchanged, except it moves the basepoint to 𝑂 (since 𝑇−1(𝑝) = 𝑂).

Next, we apply 𝑅. This fixes 𝑂, and by Theorem 10.4 we know 𝐷𝑅𝑜 takes ⟨1, 0⟩𝑜 to
𝑣𝑜 . Finally, we apply 𝑇 : since its derivative is the identity matrix it does not affect the
coordinates of any vector just the basepoint, so it takes 𝑣𝑜 to 𝑣𝑝 .

In symbols:

𝐷𝜙𝑝(⟨1, 0⟩𝑜) = 𝐷(𝑇𝑅𝑇−1)𝑝(⟨1, 0⟩𝑜)
= 𝐷𝑇𝑜𝐷𝑅𝑜𝐷𝑇−1𝑝 (⟨1, 0⟩𝑝)
= 𝐷𝑇𝑜𝐷𝑅𝑜(⟨1, 0⟩𝑜)
= 𝐷𝑇𝑜(𝑣𝑜)
= 𝑣𝑝
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Exercise 10.5. Can you modify the argument of Theorem 10.5 above to prove that in
fact for any point 𝑝 and any two unit tangent vectors 𝑣𝑝 , 𝑤𝑝 in 𝑇𝑝𝔼2, there is an isometry
which fixes 𝑝 and takes 𝑣𝑝 to 𝑤𝑝?
Hint: look at the proof of Proposition 10.1 for inspiration.

This operation - move, then do your next trick, then undo the original movement is an
extremely common manuever in mathematics to build new things from known things.
Its essential not only in geometry, but also at the heart of abstract algebra and other
fields, and is called conjugation.

Definition 10.3 (Conjugation). If 𝑎 and 𝑏 are two mathematical objects that can be
multiplied or composed, then the object

𝑏𝑎𝑏−1

is called the conjugate of 𝑎 by 𝑏.

Often, wewill interpret this as doing the action determined by 𝑎, at the location determined
by 𝑏. Thus we can describe the previous theorem much more succinctly with our new
terminology: to rotate about the point 𝑝, we conjugate a rotation about 0 by a translation
from 0 to 𝑝. Or - we perform a rotation at the location we translate to.

10.3. Homogenity and Isotropy

The fundamental property of Euclidean geometry that allowed the greeks and ancients
to make so much progress was the incredible amount of symmetry that the plane has.
It doesn’t matter where you draw a triangle, a circle or another figure: all locations of
the plane look and act the same. This concept that space looks the same at every point
and also behaves the same in every direction is fundamental to modern geometry

Definition 10.4 (Homogeneous Space). A space is homogeneous if for every pair of
points in the space, there is an isometry taking one to the other.

Definition 10.5 (Isotropic Space). A space is isotropic if for any point 𝑝 and any two
directions leaving 𝑝, there is a rotation of the space taking one direction to the other.

The existence of translations shows us that the Euclidean plane is homogeneous, while
the ability to rotate about any point shows us that it is isotropic.
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Theorem 10.6 (Euclidean space is Homogeneous and Isotropic).

In practice, we will use the homogenity and isotropy of Euclidean space to simplify a lot
of arguments. Once we prove somethign is true at one location (like the origin, where
calcuation is simple) we will immediately be able to deduce that the analogous theorem
is true at all other points of the plane! To make such arguments, its useful to repackage
homogenity and isotropy into a useful tool.

Proposition 10.2 (Moving from 𝑝 to 𝑞.). Given any two pairs 𝑝, 𝑣𝑝 and 𝑞, 𝑤𝑞 of points
𝑝, 𝑞 in Euclidean space and unit tangent vectors 𝑣𝑝 ∈ 𝑇𝑝𝔼2, 𝑤𝑞 ∈ 𝑇𝑞𝔼2 based at them, there
exists an isometry taking 𝑣𝑝 to 𝑤𝑞 .

Figure 10.9.: The homogenity and isotropy of𝔼2 lets us take any unit vector at any point,
to any other via an isometry.

Exercise 10.6. Prove Proposition 10.2 above.

Hint: use Theorem 10.3 to construct isometries taking𝑂 to both 𝑝 and 𝑞, and Proposition 10.1
to build the right sort of rotation around 𝑂 that you need. Compose these (or their inverses)
to get a map taking 𝑣𝑝 to 𝑣𝑜 , then to 𝑤𝑜 , and finally to 𝑤𝑝 .

10.4. Similarities

Isometries - maps that preserve all infinitesimal lengths - are very special among the col-
letion of all possible maps of the plane. Most mappings 𝐹 ∶ 𝔼2 → 𝔼2 don’t do anything
understandable to lengths!
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PICTURE Caption: infinitesimal lengths are all distorted by general maps.

However, there is one important intermediate ground of maps: they don’t preserve
distances - but they don’t change them arbirarily either. We will call a map a similarity
if it scales all infinitesimal lengths by the same factor:

Definition 10.6. An map 𝜎 ∶ 𝔼2 → 𝔼2 is called a similarity if there is a positive real
number 𝑘 such that

‖𝐷𝜎𝑝(𝑣)‖ = 𝑘‖𝑣‖
for all tangent vectors 𝑣 . This constant 𝑘 is called the scaling factor or dilation of the
map 𝜎 .

Figure 10.10.: A similarity uniformly scales all tangent vectors.

Perhaps the simplest similarites of the plane are given by vector scalar multiplication:
just take the map 𝜎(𝑥, 𝑦) = (𝑘𝑥, 𝑘𝑦).

Example 10.3. The map 𝜎(𝑥, 𝑦) = (2𝑥, 2𝑦) is a similarity with scaling factor 2. Com-
puting its derivative we see

𝐷𝜎 = (2 0
0 2)

and so for any point 𝑝 and any vector 𝑣 ∈ 𝑇𝑝 applying 𝐷𝜎𝑝 just multiplies all its coordi-
nates by 2. Thus if 𝑣 = ⟨𝑣1, 𝑣2⟩𝑝 ,

‖𝐷𝜎𝑝(𝑣)‖ = ‖⟨2𝑣1, 2𝑣2⟩‖ = 2‖⟨𝑣1, 𝑣2⟩‖ = 2‖𝑣‖

Since this is the same constant for every vector 𝑣 , this implies that 𝜎 is a similarity!K
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Because similarities do exactly the same thing to every tangent vector in the plane, we
can compute exactly how they scale the lengths of curves.

Proposition 10.3 (Similarities Scale Lengths). Let 𝛾 ∶ [𝑎, 𝑏] → 𝔼2 be a curve, and 𝜎 a
similarity with scaling factor 𝑘. Then

length(𝜎 ∘ 𝛾 ) = 𝑘 length(𝛾 )

Proof. We compute the length of 𝜎 ∘ 𝛾 via an integral:

length(𝜎 ∘ 𝛾 ) = ∫
𝑏

𝑎
‖(𝜎 ∘ 𝛾 )′(𝑡)‖𝑑𝑡

= ∫
𝑏

𝑎
‖𝐷𝜎𝛾 (𝑡)𝛾 ′(𝑡)‖𝑑𝑡

= ∫
𝑏

𝑎
𝑘‖𝛾 ′(𝑡)‖𝑑𝑡

= 𝑘 ∫
𝑏

𝑎
‖𝛾 ′(𝑡)‖𝑑𝑡

= 𝑘 length(𝛾 )

Where in the middle we used the fact that 𝜎 was a similarity so ‖𝐷𝜎(𝑣)‖ = 𝑘‖𝑣‖ for any
vector 𝑣 .

Figure 10.11.: Since all infinitesimal lengths are scaled up, so is their integral. Thus sim-
ilarties linearly expand the length of all curves by their scaling constant.
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Just like for isometries, we have as a theorem of calculus that this condition actually
implies that our map is invertible! We will not prove this theorem here, and if you
like you can instead treat this as an extra condition we require of a function to be a
similarity.

Theorem 10.7 (Every Similarity is Invertible).

For isometries, you proved the inverse of an isometry is an isometry (Exercise 10.4) by
showing that if 𝜙 didn’t change the length of any vectors, than neither could 𝜙−1. Here
we investigate the analogous question for similarities.

Proposition 10.4. If 𝜎 is a similarity with scaling factor 𝑘, then 𝜎−1 is also a similarity,
this time with scaling factor 1/𝑘.

Proof. Let 𝜎 be such a similarity, and 𝜎−1 be its inverse. Then by definition we know
their composition is the identity function $

𝜎 ∘ 𝜎−1 = id

The identity function (𝑥, 𝑦) ↦ (𝑥, 𝑦) has the identity matrix as its derivative. On the
other side, we can use the multivariable chain rule to get

𝐷(𝜎𝜎−1)𝑝 = 𝐷𝜎𝜎−1(𝑝)𝐷𝜎−1𝑝 = 𝐼

Now start with any vector 𝑣 based at a point 𝑝. We first feed this vector into 𝐷𝜎−1𝑝 ,
which returns a new vector - let’s call it 𝑤 . We don’t know anything about 𝑤 at the
moment, but we do know that when we feed it into 𝐷𝜎 , its length will multiply by 𝑘,
since 𝜎 is a similarity. But we know more than this! The end result must be literally the
vector 𝑣 : since we started with 𝑣 and the composition of 𝐷𝜎 with 𝐷𝜎−1 is the identity
matrix.

Thus we know that whatever 𝑤 is, when you multiply its length by 𝑘 you get the length
of 𝑣 , so

𝑘‖𝑤‖ = ‖𝑣‖
But - remember 𝑤 is just the vector 𝐷𝑝𝜎−1(𝑣): so we’ve found

‖𝐷𝜎−1𝑝 (𝑣)‖ = 1
𝑘 ‖𝑣‖

And this holds for all vectors 𝑣 - so the inverse is indeed a similarity, and the scaling
constant is 1/𝑘.
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More generally, we can use the same sort of reasoning to understand compositions of
any similarities.

Exercise 10.7. Prove that the composition of a similarity and isometry is another simi-
arlity, with the same scaling factor.

Exercise 10.8. If 𝜎 and 𝜓 are two similarities with scaling constants 𝑐 and 𝑘 respectively,
the composition 𝜎 ∘ 𝜓 is also a similarity, with scaling constant 𝑐𝑘.

From this, we can build many more similarities from the simple ones we know.

Exercise 10.9. The similarities (𝑥, 𝑦) ↦ (𝑘𝑥, 𝑘𝑦) fix 𝑂 in the plane: can you use transla-
tions to build a similaritywith scaling constant 𝑘which instead fixes the point 𝑝 = (𝑎, 𝑏)?
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11. Lines

Laying down the foundations at a deeper level than the Greeks, we have some work
to do before we can hope to recover the axioms of Euclid. Indeed - no where in our
foundations does the term line even appear: we are in the awkaward position of being
able to workwith any curvewe like, but we do not knowwhich among them is a straight
line!

To find the lines among the sea of curves, we need a good and precise definition. Def-
initions single out an important property characterizing the object being defined, and
for that definition to be good, we would like that condition to be checkable within the
framework we are building. So - Euclid’s definition of a line as a breadthless length is
not going to do much for us here.

However, looking to history, we find several good candidate definitions among the prop-
erties of lines the ancients took as essential.

Definition 11.1 (Essential Properties of Lines).

• Archimedes used as an axiom of length that the line segment between two points is
the shortest among all curves connecting them. This could be turned upside down
and directly used as the defining feature of lines: whichever curve is shortest, we
call a line.

• As a followup to the infamously unhelpful breadthless length Euclid states the
important feature of a line being that the points lie evenly with themselves. This
also requires a bit of translation, but if we can define what it means for a curve to
turn, we could then specify straight lines as curves that do not turn.

• The term line also shows up in phrases such as line of symmetry - for instance in
discussing that the human form is left-right-symmetric. The fact that reflections
fix a line is foundational to geometric arts like Origami, which is what allows the
use of Euclidean geometry to describe the collection of creases made: they arise
as lines of symmetry, so they are the lines of Euclid!
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In fact all three of these things can bemade into precise statements in our new geometry,
and we can compute exactly what sort of curves satisfy each of them. The main purpose
of this setion is to do so, and to show that all three of them end up specifying exactly
the same class of curves! This is one reason that lines are so important to geometry:
they are the single objects sharing all three of these very natural properties!

11.1. Shortest

We start first with the insight of archimedes, and attempt to make precise the notion of
shortest curve between two points. In doing so, we will actually first define line segment,
and then use this to define lines more generally.

Definition 11.2 (Line Segment). Given two points 𝑝, 𝑞 ∈ 𝔼2, a curve 𝛾 starting at 𝑝
and ending at 𝑞 is called a line segment if it is distance minimizing. That is, for all other
curves 𝛼 from 𝑝 to 𝑞, we have

length(𝛾 ) ≤ length(𝛼)

Figure 11.1.: Defining a line segment 𝛾 as the shortest curve joining itse endpoints.

This definition fseems very powerful: if you know something is a line segment you
know a lot about it: you know how its length relates to the length of every single other
curve!

Theorem 11.1 (Segments of 𝑥-axis are Minimizers). Finite segments of the 𝑥 axis, that
is, curves of the form

𝛾 (𝑡) = (𝑡, 0) 𝑎 ≤ 𝑡 ≤ 𝑏
are length minimizers.
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Proof. First, we compute the length of the 𝑥-axis between 0 and 𝐿 by integrating the
infinitesimal lengths of 𝛾 :

𝛾 (𝑡) = (𝑡, 0) ⟹ 𝛾 ′(𝑡) = (1, 0) ⟹ ‖𝛾 ′(𝑡)‖ = 1

length(𝛾 ) = ∫
𝐿

0
‖𝛾 ′(𝑡)‖𝑑𝑡 = ∫

𝐿

0
𝑑𝑡 = 𝐿

This of course is unsurprising! But its good to know explicitly that we have found a
curve of length exactly 𝐿. Now, let 𝛼(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) be any arbitrary (regular)curve
connecting (0, 0) to (𝐿, 0).
Picture

Our goal is now to show that length(𝛼) ≥ 𝐿, as this would mean no curve can have a
length less than 𝐿, and our segment of the 𝑥-axis above is indeed the shortest curve!
The difficulty in doing so is that we know very little about 𝛼 , and hence very little about
its coordinate functions 𝑥(𝑡), 𝑦(𝑡). If 𝛼 is defined on the interval [𝑎, 𝑏] knowing that it
starts and ends at (0, 0) and (𝐿, 0) implies

𝑥(𝑎) = 0 𝑥(𝑏) = 𝐿
𝑦(𝑎) = 0 𝑦(𝑏) = 0

but this is essentially all we know. Nonetheless, let’s push onwards and see what we
can learn about length(𝛼) by writing out its definition.

length(𝛼) = ∫
𝑏

𝑎
‖𝛼′(𝑡)‖𝑑𝑡 = ∫

𝑏

𝑎 √𝑥′(𝑡)2 + 𝑦 ′(𝑡)2 𝑑𝑡

Now we do some estimation: we know that whatever 𝑦 is, 𝑦 ′(𝑡)2 is nonnegative - be-
cause its squared, after all! So

𝑦 ′(𝑡)2 ≥ 0 ⟹ 𝑥′(𝑡)2 + 𝑦 ′(𝑡)2 ≥ 𝑥′(𝑡)2

We can then take the square root of both sides of this equation (which preserves inequal-
ities) to get

√𝑥′(𝑡)2 + 𝑦 ′(𝑡)2 ≥ √𝑥′(𝑡)2 = |𝑥′(𝑡)| ≥ 𝑥′(𝑡)

Igoring all the middle terms in this string of inequalities, (and recalling the left hand
side is the norm of 𝛼′) we see that
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‖𝛼′(𝑡)‖ ≥ 𝑥′(𝑡) for all 𝑡

Thus, as functions of 𝑡 , we see that the curve 𝑥′ lies below the curve ‖𝛼′‖: since the area
under the lower curve must be less than or equal to the upper, this inequality is still
preserved after we integrate.

∫
𝑏

𝑎
‖𝛼′(𝑡)‖ 𝑑𝑡 ≥ ∫

𝑏

𝑎
𝑥′(𝑡) 𝑑𝑡

But now we have really made some progress: on the right side here we are integrating
a derivative, so we can use the fundamental theorem of calculus! The antiderivative of
𝑥′(𝑡) is just 𝑥(𝑡) of course, so we evaluate at the endpoints:

∫
𝑏

𝑎
𝑥′(𝑡) 𝑑𝑡 = 𝑥(𝑡)|

𝑏

𝑎
= 𝑥(𝑏) − 𝑥(𝑎) = 𝐿 − 0 = 𝐿

And with that, we’ve done it! The integral on the left side was precisely the length of 𝛼 ,
so

length(𝛼) ≥ 𝐿

Now that we have a firm understanding of segments, how can we properly bootstrap
this idea to a definition of lines? A line itself has no endpoints, and so is not a distance
minimizing curve! However, it has the property that if you cut out any segment from
it, that segment is distance minimizing. To say this formally, we need a word for “cut
out a segment of a curve”

Definition 11.3 (Finite Segment of a Curve). Given a curve 𝛾 ∶ ℝ → 𝔼2, a finite segment
of 𝛾 is the restriction of 𝛾 to some finite interval [𝑎, 𝑏] ⊂ ℝ.

This makes the definition for a line completely precise:

Definition 11.4 (Line). A curve 𝛾 is a line if all of its finite segments are line segments.
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Figure 11.2.: A segment of a curve is a restriction of that curve to a sub-interval of its
domain.

This sounds pretty useless until we unpack it: since line segments are distance mini-
mizers, this is saying that to be a line, a curve must have the property that it is distance
minimizing between any two points it passes through! A strong condition indeed.

However, given the work we did above on segments of the 𝑥 axis, we can now immedi-
ately apply this to the entire axis itself.

Corollary 11.1 (The 𝑥-axis is a line). Every finite segment of the 𝑥-axis is a distance
minizing line segment, so the 𝑥-axis is a line.

Well, after all this theory we have finally managed to track down one line in the plane!
How can we findmore? One option of course is to mimic the argument given here: with
trivial modifications we can similarly prove that the 𝑦 axis is a line, and that curves of
the form 𝑥 = 𝑎 or 𝑦 = 𝑏 are all lines as well. But it would take a little more work (in the
form of a clever 𝑢-substitution) to apply this further: we took big advantage of the fact
that one of the coordinate derivatives was zero in our proof!

Instead, we take this as our first opportunity to use one of the most powerful ideas in
modern geometry: symmetry. We proved (CITE) that isometries preserve the length of
all curves, and this has an important consequence: isometries send lines to lines!

Theorem 11.2 (Isometries Send Lines to Lines). Let 𝛾 ∶ ℝ → 𝔼2 be a line, and 𝜙 ∶ 𝔼2 →
𝔼2 be an isometry. Then 𝜙 ∘ 𝛾 is also a line.

Proof. To argue that 𝜙 ∘ 𝛾 is a line, we need to show that all of its finite segments are
length-minimizing. So, pick some aribtrary interval [𝑎, 𝑏] ⊂ ℝ and look at the restriction
of our curve to that segment, which goes from 𝜙(𝛾 (𝑎)) = 𝑝 to 𝜙(𝛾 (𝑏)) = 𝑞.
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Figure 11.3.: A line segment 𝛾 and its image under an isometry 𝜙.

Assume for the sake of contradiction that this is not length minimizing: then there is
some other curve 𝛼 connecting 𝑝 to 𝑞 which is of shorter length.

Figure 11.4.: A mysterious curve 𝛼 which is assumed to be shorter than 𝜙 ∘ 𝛾 .

Now, apply the inverse function 𝜙−1 to everything: this takes the segment 𝜙 ∘ 𝛾 back
to 𝛾 , and takes 𝛼 to a new curve 𝜙−1 ∘ 𝛼 , starting and ending at the same points as the
corresponding segment of 𝛾 :
Since isometries preserve length (CITE), we know that since 𝛼 was shorter than 𝜙 ∘ 𝛾 ,
we must now have that 𝜙−1 ∘ 𝛼 is shorter than 𝛾 ! But this is impossible: we assumed
that 𝛾 itself was a line, so all of its segments are length-minimizing: there are no shorter
curves!

Thus, its impossible that 𝛼 exists, so 𝜙 ∘ 𝛾 must have been the shortest segment between
𝑝 and 𝑞 after all. As all segments of this curve are distance minimizers, its a line!

This gives us an easy prescription to track down lines: we already know 𝛾 (𝑡) = (𝑡, 0) is
a line - and if we apply any isometry at all to this, we will get another line!
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Figure 11.5.: Applying 𝜙−1 moves 𝛼 back to share endpoints with the original 𝛾 , which
we know to be length-minimizing

Corollary 11.2 (Affine Equations are Lines). Every linear equation 𝑓 (𝑡) = (𝑎𝑡, 𝑏𝑡) de-
scribes a line that passes through the origin. Every affine equation of the form

ℓ(𝑡) = (𝑎𝑡 + 𝑐
𝑏𝑡 + 𝑑)

is also a Euclidean line.

Here we concentrate on the main case where ⟨𝑎, 𝑏⟩ is a unit vector. We comment below
the proof on the small change needed when it is not.

Proof. Then, by CITE the rotation 𝜙 = ( 𝑎 −𝑏𝑏 𝑎 ) taking ⟨1, 0⟩ ∈ 𝑇(0,0)𝔼2 to ⟨𝑎, 𝑏⟩ is an
isometry, so it sends lines to lines. Aplying it to the 𝑥-axis 𝛾 (𝑡) = (𝑡, 0), we see

𝜙 ∘ 𝛾 (𝑡) = (𝑎 −𝑏
𝑏 𝑎 ) (𝑡0) = (𝑎𝑡𝑏𝑡)

Thus, 𝑡 ↦ (𝑎𝑡, 𝑏𝑡) is a line! Next, we can use the fact that for fixed 𝑐, 𝑑 the translation
𝜓(𝑥, 𝑦) = (𝑥 + 𝑐, 𝑦 + 𝑑) is an isometry of 𝔼2 (CITE), so

𝜓(𝑎𝑡, 𝑏𝑡) = (𝑎𝑡 + 𝑐, 𝑏𝑡 + 𝑑)
is also a line!
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11. Lines

If 𝑣 = ⟨𝑎, 𝑏⟩ is not a unit vector, then we can run the argument above using the unit
vector 𝑣

‖𝑣‖ . This gives us that the curve below is a line

𝛽(𝑡) = ( 𝑎
√𝑎2 + 𝑏2

𝑡 , 𝑏
√𝑎2 + 𝑏2

𝑡)

The function here must be
monotone increasing: we
don’t want the curve to
double back on itself!

Since we know that the length of curves does not depend on their parameterization,
we can speed up or slow down 𝛽 by pre-composing it with another function, and not
change the fact that it is distance minimizing! Speeding it up by 𝑡 ↦ √𝑎2 + 𝑏2𝑡 gives

𝛽 (√𝑎2 + 𝑏2𝑡) = (𝑎𝑡, 𝑏𝑡)
Thus 𝑡 ↦ (𝑎𝑡, 𝑏𝑡) is a line for any 𝑎, 𝑏 ∈ ℝ!
We saw in Theorem 11.2 that any isometry will carry a line to another line. The same
is true more generally of similarities:

Exercise 11.1 (Similarities Send Lines to Lines). Let 𝛾 ∶ ℝ → 𝔼2 be a line, and 𝜎 ∶ 𝔼2 →
𝔼2 be a similarity. Prove that 𝜎 ∘ 𝛾 is also a line.

*Hint-replicate the proof of Theorem 11.2 as closely as possible, replacing the isome-
try 𝜙 with the similarity 𝜎 , and keeping track of the scaling factors of 𝜎 versus 𝜎−1
(Proposition 10.4).

Using these tools, we can already start our process of rebuilding the Elements from
below!

Theorem 11.3 (Proving Euclid’s Axiom I). Given any two points 𝑝, 𝑞 ∈ 𝔼2, there is a
line segment connecting 𝑝 to 𝑞.

Proof. Knowing that line segments are given by affine equations, we need just fine an
affine equation 𝛾 (𝑡) where 𝛾 (0) = 𝑝 and 𝛾 (1) = 𝑞. Perhaps the simplest such is

𝛾 (𝑡) = 𝑝 + (𝑞 − 𝑝)𝑡

Theorem 11.4 (Proving Euclid’s Axiom II). Given a line segment between two points of
𝔼2, it can be extended indefinitely in either direction.

132



11.1. Shortest

Proof. Let 𝑝, 𝑞 ∈ 𝔼2 and define the line segment 𝛾 ∶ [0, 1] → 𝔼2 by 𝛾 (𝑡) = 𝑝 + (𝑞 − 𝑝)𝑡 as
in the previous theorem. To extend this line segment indefinitely, we need only extend
the domain from [0, 1] to an arbitrary interval [𝑎, 𝑏] containing [0, 1].
The result is still an affine equation on a closed interval, and so still is a line segment
by Corollary 11.2. And, as [𝑎, 𝑏] contains [0, 1] this new segment contains the original
segment from 𝑝 to 𝑞, so it represents an extension of the segment.

11.1.1. Uniqueness of Lines

Above we proved the existence of lines, and found that all affine equations describe lines
in the plane. But are these all the lines there are to be found? In fact they are - and we
can confirm this with very little extra work: we had all the ideas in place already during
the proof of Theorem 11.1.

Proposition 11.1. Segments of the 𝑥-axis are the unique distance minimizers between
their endpoints.

Proof. Let 𝛾 (𝑡) = (𝑡, 0) between 𝑡 = 𝑎 and 𝑡 = 𝑏, and 𝛼(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) be a different
curve with the same endpoints. Then since 𝛼 does not just trace the 𝑥 axis, we must
have 𝑦(𝑡) ≠ 0 at some point. But 𝑦(𝑎) = 0 and 𝑦(𝑏) = 0 at the endpoints, so for 𝑦 to go
from zero to nonzero, it must have nonzero derivative on some interval.

Figure 11.6.: Proving that the line segments we already know of are the unique minimiz-
ers.

But, this means that 𝑦 ′(𝑡)2 is strictly greater than zero on some interval, so ‖𝛼′(𝑡)‖ >
‖𝛾 ′(𝑡)‖, and ‖𝛼′(𝑡)‖ − ‖𝛾 ′(𝑡)‖ > 0 on some interval inside of [𝑎, 𝑏]. Furthermore, since we
already knew ‖𝛼′‖ ≥ ‖𝛾 ′, this quantity is never negative. Thus, by CITE

∫
𝑏

𝑎
‖𝛼′(𝑡)‖ − ‖𝛾 ′(𝑡)‖ 𝑑𝑡 > 0
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And, re-arranging the integral, this immediately implies

length(𝛼) = ∫
𝑏

𝑎
‖𝛼′‖𝑑𝑡 > ∫

𝑏

𝑎
‖𝛾 ′‖𝑑𝑡 = length(𝛾 )

Applying isometries to this, we can extend this result to any of the segments we already
know:

Exercise 11.2. Prove that all Euclidean lines are given by affine equations. Hint: we
already know that the affine equation 𝛾 (𝑡) = (𝑎𝑡 + 𝑏, 𝑐𝑡 + 𝑑) defines a line. Can you show
there is no curve of an equally short length, by using steps similar to the proofs Theorem 11.2
and ?@cor-cor-affline-eqns-are-lines to reach a contradiction given that we just proved
Proposition 11.1?

11.2. Straightest

Another notion of line is “curve that doesn’t turn”. How do we make this precise? The
unit tangent vector to a curve gives its direction, so we say a curve “turns” if the tangent
changes direction.

The deriviatve of the tangent vector is acceleration, a “straight curve” would have ac-
celeration zero.

Definition 11.5 (Straight). A curve 𝛾 is called straight if its tangent vector does not
change. That is, if its acceleration is zero.

You might worry what it
means to say that tangent
vectors are constant, since

each one of them
technically lives in a

different tangent space!
This difficulty will be

absolutely crucial to deal
with later on, when space

itself is curved. But here in
𝔼2, we can take advantage

of the fact that we can
make sense of the basis

vectors ⟨1, 0⟩ and ⟨0, 1⟩ in
each tangent space 𝑇𝑝𝔼2:
then constant just means

that the components of the
vectors are constant in time.

We’ve already done all of the hard work above, and we can now quickly confirm that
this alternative definition picks out exactly the same class of curves.

Theorem 11.5 (Distance Minimizers are Straight). A curve 𝛾 is distance minimizing if
and only if it is striaght.

Proof. This is a direct computation, now that we’ve proven that every distance mini-
mizer is given by a linear equation ℓ(𝑡) = 𝑝 + 𝑡𝑣 . Differentiating once leaves ℓ′(𝑡) = 𝑣 ,
and differentiating twice gives

ℓ′′(𝑡) = (00)
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Figure 11.7.: This curve is not straight: which we can measure by seeing that its tangent
vectors are not constant: they cahnge in direction as we move along the
curve.

Thus, ℓ is straight.
To prove the other direction, we now assume we start with a straight curve 𝛾 , and we
wish to prove its distance minimizing. If 𝛾 is straight, then 𝛾 ′′ = 0 and integrating twice
we see that

𝛾 (𝑡) = (𝑎𝑡 + 𝑐, 𝑏𝑡 + 𝑑)
for some constants 𝑎, 𝑏, 𝑐, 𝑑 . Thus, 𝛾 is an affine curve, and we know affine curves are
distance minimziers (Corollary 11.2). So, we are done!

This will turn out to be true in general: while we will have to be a little more careful
when moving onwards to other geometries, curves that are straight will coincide with
curves that minimize distance.

11.3. Folding

Finally we come to the third possible definition of line, and show that it also picks out
the same collection of curves!

Definition 11.6 (Line of Symmetry). A fixed point of an isometry 𝜙 ∶ 𝔼2 → 𝔼2 is a
point 𝑝 with 𝜙(𝑝) = 𝑝.
A curve 𝛾 is called a line of symmetry of 𝔼2 if there exists an isometry which fixes 𝛾 (𝑡)
for all 𝑡 .
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11. Lines

This captures the intuitive notion of a crease from folding paper, or reflecting across a
line: this swaps the two sides of the plane but leaves What are the fixed sets of reflec-
tions?

Proposition 11.2 (Reflecting in the 𝑥-Axis is an Isometry). The map 𝜙(𝑥, 𝑦) = (𝑥, −𝑦)
is an isometry of 𝔼2.

Figure 11.8.: Reflection across the 𝑥 axis is an isometry of 𝔼2.

Proof. First, notice that 𝜙 is actually a linear map, so we can write it as a matrix:

𝜙(𝑥, 𝑦) = (1 0
0 −1) (

𝑥
𝑦)

Since 𝜙 is linear, its derivative is constant and also equal to 𝜙 at every point. Thus to
check that it is an isometry, we only need to see that it does not change the length of
any vectors.

Let 𝑣 = ⟨𝑣1, 𝑣2⟩𝑝 ∈ 𝑇𝑝𝔼2 be a tangent vector based at some arbitrary point 𝑝. Then

𝐷𝜙𝑝(𝑣) = (1 0
0 −1) (

𝑣1
𝑣2) = ( 𝑣1

−𝑣2)

And measuring lengths with the vector norm,

‖𝐷𝜙𝑝(𝑣)‖ = √𝑣21 + (−𝑣2)2 = √𝑣21 + 𝑣22 = ‖𝑣‖
Thus, 𝜙 is an isometry.
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This map fixes the line of points (𝑥, 0) as it only negates the 𝑦 component.Thus, the 𝑥
axis is a line of symmetry! Similar to before, we can use isometries to prove that every
affine curve is the fixed point of some reflection.

Exercise 11.3 (Reflections in Any Line). Prove that every affine curve is a line of sym-
metry. Hint: given an isometry that reflects in the 𝑥 axis, can you build an isometry that
reflects in any other line? Consider moving the line to the 𝑥 axis, reflecting, and then
moving back.

The converse is also true: that every line of symmetry is an affine equation: so this char-
acterization of lines exactly agrees with the two previous. To prove this, we will need a
bit better understanding of the isometries of Euclidean space, and so will postpone until
CITE SECTION.

11.4. Distance

So far in our development of Euclidean geometry, we have defined the length of a curve,
but we have not defined any notion of distance between two points. This makes some
sense, as the distance between two locations depends on how you get from one to the
other, and that’s exactly what our definition captures!

However, now that we know there is a unique shortest curve between any two points,
there’s a natural candidate for distance: the shortest possible path.

Definition 11.7 (Distance). The distance between two points 𝑝, 𝑞 ∈ 𝔼2 is the length of
the shortest possible curve starting at 𝑝 and ending at 𝑞.

Because of all of our hard work above, we can turn this rather abstract definition into
something concrete and practical!

Theorem 11.6 (The Euclidean Distance). Let 𝑝 and 𝑞 be any two points in the plane.
Then the Euclidean distance between them is given by

dist(𝑝, 𝑞) = ‖𝑝 − 𝑞‖ = √(𝑝1 − 𝑞1)2 + (𝑝2 − 𝑞2)2
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11. Lines

Figure 11.9.: Because lines are affine equations (and thus have constant derivative), the
infinitesimal pythagorean theorem scales up to the distance function.

Proof. We can write down a distance minimizing curve from 𝑝 to 𝑞 as an affine equation:

𝛾 (𝑡) = 𝑝 + 𝑡(𝑞 − 𝑝)
This is equal to 𝑝 when 𝑡 = 0 and 𝑞 when 𝑡 = 1. Thus, its length is given by the
integral of 𝛾 ′ over [0, 1]. Computing the derivative is straightforward since 𝛾 is affine:
𝛾 ′(𝑡) = 𝑞 − 𝑝 = (𝑞1 − 𝑝1, 𝑞2 − 𝑝2), and so the length is

dist(𝑝, 𝑞) = length(𝛾 )

= ∫
1

0
‖𝛾 ′‖ 𝑑𝑡

= ∫
1

0 √(𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2 𝑑𝑡

= √(𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2 ∫
1

0
𝑑𝑡

= √(𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2

Proposition 11.3 (Distance is preserved by isometries). If 𝑝 and 𝑞 are any two points
in the plane and 𝜙 is an isometry, then

dist(𝜙(𝑝), 𝜙(𝑞)) = dist(𝑝, 𝑞)
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11.4. Distance

Figure 11.10.: Distance is invariant under isometry since isometries send lines to lines,
and preserve the length of all curves.

Proof. First, we start with the isometry case. Given two points 𝑝, 𝑞 we can construct
a line segment 𝛾 from 𝑝 to 𝑞 (Theorem 11.3), and as this segment is the minimizer we
know its length accurately measures the distance: $dist(𝑝, 𝑞) = length(𝛾 ).
Applying 𝜙 we recall that isometries carry lines to lines (Theorem 11.2) to note that 𝜙 ∘ 𝛾
is a line segment between 𝜙(𝑝) and 𝜙(𝑞), and as line segments are distance minimizers,
we know

dist(𝜙(𝑝), 𝜙(𝑞)) = length(𝜙 ∘ 𝛾 )
Finally, we recall that isometries don’t change the length of curves (Theorem 10.2) to
see

length(𝛾 ) = length(𝜙 ∘ 𝛾 )
and stringing all these equalities together gives

dist(𝑝, 𝑞) = length(𝛾 ) = length(𝜙 ∘ 𝛾 ) = dist(𝜙(𝑝), 𝜙(𝑞))

Exercise 11.4. If 𝑝,𝑞 are any two points in the plane and 𝜎 is a similarity with scaling
factor 𝑘, prove

dist(𝜎(𝑝), 𝜎(𝑞)) = 𝑘 dist(𝑝, 𝑞)

Hint: follow closely the argument for isometries above, replacing the theorems relating
isometries, line segments, and lengths with the corresponding results for similarities.
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11. Lines

Figure 11.11.: Distance is scaled under similarity since similarities send lines to lines,
and linearly scale the length of all curves.

It will often be useful to measure distances not just to points, but to more complciated
objects in the plane.We are avoiding a detail

here, that aynone who has
seen real analysis may be
interested in. Sometimes,
the minimum distance

between 𝑝 and a point in 𝑅
doesn’t exist, but only the
infimum of such distances

does. However, we will
never encounter such cases

in this text.

Definition 11.8 (Distance to a Set). Let 𝑅 ⊂ 𝔼2 be a region in the plane. Then the
distance from a point 𝑝 ∈ 𝔼2 to 𝑅 is defined as the *shortest line segment connecting 𝑝
to any point of 𝑅, and is denoted dist(𝑝, 𝑅).

Figure 11.12.: The set of points at constant distance from a set (red region). On the right,
a collection of points and the shortest line connecting them to a point of
the set.

11.4.1. Useful Computations

Now that we know exactly what lines are, we can convert elementary geometric prob-
lems - such as when they intersect - into algebraic problems, solvable via systems of
equations. Here’s an example.
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Exercise 11.5 (Intersecting Lines). Calculate the point of intersection between two
lines 𝑎𝑥 + 𝑏𝑦 = 𝑐 and the the diagonal line 𝑥 = 𝑦 . When is there no intersection?

With the ability to solve equations (since lines are given by affine equations, which are
easy to work with!) we have developed a geometric superpower. To demonstrate this,
we can use this to prove Playfair’s axiom (remember, this is equivalent to Euclids 5th
Postulate!)

Proposition 11.4. Given any line 𝐿 in 𝔼2, and any point 𝑝 ∈ 𝔼2 not lying on 𝐿, there
exists a unique line Λ through 𝑝 which does not intersect 𝑝.

Exercise 11.6. Prove Proposition 27.1.

Hint: use isometries to help you out!
First, use an isometry to move 𝐿 to the 𝑥-axis. Then, use another isometry to keep 𝐿 on the
𝑥 axis, but to move 𝑝 to some point along the 𝑦 axis (and possibly, use a reflection to then
insure 𝑝 has been moved to a point on the positive y axis, if you like!). Then, prove that
through any point on the 𝑦 axis there is a unique line that does not intersect the 𝑥-axis.

In addition to algebra, founding our new geometry on calculus makes all of these tools
also available to us. As a first example, we will use our knowledge of derivatives to
minimize the distance between a point and a line. Minimizing distance turns out to be
a pretty common thing one needs to do in appliations of geometry, and while straight-
forward theoretically (take the derivative, set it equal to zero), its annoying in practice
because of the square root in the distance formula. But there is a nice trick to get around
this:

Exercise 11.7 (Minimizing the Square: A Very Useful Trick!). Let 𝑓 (𝑥) be a differen-
tiable positive function of one variable, and let 𝑠(𝑥) = 𝑓 (𝑥)2 be its square. Show that
the minima of 𝑠(𝑥) and 𝑓 (𝑥) occur at the same points, by following the steps below:

• First, assume 𝑥 = 𝑎 is the location of a minimum of 𝑓 . What does the first and sec-
ond derivative test tell you about the values 𝑓 ′(𝑎) and 𝑓 ′′(𝑎)? Use this, together
with the fact that 𝑓 (𝑎) > 0 to show that 𝑥 = 𝑎 is also the location of a minimum
of 𝑠 (using the second derivative test).

• Conversely, assume 𝑥 = 𝑎 is the location of a minimum of 𝑠(𝑥). Now, you know in-
formation about the derivatives 𝑠′(𝑎) and 𝑠′′(𝑎). Use this to conclude information
about 𝑓 ′(𝑎) and 𝑓 ′′(𝑎) to show that 𝑎 is a minimum for 𝑓 as well.
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This tells us anytime we want to minimize a positive function, we could always choose
to find where its square is minimized instead, if that turns out to be easier. The main
question is below, where without loss of generality we have taken the point to be the
origin (as we could always slide it there via an isometry).

Exercise 11.8 (Closest Point on Line). Let 𝐿 be the line traced by the affine curve 𝛾 (𝑡) =
(𝑎𝑡 + 𝑐
𝑏𝑡 + 𝑑), and 𝑂 be the origin, as usual. Calculate dist(𝑂, 𝐿)

Hint: use calculus to find the closest point on 𝐿 to𝑂. Can youminimize the squared distance
from 𝛾 (𝑡) to (0, 0)?
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12. Shapes

Defining the notion of lines and distance really helps in getting our new geometry off the
ground. In this relatively short chapter, we give precise definitions for familar shapes:
including polygons and cirlces, but also other conic sections - parabolas, ellipses, and
hyperbolas known to the ancient Greeks.

12.1. Polygons

Definition 12.1 (Polygon). A polygonal chain is a sequence 𝐿1, 𝐿2, … , 𝐿𝑛 of line seg-
ments, where the ending vertex of 𝐿𝑛 coincides with the starting vertex of 𝐿𝑛+1.
A polygon is a closed, non-intersecting polygonal chain. The interior of a polygon is
called a polygonal region.

Figure 12.1.: A polygonal chain (left) and a polygon (right). The polygonal region is
shaded red.

A triangle is a polygon with three sides, a quadrilateral is a polygon with four sides,
and so on. We will study polygons in more detail later on, especially in the curved
geometries of the sphere and hyperbolic space. But for now, we content ourselves in
getting used to the definitions by re-proving some familiar results of the greeks.
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Exercise 12.1 (Constructing an Equilateral Triangle). Beginningwith the segment [0, ℓ]
along the 𝑥-axis, construct an equilateral triangle by finding the coordinates of a point
𝑝 = (𝑥, 𝑦) ∈ 𝔼2 which is equidistant from both endpoints of the segment.

Exercise 12.2 (Equilaterals of Half the Size, Reprise). Re-prove that inside of an equi-
lateral triangle, you can inscribe a smaller one with exactly half the side length. You
already did this problem, using Euclid’s Axioms, but now we can do it much easier in
our new foundations!
Hint: just find where the vertices should be, and then measure the distances between them!

12.2. Circles

Euclid’s definition of a circle is as follows: A circle is a plane figure bounded by one curved
line, and such that all straight lines drawn from a certain point within it to the bounding
line, are equal. In modern terminology, we may phrase this as below:

Figure 12.2.: The circle 𝐶𝑝(𝑟) is the set of points at distance 𝑟 from a fixed point 𝑝.

Definition 12.2. A circle centered at a point 𝑐 ∈ 𝔼2 is a curve such that the distance
between 𝑝 and any point on the curve is the same. This fixed distance is called the
radius of the circle. We denote the circle of radius 𝑟 centered at 𝑝 as 𝐶𝑝(𝑟).

Now that we know the distance function on𝔼2 we can formally write down the equation
of a circle directly from this definition.

Theorem 12.1. The circle of radius 𝑟 centered at 𝑝 = (ℎ, 𝑘) is given by the set

𝐶𝑝(𝑟) = {𝑞 = (𝑥, 𝑦) ∈ 𝔼2 ∣ (𝑥 − ℎ)2 + (𝑦 − 𝑘)2 = 𝑟2}
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Proof. This is just a direct computation: if 𝑞 = (𝑥, 𝑦) is an arbitrary point in the plane,
its distance from 𝑝 = (ℎ, 𝑘) is

dist(𝑞, 𝑝) = ‖𝑞 − 𝑝‖ = √(𝑥 − ℎ)2 + (𝑦 − 𝑘)2
For 𝑞 to lie on the circle, this distance needs to be set equal to 𝑟 . The equation is easier
to work with after squaring both sides to remove the square root, giving

(𝑥 − ℎ)2 + (𝑦 − 𝑘)2 = 𝑟2

Corollary 12.1 (Proving Euclid’s Axiom III). Given any point 𝑝, and any radius 𝑟 , the
circle 𝐶𝑝(𝑟) exists.

Proof. Now that we have the actual equation for a circle, Euclid’s axiom is rather
straightforwardly true. Saying we can draw a circle about any point of any radius is
just asserting that the equation

(𝑥 − ℎ)2 + (𝑦 − 𝑘)2 = 𝑟2
has solutions for every ℎ, 𝑘, 𝑟 . And this in turn is just a property of the real numbers,
and the existence of square roots! For simplicity considering the case centered at 0, for
any 𝑥 ∈ [−𝑟, 𝑟]we can solve directly for 𝑦 = ±√𝑟2 − 𝑥2, which is a real number as 𝑟 > |𝑥|
so 𝑟2 − 𝑥2 is positive, and all positive reals have real square roots!

One intuitive result about circles that we will use a lot in the near future is that any
isometry of the plane that fixes the circles center must preserve the circle:

Proposition 12.1 (Isometries Fixing the Center Preserve the Circle). Let 𝐶𝑐(𝑟) be a circle
centered at 𝑐, and 𝜙 be any isometry of 𝔼2 sending 𝑐 to itself. Then 𝜙 preserves 𝐶 : that is,
if 𝑝 is any point on 𝐶 , 𝜙(𝑝) is also on 𝐶 .

Proof. Let 𝐶𝑐(𝑟) bea circle, and 𝜙 an isometry fixing 𝑐. If 𝑝 ∈ 𝐶𝑐(𝑟) is any point, then
by definition dist(𝑝, 𝑐) = 𝑟 . Applying the isometry 𝜙, since isometries do not affect
distances, we see

𝑟 = dist(𝑝, 𝑐) = dist(𝜙(𝑝), 𝜙(𝑐)) = dist(𝜙(𝑝), 𝑐)
Where the second inequality is because 𝜙(𝑐) = 𝑐. But this says the distance from 𝜙(𝑝)
to the circles center is also 𝑟 , so 𝜙(𝑝) lies on the circle! Thus 𝜙 sends the circle to itself.
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Figure 12.3.: If an isometry fixes the center of a circle, it sends the entire circle to itself.

Exercise 12.3. Prove that applying any isometry or similarity to a circle results in
another circle.

Computations

Recall that in all of Euclid’s axioms, conditions for intersections with circles were never
specified! Indeed - Euclid intersected two circles in his construction of the equilateral
triangle. Now that we have a precise description of circles in our new foundations, we
can fix this gap:

Exercise 12.4. Prove that two circles intersect each other if the distance between their
centers is less than or equal to the sum of their radii.

Hint: start by applying an isometry to move one of the circles to have center (0, 0), and
then another isometry to roate everything so the second circle has center (𝑥, 0) along the
𝑥-axis. This will make computations easier!

The other case that is interesting but does not appear in Euclid is the intersection of a
circle an a line.

Exercise 12.5 (Circles Intersecting Lines). Prove that a circle intersects a line whenever
the shortest distance from that line to the circles center is less than the circles’ radius.

Hint: start by applying an isometry that either (1) moves the line to the 𝑥 axis, or (2): moves
the circle’s center to the origin - whichever one makes the computation easier for you!
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Figure 12.4.: Two circles intersect if the distance between their centers is less than or
equal to the sum of their radii.

12.3. Application: Classifying Isometries

The above exercises allowed us to compute exactly when two circles intersect - and
crucially: how many times they do so. While our motivating reason to compute these
things may have been to fill a gap in Euclid, this information can take us quite far when
used correctly. Indeed, here we show that it is the key which allows us to classify all
possible isometries of the plane!

We have discovered many isometries so far - translations, rotations (both about 𝑂 and
other points), reflections across lines, and all possible combinations thereof by com-
position and inversions. However, we have conducted no methodological search for
isometries and so there is no good reason to think we are done. In fact, it seems daunt-
ingly hard to ever prove we have found them all: who is to say that theres not some
absurdly complicated function we have never thought of, that still preserves all infinites-
imal lengths?

One way to begin making progress on this question is to ask how much information
do you need to completely determine an isometry? Is it possible that there could be
two isometries that act like exactly the same function inside some region, but differ
elsewhere? If so, that would mean it will be very hard to track down all isometries! But
if not, we could ask ourselves what is the smallest region we need to understand an
isometry on to specify it uniquely. And the answer is rather suprisingly minimal!

Proposition 12.2 (Isometries Fixing 3 Points). Let 𝑝, 𝑞, 𝑟 be a triple of non-collinear
points in the plane. If an isometry 𝜙 fixes all three points, then 𝜙 is the identity.
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In special cases (when 𝑎 lies
at the midpoint of the line
segment determined by 𝑝
and 𝑞) the circles centered
at 𝑝 and 𝑞 through 𝑎 are
tangent at 𝑎, making this

their only point of
intersection. In this case,

we already know 𝑎 = 𝜙(𝑎)
even without considering 𝑟 .

Proof. Let 𝑝, 𝑞, 𝑟 be three noncollinear points, and 𝜙 an isometry with 𝜙(𝑝) = 𝑝, 𝜙(𝑞) = 𝑞
and 𝜙(𝑟) = 𝑟 . We aim to show that 𝜙 is the identity: so we will consider an arbitrary
point 𝑎 in the plane, and show that 𝜙(𝑎) = 𝑎. To do so, it will prove important to pay
attention to the distance between 𝑎 and the points 𝑝, 𝑞, 𝑟 .

Figure 12.5.: The fixed points 𝑝, 𝑞, 𝑟 and their distances to an arbitrary point 𝑎.

First, look at 𝑝. Since 𝜙 is an isometry we know dist(𝑎, 𝑝) = dist(𝜙(𝑎), 𝜙(𝑝)): but 𝜙 fixes
𝑝! Thus 𝑎 and 𝜙(𝑎) are at the same distance from 𝑝, and lie on a circle centered at 𝑝.

Figure 12.6.: Both $a and 𝜙(𝑎) must lie on the same circle centered at 𝑝.

As 𝑞 is also fixed by 𝜙, we similarly see that both 𝑎 and 𝜙(𝑎) must lie on the same circle
centered at 𝑞.
However by Exercise 27.36, we know that generically circles will intersect in two points,
so from the information we have so far, its not guaranteed that 𝑎 and 𝜙(𝑎) are the same
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Figure 12.7.: BThe same is true for 𝑞. So both 𝑎 and 𝜙(𝑎)must lie on both of these circles!.

point: one could be at each intersection. But this isn’t surprising as we haven’t consid-
ered all the information at hand! We also know that 𝜙 fixed 𝑟 and so both 𝑎 and 𝜙(𝑎)
must lie on the same circle centered at 𝑟 .

Figure 12.8.: Because 𝑝, 𝑞 and 𝑟 are noncollinear, these three circles cann only intersect
at a single point! This point must be both 𝑎 and 𝜙(𝑎), so 𝜙 fixes 𝑎.

Each pair of these circles intersects in two points. And, as the points are noncollinear,
all three circles intersect in a single point (homework exercise, below). But this must be
both 𝑎 and 𝜙(𝑎): thus 𝜙(𝑎) = 𝑎!
And 𝑎 was an arbirary point, and we showed that 𝜙 did not move it. This means 𝜙 must
not move any points at all in the plane - so 𝜙 is the identity!
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Exercise 12.6 (Circle Triple Intersection). Three circles with non-collinear centers can
intersect in at most one point.

Hint: use some isometries to simmplify the situation: move everything so that two of the
circles center’s are on the 𝑥 axis, and the third is on the 𝑦 axis.

PICTUREs

Corollary 12.2 (Isometries Agreeing on 3 Points are Equal). If 𝜙 and 𝜓 are two isometries
of the plane which agree on a set of three non-collinear points, then they are equal.

Proof. Let 𝑝1, 𝑝2, 𝑝3 be three points for which 𝜙(𝑝𝑖) = 𝜓(𝑞𝑖). Now consider the isometry
𝜓−1 ∘𝜙. This isometry actually fixes each of the three 𝑝𝑖 (since 𝜙 sends them somewhere,
and 𝜓−1 brings them back). Thus, by Proposition 12.2 this is the identity. But if 𝜓−1𝜙 =
id then composing with 𝜓 shows

𝜙 = 𝜓

Using this, we can prove that we have actually found all the isometries, by starting
from an arbitrary isometry and building it using only translations, rotations, and reflec-
tions.

Theorem 12.2 (Classification of Isometries). Every isometry of 𝔼2 is a composition of
reflection, rotation, and translation.

Proof. Let 𝜙 be an arbitrary isometry of the plane. and consider the three points 𝑂,
𝑝 = (1, 0) and 𝑞 = (12 ,

√3
2 ) forming the vertices of an equilateral triangle.

Figure 12.9.: An isometry taking pne triple of points to another.
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The isometry 𝜙 sends 𝑂 somewhere: let 𝑇 be a translation of the plane taking 𝜙(𝑂) to 𝑂.
Now, the composition 𝑇𝜙 fixes the origin! The point 𝑝 lies at distance 1 from 𝑂, so the
𝑇𝜙 takes it to another point unit distance away - call this point 𝑟 .

Figure 12.10.: The isometry 𝑇𝜙 fixes the origin.

Let 𝑅 be a rotation isometry fixing 𝑂 but taking 𝑟 back to 𝑝 = ⟨1, 0⟩. Now, the com-
position 𝑅𝑇𝜙 fixes both 𝑂 and 𝑝! All that remains is to think about where 𝑞 has been
sent.

Figure 12.11.: The isometry 𝑇𝜙 fixes the origin.

Since 𝑅𝑇𝜙 is an isometry it preserves distances, so it must send 𝑞 to a point which is
unit distance from 𝑂 and 𝑝 (remember - it send 𝑂 and 𝑝 to themselves)!

There are only two such points in the plane, which lie at the intersections of the cirlces

𝑥2 + 𝑦2 = 1 (𝑥 − 1)2 + 𝑦2 = 1

The two options are either 𝑞 itself - (12 ,
√3
2 ) or the same point with the 𝑦-coordinate

negated. So, let 𝐹 be the following isometry: its the identity if 𝑅𝐹𝜙(𝑞) was already
equal to 𝑞, and is the reflection in the 𝑥 axis otherwise.
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Figure 12.12.: The isometry 𝑅𝑇𝜙 fixes the both 𝑂 and 𝑝, so there are only two options on
where it sends 𝑞. Here we see the case where it does not get sent directly
to 𝑞.

Figure 12.13.: Composing 𝑅𝑇𝜙 with a flip 𝐹 across the 𝑥 axis creates an isometry that
fixes all of 𝑂, 𝑝 and 𝑞.
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Now, we have the map 𝐹𝑅𝑇𝜙 ∶ 𝔼2 → 𝔼2, which fixes all three points of the equilateral
triangle! This is the same thing the identity map does on these three points, so by
Corollary 12.2 this must actually be the identity!

𝐹𝑅𝑇𝜙 = id

One by one composing with the inverses of the maps we’ve added on, we can now solve
for 𝜙:

𝜙 = 𝑇−1𝑅−1𝐹−1

Since the inverse of a translation is just another translation, the inverse of a rotation
is another rotation, and the inverse of a reflection is another reflection (its the same
reflection, actually!) we see 𝜙 is a composition of translation, rotation and reflection as
claimed.

Thus - every isometry is built from the building blocks we already know of: there are
no new mystery isometries out there to be discovered! This is a powerful fact as it lets
us claim things about all isometries by just checking them with rotaitons, translations,
and reflections. For example:

Corollary 12.3 (Isometries are Affine Maps). All Euclidean isometries are affine maps
of the plane.

Proof. Let 𝜙 be an arbitrary Euclidean isometry. By Theorem 12.2, we may write 𝜙 =
𝑇𝑅𝐹 for 𝑇 a translation, 𝑅 a rotation about the origin, and 𝐹(𝑥, 𝑦) = (𝑥, ±𝑦) either a flip
across the 𝑥 axis or the identity. Thus, the proof is just a direct computation: a rotation
about the origin is given by a linear map (Theorem 10.4) so

𝑅𝐹(𝑥, 𝑦) = (𝑢 −𝑣
𝑣 𝑢 ) ( 𝑥

±𝑦) = ( 𝑢𝑥 ± 𝑣𝑦
−𝑣𝑥 ± 𝑢𝑦)

Next, any translation is an affine map of the form 𝑇 (𝑥, 𝑦) = (𝑥 + 𝑎, 𝑦 + 𝑏) So

𝜙(𝑥, 𝑦) = 𝑇𝑅𝐹(𝑥, 𝑦) = 𝑇 ( 𝑢𝑥 ± 𝑣𝑦
−𝑣𝑥 ± 𝑢𝑦) = ( 𝑢𝑥 ± 𝑣𝑦 + 𝑎

−𝑣𝑥 ± 𝑢𝑦 + 𝑏)

Each of these components is an affine function, so the entire isometry 𝜙 is affine.
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12.4. Conic Sections

These curves are called
conic sections because we
can alterantively define

them as the possible curves
one can get by slicing a
3-dimensional cone by a
plane at different angles.

Though greek geometry lacked the ability to deal with general curves, they did know
quite a lot about a specific family of curves called conic sections These include the circles
and lines we have already discussed, but also parabolas, ellipses, and hyperbolas. We
will not spend much time on them here, except to show how our new formalism lets
us come up with precise equations for these curves much as it did for lines and circles
already.

12.4.1. Parabolas

A geometric definition of the parabola dating back to ancient greece is that it is the set
of points which lie at an equal distance from a given point and line in the plane. More
precisely

Definition 12.3. Let 𝐿 be a line (called the directrix), and 𝑓 a point not on that line
(called the focus). The parabola 𝑃 with directrix 𝐿 and focus 𝑓 is the set of points (𝑥, 𝑦)
which lie at the same distance from ℓ as they do from 𝑓 :

dist((𝑥, 𝑦), 𝐿) = dist((𝑥, 𝑦), 𝑝)

Recall that the distance to a line 𝐿 is defined as the shortest distance between (𝑥, 𝑦) and
any point on 𝐿 (Definition 11.8).

Figure 12.14.: A parabola is the set of points which are the same distance from a point
(the focus) and a line (the directrix). In this figure, line segments of the
same color are supposed to be the same length.
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Exercise 12.7. Let 𝐿 be the 𝑥-axis, and 𝑓 the point (0, 2) along the 𝑦-axis. Find an
equation that points (𝑥, 𝑦) on the parabola determined by 𝐿 and 𝑓 must satisfy.

Exercise 12.8. In this problem we confirm that 𝑦 = 𝑥2 is indeed a parabola! Let 𝐿 be
a horizontal line intersecting the 𝑦−axis at some point (0, −ℓ), and 𝑓 = (0, ℎ) be a point
along the 𝑦-axis for ℓ, ℎ > 0.

• Write down an algebraic equation for the coorddinates of a point (𝑥, 𝑦) determin-
ing when it is on the parabola with focus 𝑓 and directrix 𝐿.

• Find which point 𝑓 and line 𝐿 make this parabola have the algebraic equation
𝑦 = 𝑥2.

12.4.2. Ellipses & Hyperbolas

Ellipses and hyperbolas are also defined by a condition involving distance. Instead of
distance from a single point (circles) or distances between a point and a line (parabolas),
these shapes involve the distances from a pair of points.

Definition 12.4. Let 𝑓1 and 𝑓2 be two points in the plane (called focii), and 𝑑 a number
(called the distance sum). The ellipse with focii 𝑓1, 𝑓2 and distance sum 𝑑 is the set of
points 𝑝 = (𝑥, 𝑦) in the plane where

dist(𝑝, 𝑓1) + dist(𝑝, 𝑓2) = 𝑑

Figure 12.15.: An ellipse is the set of points where the sum of distances to two points is
constant. Here, 𝑝 and 𝑞 are both on the ellipse as the lengths of the green
and blue polygonal segments are equal.
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Exercise 12.9. Find an equation of the form 𝑎𝑥2 + 𝑏𝑦2 = 𝑐 determining when a point
lies on the eliipse with focii (1, 0) and (−1, 0) with distance sum 4.

A hyperbola is defined similarly, except it is a difference of distances instead of a sum:

Definition 12.5. Let 𝑓1 and 𝑓2 be two points in the plane (called focii), and 𝑑 a number
(called the distance difference). The hyperbola with focii 𝑓1, 𝑓2 and distance sum 𝑑 is the
set of points 𝑝 = (𝑥, 𝑦) in the plane where

| dist(𝑝, 𝑓1) − dist(𝑝, 𝑓2)| = 𝑑

This distance difference may be positive or negative (hence the absolute value). Each
sign determines one branch of the hyperbola - its a disconnected curve with two com-
ponents!

Figure 12.16.: An hyperbola is the set of points where the differece of distances to two
points is constant. Here, 𝑝 and 𝑞 are both on the hyperbola as the dif-
ference between the lengths of the green segments equals the difference
between the blue segments.

Exercise 12.10. Prove that the equation 𝑦2 −𝑥2 = 1 determines a hyperbola. What are
the two focii? What’s the distance difference?

12.4.3. Equidistants to a Line

This is not itself a conic section, but like the previous shapes we’ve discussed fits into
the class of “shapes defined by a distance constraint.”” A circle is the set of points which
are equidistant from a point (its center). One could attempt to generalize this notion by
replacing the point at the center with something more general, and measuring
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The most reasonable “generalized center” to consider first is a line: it is the only other
shape we know so far, after all! What curves are equidistant to a line? In fact, the
answer here is not that interesting: its just a pair of two lines.

Proposition 12.3. Given a line 𝐿, the set of points lying at distance 𝑑 from 𝐿 are two
disjoint lines.

Proof. Let 𝐿 be a line, and choose an isometry 𝜙 that moves 𝐿 to the 𝑥-axis (which
we will denote 𝑋 ). Now the distance from a point 𝑝 = (𝑎, 𝑏) to a point (𝑥, 0) on 𝑋 is

√(𝑥 − 𝑎)2 + 𝑏2, which is minimized when 𝑥 = 𝑎: thus

dist((𝑎, 𝑏), 𝑋 ) = √𝑏2 = |𝑏|

Thus, the set of points at distance 𝑟 from 𝑋 contains all pairs (𝑥, 𝑟) and (𝑥, −𝑟) for any
𝑥 : these are two lines

𝐿+(𝑥) = (𝑥, 𝑟) 𝐿−(𝑥) = (𝑥, −𝑟)

To solve the original problem, we apply the inverse isometry 𝜙 taking 𝑋 back to the line
𝐿. Since isometries take lines to lines and preserve distance, this takes 𝐿± to two lines,
each at distance 𝑟 from 𝐿 as claimed.

However, we include brief mention of this fact for two reasons. One, in a lost work of
Archimedes, On Parallel Lines, it seems that he tried to work with alternative definitions
of parallelism based on this fact, to simplify Euclids theory. Below is a quote from Boris
Rosenfeld’s A History of Non-euclidean Geometry:

It seems that the first work devoted to this question [the theory of paral-
lels] was Archimedes’ lost treatise On parallel lines which appeared a few
decades after Euclid’s Elements. […] it is very likely that Archimedes used
a definition of parallel lines different from Euclid’s. […] it is possible that
Archimedes based his definition of parallel lines on distance.

And secondly, while we found here that the equidistant curves to a line are just another
pair of lines, this fact (as presciently investigated by Archimedes) is actually equivalent
to the parallel postulate, and so will be false in the other geometries we study! Thus,
we will reference this short section in those future geometries, to contrast our new
discoveries with the old.
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In the geometry of Euclid, an angle was defined as being delimited by straight lines:

A plane angle is the inclination to one another of two lines in a plane which
meet one another and do not lie in a straight line.

However as Greekmathematics (and beyond) turned to the problem of curves, it became
necessary to also speak of curvilinear angles: that is, the angle of interesection between
two curves. This was a difficult concept, as at no finite level of zoom could this be made
into a “true angle”, the sides were never going to be straight.

Figure 13.1.: How can we define the angle between two curves?

From themodern perspective this is no issue, as zooming in on the point of interesection
we may pass to the tangent space, and replace each of the curves by their linearizations.
This allows us to think of angles as infinitesimal quantities based at a point.

Definition 13.1. An angle 𝛼 at a point 𝑝 ∈ 𝔼2 is an ordered pair of tangent vectors
𝛼 = (𝑣 , 𝑤) based at 𝑝.

The order of the tangent vectors tells us which curve is “first” and which is “second” as
we trace out the angle. By convention, we will trace the angle counterclockwise from
start to fininsh.

Occasionally, we wish to
read an angle clockwise
instead: in this case we will
say that it is a negative
angle, whereas
counterclockwise default
angles are positive

From this, we can define the angle between two curves in terms of their tangents:
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Figure 13.2.: An angle is defined by an ordered pair of two tangent vectors at a point.

Figure 13.3.: The angle measure of (𝑢, 𝑣) on the left, versus the measure of (𝑣 , 𝑢) on the
right. Both measured as positive angles.
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Definition 13.2. Given two curves 𝐶1, 𝐶2 which intersect at a point 𝑝 in the plane, and
let 𝑣1 be tangent to 𝐶1, and 𝑣2 be tangent to 𝐶2 at 𝑝. Then the angle from 𝐶1 to 𝐶2 is just
the pair (𝑣1, 𝑣2) of tangents.

Figure 13.4.: The angle between curves, defined at a point of intersection by their tan-
gent vectors.

13.1. Angle Measure

In all of Euclid’s elements, angles were not measured: by numbers. There was a defi-
nition of a right angle (half a straight angle), and definitions of acute and obtuse (less
than, or greater than a right angle, respectively). Though they never attached a precise
number, they did have the angle axioms specifying how to work with angles like they
were a kind of nubmer, however.

In our modern development we find numerical measures extremely convenient: if we
can measure angles with a function, we can do calculus with angles! So we want to
go further, and an actual number to each angle (which we’ll call its measure) in a way
that’s compatible with the original angle axioms.

How do we construct such a number? At the moment we do not have much to work
with, as our development of geometry is still in its infancy: we have essentially only
constructed lines, circles and the distance function. These strict constraints essentially
force a single idea for angle measure upon us:

Definition 13.3 (Angle Measure). If 𝑢 and 𝑣 are two unit vectors based at the same
point 𝑝 forming angle 𝛼 = (𝑢, 𝑣), then the measure of 𝛼 is defined as the arclength of
the unit circle centered at 𝑝 that lies between them. Its denoted

Angle(𝛼) or Angle(𝑢, 𝑣)
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Figure 13.5.: The measure of an angle is defined in terms of the arclength of a circle.

This is a very “basic” way of dealing with angles, as it uses so few concepts from our
geometry (its close to the base definitions). Indeed, its geometric simplicity makes it
exceedingly useful throughout mathematics, you’ve all met this definition before under
the name radians.

Because angles are defined in terms of unit circle arclength, it will prove very convenient
to have a name for the entire arclength of the unit circle. That way we can express sim-
ple angles as fractions of this, instead of as some long (probably irrational) decimal rep-
resenting their arclength. We will denote the arclength of the unit circle by 𝜏 , standint
for turn (as in, one full turn of the circle)

Definition 13.4 (𝜏 ). The arclength of the unit circle is 𝜏 .

The first thing we may wish to explore is how this concept interacts with isometries.

Proposition 13.1 (Angles Measures are Invariant under Isometries). If 𝛼 and 𝛽 are two
angles in 𝔼2, and 𝜙 is an isometry taking 𝛼 to 𝛽 , then the measures of 𝛼 and 𝛽 are equal.
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Proof. Let 𝛼 and 𝛽 be two angles: so precisely 𝛼 is a pair of tangent vectors 𝑎1, 𝑎2 based
at a point 𝑝, and 𝛽 is a pair of tangent vectors 𝑏1, 𝑏2 at a point 𝑞.
Any isometry taking 𝑝 to 𝑞 takes the unit circle based at 𝑝 to the unit circle based at 𝑞
(since isometries preserve the distance function). And, if the isometry takes 𝑎1 to 𝑏1 as
well as 𝑎2 to 𝑏2, it takes the arc of the unit circle defining 𝛼 to the arc defining 𝛽 .
Since isometries preserve the length of all curves, the lengths of these arcs must be the
same. Thus these angles have the same measure.

Because angle measures are defined in terms of the unit circle, we can also attempt to
run the above argument with a similarity 𝜎 instead of isometry. If the scaling factor is
𝑘, the main change is that 𝜎 takes the unit circle to a circle of radius 𝑘 (as similarities
take circles to circles, Exercise 12.3). We know how similarities affect lengths - so the
length of this arc is 𝑘 times the original angle measure. But to correctly compute the
new angle, we need to be measuring on the unit circle. So, we need to rescale it down
by 1/𝑘 a similarity. This then divides the length by 𝑘, and overall we see the new length
is identical to the original: so the angle is the same!

Corollary 13.1 (Angle Measures are Invariant Under Similarities). If 𝛼 and 𝛽 are two
angles in 𝔼2, and 𝜎 is an similarity taking 𝛼 to 𝛽 , then the measures of 𝛼 and 𝛽 are equal.

Computing an angle directly from this definition is challenging, as it requires us to mea-
sure arclength. Much of the later work in this chapter will establish a beautiful means
of doing this. But in certain situations, angles can be measured directly by more ele-
mentary means.

This example tells us our
first rotation angle: the
matrix ( 0 −1

1 0 ) rotates the
plane by a quarter turn or
𝜏/4! This will be a very
useful fact, and we will
even put it to use shortly, in
Proposition 13.3 where we
find the derivative of sin
and cos.

Example 13.1 (Angle between 𝑥- and 𝑦-axes). The angle from (1, 0) to (0, 1) is 𝜏/4. To
see this, recall that we have a rotation isometry fixing the origin and taking (1, 0) to (0, 1)
- this was the first rotation we discovered (Example 10.1).

𝑅(𝑥, 𝑦) = (0 −1
1 0 ) (𝑥𝑦)

Now, look what happens when you apply 𝑅 multiple times in a row. This repeated
composition is actually straightforward to compute, as it’s just matrix multiplication!

𝑅2 = (−1 0
0 −1) 𝑅3 = ( 0 1

−1 0) 𝑅4 = (1 0
0 1)

163



13. Angles

Looking at the last line, we see that applying 𝑅 four times in a row results in the iden-
tity matrix - or the transformation that does nothing to the inputs! That is, after four
rotations we are back to exactly where we have started.

Figure 13.6.: The angle from ⟨1, 0⟩ to ⟨0, 1⟩ is one quarter of the unit circle.

Because isometries preserve angles (Proposition 13.1), we see that our isometry 𝑅 has
covered the entire unit circle in exactly four copies of our original angle. Thus, the angle
measure must be 1/4 of a circle:

𝜃 = 𝜏
4

Exercise 13.1 (Angle Measure of Equilateral Triangle). Show the angle measure of an
equilateral triangle is 𝜏/6, in a similar method to the example above.

To start, draw an equilateral triangle with unit side length, and one side along the 𝑥-axis.
In Exercise 27.29, you found that the third vertex of this must lie at 𝑝 = (1/2, √3/2).
From this, we can write down a rotation isometry (Theorem 10.4) taking (1, 0) to 𝑝. The
angle this rotates by is exactly the angle our triangle’s sides make at the origin.

Show that if you apply this rotation three times, you get negative the identity matrix.
Use this to help you figure out howmany times you have to apply it before you get back
to the identity! Then use that isometries preserve angles, and the circumference of the
unit circle is 𝜏 to deduce the angle you are after.

Proposition 13.1 and Example 13.1, Exercise 13.1 showcase two essential properties of
the angle measure which stem from the fact that we defined it as a length: its invariant
under isometries, and easy to subdivide. In fact, these are precisely the angle axioms of
the greeks!
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Example 13.2 (Proving the “Angle Axioms”). Now that we have a definiiton of angle
measure in terms of more primitive quantities (vectors, lengths, circles), we can prove
that this measure satisfies the greek axioms.

• Congruent Angles have Equal Measures Since two angles are congruent if
there is an isometry taking one to the other, and the measure of an angle is in-
variant under isometries, congruent angles have the same measure.

• Subdividing anAngle If we divide an angle 𝜃 into two angles 𝜃1, 𝜃2 by a line, then
𝜃 = 𝜃1 + 𝜃2. This follows directly from a property of integrals! Since an angle is a

length, and a length is an integral we can use the property ∫𝑏𝑎 𝑓 𝑑𝑥 = ∫𝑐𝑎 𝑓 𝑑𝑥+∫
𝑏
𝑐 𝑓 𝑑𝑥

to prove 𝜃 = 𝜃1 + 𝜃2.

13.2. Working With Angles

We now turn to the problem of actually computing things with the angle measure. To
do so, it’s helpful to choose a “basepoint” on the circle to take first measurements from
- here we’ll pick (1, 0).

Definition 13.5 (Arclength Function). The arclength function takes in a point on the
unit circle (𝑥, 𝑦), and measures the arclength 𝜃 from (1, 0) to this point.

Θ(𝑥, 𝑦) = arclength from (1, 0) to (𝑥, 𝑦)

In this section, we will study in detail expressions for this function, and its inverse.

13.2.1. Arc- Sine and Cosine

Because the points of the unit circle satisfy 𝑥2 + 𝑦2 = 1, if we know the sign of 𝑥, 𝑦
(which half of the cirlce the point lives in) we can fully reconstruct the point from a
single coordinate: either (𝑥, ±√1 − 𝑥2) or (√1 − 𝑦2, 𝑦). Thus, so long as we remember
the correct sign of the second coordinate of interest, the arclength function is essentially
a function of one variable. We could take just the 𝑥 or 𝑦 coordinate of a point on the circle
and define a function like Θ(𝑥) which would measure the arclength to (𝑥, √1 − 𝑥2), or
Θ(𝑦) if we expressed the point (√1 − 𝑦2, 𝑦). However, we do not need to invent our own
notation for these arclength functions of one variable, they are allready well known to
us from trigonometry!
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Definition 13.6 (Arc Functions: Inverse Trigonometry). The functions arccos and
arcsin compute the arclength along the unit circle from (1, 0) to the point (𝑥, 𝑦) as

arccos(𝑥) = arclength from (1, 0) to (𝑥, √1 − 𝑥2)

arcsin(𝑦) = arclength from (1, 0) to (√1 − 𝑦2, 𝑦)

Figure 13.7.: The arclength functions given the 𝑥 and 𝑦 coordinates of a point on the
circle.

This of course does nothing to help us compute these functions: we’ve just given a name
to them. In fact, we can compute only very few values from first principles:

Example 13.3 (“Unit Circle Values” for Arc Functions). -The point (1, 0) lies at ar-
clength zero from (1, 0)…as they are the same point! Thus,

arccos(1) = 0 arcsin(0) = 0

• The point (0, 1) lies a quarter of the way around the circle (Example 13.1), so has
arclength 𝜏/4. Thus we see

arccos(0) = 𝜏/4 arcsin(1) = 𝜏/4

• Looking at Exercise 13.1 where we found the angle of a unit equilateral triangle
with sides vertices (0, 0), (1, 0) and (1/2, √3/2) to be 𝜏/6, we see

arccos(1/2) = 𝜏/6 arcsin(√3/2) = 𝜏/6
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What we need is some sort of concrete expression telling us how to compute arccos(𝑥)
(or arcsin) for arbitrary values of 𝑥 . And here we canmake essential use of our definition
of angle as a length, and length as an integral! Unpacking it all gives directly an integral
formula to compute arccos(𝑥):

Proposition 13.2 (Integral Representation of arccos(𝑥)). For 𝑥 ∈ [−1, 1], the arccosine
function can be computed via an integral

arccos(𝑥) = ∫
1

𝑥
1

√1 − 𝑡2
𝑑𝑡

Proof. By definition, the arccos(𝑥) is the length of circle between 𝑥 and 1. Since 𝑥2+𝑦2 =
1, we may parameterize the top half of the circle using 𝑥 as the parameter by

𝑐(𝑡) = (𝑡, √1 − 𝑡2)
Thus, as lengths are integrals, we can already give an expression for arccos(𝑥):

arccos(𝑥) = ∫
1

𝑥
‖𝑐′(𝑡)‖𝑑𝑡

To be useful, we must expand out the integrand here, and compute ‖𝑐′‖:

𝑐′(𝑡) = (1, −𝑡
√1 − 𝑡2

)

And then, we must find its norm:

‖𝑐′(𝑡)‖ =
√
1 + ( −𝑡

√1 − 𝑡2
)
2

= √1 + 𝑡2
1 − 𝑡2

=
√

1
1 − 𝑡2

Thus, we have an integral representation of the arccosine!

arccos(𝑥) = ∫
1

𝑥
1

√1 − 𝑡2
𝑑𝑡
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If we start at 𝑥 = −1 and go to 𝑥 = 1, this curve traces out exactly half of the unit
circle (the top half). Thus, twice this value is an integral representing our fundamental
constant 𝜏 :

Corollary 13.2 (Defining 𝜏 :).

𝜏 = ∫
1

−1
2

√1 − 𝑥2
𝑑𝑥

Exercise 13.2. Complete an analogous arugment to the above to show

arcsin(𝑦) = ∫
𝑦

0
1

√1 − 𝑡2
𝑑𝑡

These formulas, via the fundamental theorem of calculus, tell us the derivative of arcsin
and arccos as well!

Corollary 13.3 (Differentiating the Arc Functions). The derivative of the arc functions
are 𝑑

𝑑𝑥 arccos(𝑥) = −1
√1 − 𝑥2

𝑑
𝑑𝑦 arcsin(𝑦) = 1

√1 − 𝑦2

Proof. Each of these is an immediate application of the fundamental theorem of calculus:
but there’s a small subtelty in how we usually apply this theorem to the first, so we will
start with arcsin.

The fundamental theorem says that 𝑑
𝑑𝑥 ∫

𝑥
𝑎 𝑓 (𝑡)𝑑𝑡 = 𝑓 (𝑥), so we immediately get

𝑑
𝑑𝑦 arcsin(𝑦) = 𝑑

𝑑𝑦 ∫
𝑦

0
1

√1 − 𝑡2
𝑑𝑡 = 1

√1 − 𝑦2

The difficulty with arccosine is that in the way we have it written, the variable 𝑥 is
the lower bound of the integral. To prepare this expression for an application of the
fundamental theroem, wemust first switch the bounds, which negates the integral. Thus

𝑑
𝑑𝑥 arccos(𝑥) = 𝑑

𝑑𝑥 ∫
𝑥

1
−1

√1 − 𝑡2
𝑑𝑡 = −1

√1 − 𝑥2
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This is where the negative sign in the derivative of arccosine comes from: I have to
remind myself of this every time I teach calculus 1.

13.2.2. Sine and Cosine

Now that we have the functions that measure arclength, its natural to ask about their
inverses: if we know the arclength from (1, 0) to a point, can we recover the coordinates
of the point?

Definition 13.7 (Sine and Cosine). Let 𝑝 be the point on the unit circle centered at
𝑂 which lies at a distance of 𝜃 in arclength from (1, 0). Then we define cos(𝜃) as the
𝑥-coordinate of 𝑝, and sin 𝜃 as the 𝑦-coordinate of 𝑝.

Figure 13.8.: The functions sin and cos return the cartesian coordinantes of a point lying
at arclength 𝜃 along the circle.

Because sine and cosine are
defined as lengths, which
are invariant under
isometries, we see that we
could equally well define
these functions from a unit
circle centered at any point
in 𝔼2. After the chapter on
symmetry, we will see that
we can further generalize
to base them on any circle
whatsoever.

Example 13.4. At 𝜃 = 0, we have moved no distance along the circle from (1, 0), so we
are still at (1, 0). Thus

cos(0) = 1 sin(0) = 0

Beyond this, the definition doesn’t give us any means at all of calculating the value
of cos or sin: we’re going to need to do some more work to actually figure out what
these functions are! For their inverses, the secret was unlocked by integration, and so it
makes sense that here we must do the opposite, and look to differentiation for help!
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Proposition 13.3 (Differentiating Sine & Cosine). The derivatives of sin(𝜃) and cos(𝜃)
are as follows:

𝑑
𝑑𝜃 sin 𝜃 = cos 𝜃 𝑑

𝑑𝜃 cos 𝜃 = − sin 𝜃

There are many beautiful geometric arguments for computing the derivative of sin 𝜃 and
cos 𝜃 , involving shrinking triangles and side ratios. Below is a different style argument,
which fits well with the calculus-first perspective of our course. We use the fact that
the derivative gives the tangent line to figure out what it must be!

An alternative to the first
step of this proof is to

consider that the circle is
sent to itself under the

isometry 𝜙(𝑥, 𝑦) = (𝑥, −𝑦).
This map fixes the point

(1, 0), and so it must send
the tangent line at (1, 0) to
itself. But as 𝜙 is linear, its

derivative is itself, so it
applies to tangent vectors

also as 𝜙(𝑣1, 𝑣2) = ⟨𝑣1, −𝑣2⟩.
Thus, whatever the tangent
vector at (1, 0) is, it must be
a vector such that ⟨𝑣1, 𝑣2⟩ is

parallel to ⟨𝑣1, −𝑣2⟩. This
forces 𝑣1 = 0, and then unit

length forces ⟨0, ±1⟩.

Proof. Let 𝐶 be the unit circle centered at (0, 0), and 𝛾 (𝑡) = (cos(𝜃), sin(𝜃)) be the ar-
clength parameterization defined above. Because 𝛾 traces out the circle with respect to
arclength, its derivative with respect to arclength is unit length, by definition.

We start by finding the derivative at (1, 0). As the radius of the circle is 1 and the 𝑥-
coordinate at 𝛾 (0) = (1, 0) equal to 1, we are at a maximum value of the 𝑥-coordinate.
Differential calculus (Fermat’s Theorem) tells us that at a maximum, the derivative is
zero. So, 𝑥′ = 0 at (1, 0). But 𝑦 ′ cannot also be zero here: as 𝑦 is increasing as we trace
out the circle, differential calculus (a corrolary of the Mean Value Theorem) tells us that
𝑦 ′(0) is positive. But now the fact that ‖𝛾 ′(0)‖ = 1 uniquely singles out a vector:

𝛾 ′(0) = ⟨0, 1⟩(1,0)

This is actually all the differentiation we have to do! The rest of the argument amounts
to a clever use of isometries. Choose a point 𝑞 = 𝛾(𝜃) = (cos(𝜃), sin(𝜃)) on the circle,
where we wish to compute the tangent vector. Now create an isometry 𝜙 taking (1, 0)
to 𝑞. Since rotations about the center preserve circles (Proposition 12.1), the curve 𝜙 ∘ 𝛾
also traces out the unit circle. Thus, if we find the tangent to 𝜙 ∘ 𝛾 at 𝑞 we’ll have found
the tangent to the circle at 𝑞!
At (1, 0), we saw the tangent vector was a 𝜏/4 rotation from the vector connecting its
basepoint to the origin. Since isometries preserve angles (Proposition 13.1), it must also
be true that the tangent vector at 𝑞 is a 𝜏/4 rotation of 𝑞 − 𝑂 = ⟨cos 𝜃, sin 𝜃⟩𝑞 . And
we know how to rotate a vector by 𝜏/4: switch its coordinates and negate the first
(Example 10.1)!

⟨cos 𝜃, sin 𝜃⟩𝑞 ↦ ⟨− sin 𝜃, cos 𝜃⟩𝑞

Since the tangent vector to the the circle at 𝑞 is the derivavtive of 𝛾 at 𝜃 , this tells us
exactly what we were after:
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Figure 13.9.: The tangent line to the unit circle at (1, 0) is vertical, with unit tangent
vector ⟨0, 1⟩.

Figure 13.10.: At a point 𝜃 along the circle, the tangent can be found by symmetry.
Since the tangent at (1, 0) is orthogonal a 𝜏/4-rotation of the position,
the same must be true at every point of the circle. Thus, at (cos 𝜃, sin 𝜃) it
is ⟨− sin 𝜃, cos 𝜃⟩.
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𝛾 ′(𝜃) = ⟨(cos 𝜃)′, (sin 𝜃)′⟩
= ⟨− sin 𝜃, cos 𝜃⟩

An alternative second part
to this proof is just to write
down the matrix: we know
the rotation taking (1, 0) to
(𝑝1, 𝑝2) is ( 𝑞1 −𝑞2𝑞2 𝑞1 ), so for

𝑞 = (cos 𝑡 , sin 𝑡) its
( cos 𝑡 − sin 𝑡

sin 𝑡 cos 𝑡 ). This is linear
so we can apply it to both

points and vectors:
applying to the tangent

vector ⟨0, 1⟩(1,0) just reads
off the second column!

Thus the tangent vector at
𝑞 is ⟨− sin 𝜃, cos 𝜃⟩𝑞 .

Exercise 13.3. Because of our hard work with the arc functions already, we have an
alternative approach to differentiating sine and cosine, using purely the rules of single
variable calculus!

• Explain why from the definition of sin, cos we know that sin2 𝜃 + cos2 𝜃 = 1
• Use the technique for differentiating an inverse () to differentiate sin as the inverse
function of arcsin, whose derivative we know.

• Combine these two facts to simplify the result you got, and show sin(𝜃)′ = cos(𝜃).
• Repeat similar reasoning to show cos(𝜃)′ = − sin(𝜃).

Believe it or not - we already have enough information to completely understand the
sine and cosine functions! Since they are each other’s derivatives, and we know both
vallues at zero, we can directly write down their series expansions!

Proposition 13.4 (Series Expansions of Cos). The series expansion of the cosine function
is

cos 𝜃 =
∞
∑
𝑛=0

(−1)𝑛
(2𝑛)! 𝜃

2𝑛

= 1 − 𝜃2
2 + 𝜃4

4! −
𝜃6
6! +

𝜃8
8! −

𝜃10
10! − ⋯

This is the typical
approach you probably saw
more generally during the

development of Taylor
series in Calculus II. But its
a beautiful argument, so I
could not help reviewing

its!

Proof. We first build what the series ought to be (assuming it exists), and then we prove
that our candidate actually converges! Assume that cos 𝜃 = 𝑎0+𝑎1𝜃 +𝑎2𝜃2+⋯ for some
coefficients 𝑎𝑛. Evaluating this at 𝜃 = 0 we see

cos 0 = 𝑎0 + 𝑎1 ⋅ 0 + 𝑎2 ⋅ 02 + ⋯ = 𝑎0
Since we know cos 0 = 1 this says 𝑎0 = 1, and we have determined the first term in the
series:
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cos 𝜃 = 1 + 𝑎1𝜃 + 𝑎2𝜃2 + 𝑎3𝜃3 + 𝑎4𝜃4⋯

So now we move on to try and compute 𝑎1. Taking the derivative of this series gives

(cos 𝜃)′ = 𝑎1 + 2𝑎2𝜃 + 3𝑎3𝜃2 + ⋯
And again - every term except the first has a 𝜃 in it, so evaluating both sides at zero
gives us 𝑎1. Using that cosine’s derivative is − sin 𝜃 , we get − sin(0) = 0 = 𝑎1, so 𝑎1 is
zero.

cos 𝜃 = 1 + 0𝜃 + 𝑎2𝜃2 + 𝑎3𝜃3 + 𝑎4𝜃4 + ⋯

Moving on to 𝑎2, we must differentiate one more time to get the term with 𝑎2 to have
no 𝜃s in it:

(cos 𝜃)′′ = 2𝑎2 + 3 ⋅ 2𝑎3𝜃 + 4 ⋅ 3𝑎4𝜃2 + ⋯

Since (cos 𝜃)′ = − sin 𝜃 and (− sin 𝜃)′ = − cos 𝜃 , this series is equal to − cos 𝜃! And
evaluating at 0 gives −1. Thus 2𝑎2 = −1 so 𝑎2 = −1

2 .

cos 𝜃 = 1 + 0𝜃 − 1
2𝜃

2 + 𝑎3𝜃3 + 𝑎4𝜃4 + ⋯

Continuing to 𝑎3 differentiating the left side once more gives sin 𝜃 which evaluates to
zero, and the right results in a function with constant term 3 ⋅ 2𝑎3: thus 𝑎3 is zero.

cos 𝜃 = 1 + 0𝜃 − 1
2𝜃

2 + 0𝜃3 + ⋯

Differentiating once more, the left side has returned to cos 𝜃 and the right now has
constant term 4 ⋅ 3 ⋅ 2𝑎4: thus 𝑎4 = 1/4!.

cos 𝜃 = 1 + 0𝜃 − 1
2𝜃

2 + 0𝜃3 + 1
4!𝜃

4 + ⋯

After repeating the process four times, we’ve cycled back around to the same func-
tion cos 𝜃-that we started with! And so continuing, the same pattern in derivatives,
1, 0, −1, 0⋯ will continue to repeat. This tells us every odd term will be zero in our
series, and the even terms will have alternating signs:
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cos 𝜃 = 1 − 1
2!𝜃

2 + 1
4!𝜃

4 − 1
6!𝜃

6 + 1
8!𝜃

8 − ⋯

Thus *if cos 𝜃 can be written as a series at all - it must be this one! We only have left to
confirm that this series actually converges (and thus, by Taylor’s theorem, equals the
cosine).

Exercise 13.4. Prove that the series for cos converge for all real inputs: that is, that
their radius of convergence is ∞. Hint: review the ratio test!

Exercise 13.5 (Series Expansion of Sin). Run an analogous argument to the above to
show

sin 𝜃 =
∞
∑
𝑛=0

(−1)𝑛
(2𝑛 + 1)! 𝜃

2𝑛+1

13.3. The Dot Product

Having explcitly computable formulas for arccos and arcsin (even though they are via
integral expressions, and probably need to be evalluated numerically as Riemann sums)
lets us act as though knowing the cosine or sine of an angle is just as good as knowing
the angle itself.

Example 13.5. What is the angle betweeen (1, 0) and (1, 2)?
We figure out where the second vector intersects the unit circle by dividing by its mag-
nitude: (1/√5, 2/√5). Now we know by definition that whatever the arclength 𝜃 is, its
cosine is the first coordinate. And being able to compute arccosines, we immediately
get

cos 𝜃 = 1
√5

⟹ 𝜃 = 1.10714rad

Our goal in this section is to generalize the example above into a universal tool, that lets
us compute the measure of any angle in the Euclidean plane using a simple tool from
linear algebra: the dot product.

Definition 13.8. The dot product of 𝑢 = ⟨𝑢1, 𝑢2⟩ and 𝑣 = ⟨𝑣1, 𝑣2⟩ is

𝑢 ⋅ 𝑣 = 𝑢1𝑣1 + 𝑢2𝑣2
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We can already directly compute the angle a unit vector 𝑣 = ⟨𝑣1, 𝑣2⟩ makes with ⟨1, 0⟩:
in this situation 𝑣1 = cos 𝜃 by definition, or ⟨1, 0⟩ ⋅ 𝑣 = cos 𝜃 . But if 𝑢 and 𝑣 are two unit
vectors based at 0, how can we analogously compute the angle they form?

Theorem 13.1 (Dot Product Measures Arclength). If 𝑢, 𝑣 are unit vectors based at 𝑝 ∈ 𝔼2
making angle 𝜃 , then

𝑢 ⋅ 𝑣 = cos 𝜃

Proof. Let 𝑢, 𝑣 denote an angle based at 𝑝.The idea is to use isometries to reduce this
to the case we already understand! First, let 𝜙 be a translation isometry taking 𝑝 to
0. Since the derivative of a translation is the identity, this takes 𝑢 and 𝑣 to the origin
without changing their coordinates. And, since isometries preserve angle measures, we
know the angle 𝜃 between 𝑢𝑝 , 𝑣𝑝 is the same as the angle between 𝑢𝑜 , 𝑣𝑜 .
Now let 𝑅 be a rotation about 𝑂 taking 𝑢𝑜 to ⟨1, 0⟩𝑜 . Since angles are invariant under
isometry, the angle measure between 𝑢𝑜 and 𝑣𝑜 is the same as between 𝑅𝑢𝑜 and 𝑅𝑣𝑜 . But
since 𝑅𝑢𝑜 = ⟨1, 0⟩𝑜 , we know

cos 𝜃 = first component of 𝑅𝑣

Thus, all we need to do is compute the matrix 𝑅, apply it to 𝑣 , and read off the first com-
ponent of the resulting vector! We know from Theorem 10.4 how to create a rotation
fixing 𝑂 that takes ⟨1, 0⟩𝑜 to 𝑢𝑜 is ( 𝑢1 −𝑢2𝑢2 𝑢1 ). The transformation 𝑅 we need is the inverse
of this:

𝑅 = (𝑢1 −𝑢2
𝑢2 𝑢1 )

−1
= ( 𝑢1 𝑢2

−𝑢2 𝑢1)

Now we apply this to 𝑢 and 𝑣 to get our new vectors: applying to 𝑢 gives ⟨1, 0⟩ (check
this!) and applying to 𝑣 gives

𝑅𝑣 = ( 𝑢1 𝑢2
−𝑢2 𝑢1) (

𝑣1
𝑣2) = ( 𝑢1𝑣1 + 𝑢2𝑣2

−𝑢2𝑣1 + 𝑢1𝑣2)

The first component here is exactly 𝑢 ⋅ 𝑣 = 𝑢1𝑣1 + 𝑢2𝑣2. Thus we are done!

The above applies explicitly to unit vectors, as we used the rotation constructed in The-
orem 10.4 to requires a unit vector to send ⟨1, 0⟩ to. However, this is easily modified to
measure the angle between non-unit vectors: just divide by their magnitudes first!
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Corollary 13.4. The measure 𝜃 of the angle between any two vectors 𝑢, 𝑣 based at a point
𝑝 ∈ 𝔼2 is related to the dot product via

𝑢 ⋅ 𝑣 = ‖𝑢‖‖𝑣‖ cos 𝜃

Proof. Let 𝑢, 𝑣 be any two vectors based at 𝑝. Then 𝑢/‖𝑢‖ and 𝑣/‖𝑣‖ are two unit vectors
based at 𝑝, and the angle between a pair of vectors is independent of their lengths (as
its defined as an arclength along the unit circle no matter what). Using Theorem 13.1
we find the angle between these unit vectors:

𝑢
‖𝑢‖ ⋅

𝑣
‖𝑣‖ = cos 𝜃

Multiplying across by the product of the magnitudes gives the claimed result.

Exercise 13.6. Prove that rectangles exist, using all of our new tools! (Ie write down
what you know to be a rectangle, explain why each side is a line segment, parameterize
it to find the tangent vectors at the vertices, and use the dot product to confirm that
they are all right angles).

13.3.1. Trigonometric Identities

Using very similar reasoning to the above proposition relating angles to dot products,
we can leverage our knowledge of rotations to efficiently discover trigonometric iden-
tities! We consier here the angle sum identites for sine and cosine.

Theorem 13.2 (Angle Sum Identites). Let 𝛼, 𝛽 be lengths of arc (equivalently, measures
of angles) and 𝛼 + 𝛽 the angle formed by concatenating the two lengths. Then

sin(𝛼 + 𝛽) = sin 𝛼 cos 𝛽 + cos 𝛼 sin 𝛽
cos(𝛼 + 𝛽) = cos 𝛼 cos 𝛽 − sin 𝛼 sin 𝛽

Proof. Let 𝑣 = ⟨𝑣1, 𝑣2⟩ be a vector that makes angle 𝛼 with ⟨0, 1⟩, and 𝑢 = ⟨𝑢1, 𝑢2⟩ be a
vector that makes angle 𝛽 with ⟨1, 0⟩.
Now let 𝑅 be an isometry that rotates ⟨1, 0⟩ to 𝑢. Since isometries preserve length, this
takes the segment of the unit circle between ⟨1, 0⟩ and 𝑣 to a segment of the same length
between 𝑢 and 𝑅𝑣 . So, now the total length of arc from ⟨1, 0⟩ to 𝑅𝑣 is 𝛼 + 𝛽
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13.3. The Dot Product

Figure 13.11.: Vectors 𝑣 and 𝑢 making angles 𝛼 and 𝛽 respectively.

Figure 13.12.: A rotation 𝑅 taking ⟨1, 0⟩ to 𝑢 takes 𝑣 to a vector describing the angle sum
𝛼 + 𝛽 .
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Thus, the 𝑥 and 𝑦 coordinates of 𝑅𝑣 are the cosine and sine of 𝛼+𝛽 respectively. Writing
down the rotation 𝑅 (via Theorem 10.4) we see

𝑅𝑣 = (𝑢1 −𝑢2
𝑢2 𝑢1 ) (𝑣1𝑣2) = (𝑢1𝑣1 − 𝑢2𝑣2

𝑢1𝑣1 + 𝑢1𝑣2) = (cos(𝛼 + 𝛽)
sin(𝛼 + 𝛽))

Finally - since 𝑣 makes an angle of 𝛼 wtih ⟨1, 0⟩ and 𝑢 makes an angle of 𝛽 , we know by
definition that their coordinates are 𝑣 = (cos 𝛼, sin 𝛼) and 𝑢 = (cos 𝛽, sin 𝛽). Substituting
these in gives the identities we seek.

Analogously, we have the angle difference identites, which differ only in the choice of ±
signs.

Theorem 13.3 (Angle Difference Identities).

sin(𝛼 − 𝛽) = sin 𝛼 cos 𝛽 − cos 𝛼 sin 𝛽

cos(𝛼 − 𝛽) = cos 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽

Exercise 13.7. Prove Theorem 13.3 similarly to howwe proved Theorem 13.2 (you may
need an inverse matrix!).

From these we can deduce the double angle formulas by setting both 𝛼 and 𝛽 equal to
the same angle 𝜃 in the addition formula

Corollary 13.5 (Double Angle Identities).

cos(2𝜃) = cos2 𝜃 − sin2 𝜃 sin(2𝜃) = 2 sin 𝜃 cos 𝜃

And the half angle formulas by algebraic manipulation of the above:

Corollary 13.6 (Half Angle Identities).

cos (𝜃2) = √
1 + cos 𝜃

2 sin (𝜃2) = √
1 − cos 𝜃

2
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13.3. The Dot Product

Proof. We prove the cosine identity here, and leave the other as an exercise. Starting
from the double angle identity for cosine, and the fact that sin2(𝑥) + cos2(𝑥) = 1, we
can do the following algebra:

cos(2𝑥) = cos2(𝑥) − sin2(𝑥)
= cos2(𝑥) − (1 − cos2(𝑥))
= 2 cos2(𝑥) − 1

Now, we just solve for cos(𝑥) in terms of cos(2𝑥):

2 cos2(𝑥) = 1 + cos(2𝑥) ⟹ cos(𝑥) = √
1 + cos(2𝑥)

2

This lets us compute the cosine of an angle in terms of twice that angle! Replace 2𝑥
with 𝜃 to get the form above.

Exercise 13.8. Prove the half-angle identity for sin 𝑥 .

These formulas are actually quite useful in practice, to find exact values of the trigono-
metric functions at different angles, given only the few angles we have computed ex-
plicitly (𝜏/4, for a square, and 𝜏/6 from an equilateral triangle).

Example 13.6 (The exact value of sin(𝜏/24)). There are several ways we could ap-
proach this: one is to start with 𝜏/6 and bisect twice. Another is to notice that

𝜏
24 − 𝜏

6 − 𝜏
8

and use the angle subtraction identity. We will do the latter here, and below in the
discussion of Archimedes cover the repeated bisection approach.

Theorem 13.3 tells us that

sin 𝜏
24 = sin 𝜏

6 cos 𝜏8 − cos 𝜏6 sin 𝜏
8

We’ve successfully reduced the problem to knowing the sine and cosine of the larger
angles 𝜏/6 and 𝜏/8. These are both do-able by hand: for 𝜏/8 we could either note that
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13. Angles

this is half a right angle so lies along the line 𝑦 = 𝑥 , and solve for the point (𝑥, 𝑥) on the
unit circle getting

sin 𝜏
8 = √22 cos 𝜏8 = √2

2
Or, we could have started with the right angle directly and applied bisection. For 𝜏/6,
we may use Exercise 13.1 to see

sin 𝜏
6 = √3

2 cos 𝜏6 = 1
2

The rest is just algebra:

sin 𝜏
24 = √3

2
√2
2 − 1

2
√2
2

= √2
4 (√3 − 1)

≈ 0.258819

13.3.1.1. The Measurement of the Circle

The half angle identities played a crucial role in Archimedes’ ability to compute the
preimeter of 𝑛 gons in his paper The Measurement of the Circle. Indeed, to calculate the
circumference of an inscribed 𝑛-gon, its enough to be able to find sin 𝜏/(2𝑛):

Figure 13.13.: The side-length of an inscribed 𝑛-gon is 2 sin 𝜏
2𝑛 , found via bisecting the

side to form a right triangle. The perimeter of the 𝑛-gon is just 𝑛 times
this.

By repeatedly bisecting the sides, we can start with something we can directly compute
- like a triangle, and repeatedly bisect to compute larger and larger 𝑛 gons.

Note: using a different set
of identites we get a

different looking expression
for our final answer here: a

square root of a square
root! But - its exactly the
same value. Can you do
some algebra to prove it?
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13.3. The Dot Product

Figure 13.14.: Archimedes’ method: repeatedly doubling the number of sides of the 𝑛-
gon to get polygons approaching the circle.

Example 13.7 (From Triangle to Hexagon to 12-Gon). Start by inscribing an equilateral
triangle in the circle. The angle formed by each side at the center is 𝜏/3, and so bisecting
a side gives an angle of 𝜏/6 - the same as the angle of the equilateral triangle itself! We
know the sine and cosine of this angle from Exercise 13.1:

cos 𝜏6 = 1
2 sin 𝜏

6 = √3
2

Thus, the length of one side is 2 ⋅ √32 = √3, and the circumference is 3√3 ≈ 5.1961524.
Doubling the side number to get to the hexagon requires we compute sin 𝜏

12 , which we
do via-half angle:

sin 𝜏
12 = √

1 − cos 𝜏
6

2 = √
1
4 = 1

2
Thus, the side length here is 1 and the circumference is six times that, or 6. Doubling
once more we now need to compute sin 𝜏

24 via the half-angle identity:

sin 𝜏
24 = √

1 − cos 𝜏
12

2
Unfortunately - we do not know cos 𝜏/12 yet: but we can find it! Since cos2(𝑥) +
sin2(𝑥) = 1 we may use the fact that we know sin 𝜏

12 = 1
2 to calculate it:

cos 𝜏
12 = √1 − (12)

2
= √3

2
Plugging this back in, we get what we are after:
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sin 𝜏
24 = √

1 − √3
2

2 = √2 − √3
2 ≈ 0.258819

Thus the length of one side of the 12-gon is √2 − √3, and its total perimeter is
12√2 − √3 ≈ 6.21165

Exercise 13.9. Continue to bisections until you can compute sin(𝜏/(2 ⋅ 96)). What is
the perimeter of the regular 96-gon (use a computer to get a decimal approximation,
after your exact answer).

Explain how we know that this is provably an underestimate of the true length, using
the definition of line segments.

Be brave - and go beyond Archimedes! Compute the circumference of the 192-gon.

Exercise 13.10. In the 400s CE, Chinese mathematician Zu Chongzi continued this
process until he reached the 24, 576-gon, and found (in our modern notation) that
3.1415926 < 𝜋 < 3.1415927. How many times did he bisect the original equilateral
triangle?

Exercise 13.11. Can you use trigonometry to find the perimeter of circumscribed 𝑛
gons as well? This would give you an upper bound to 𝜏 , to complement the lower bound
found from inscribed ones.

Figure 13.15.: Circumscribed 𝑛 gons are the smallest 𝑛-gons containing the unit circle.
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13.4. Euclid’s Axioms 4 & 5

13.4. Euclid's Axioms 4 & 5

The final two of Euclid’s postulates mention angles. Now that we have constructed
them within our new foundations, we can finally attempt to prove these two!

The fourth postulate states all right angles are equal. Of course, by equal Euclid meant
congruent as he often did. In order to be precise, it helps to spell everything out a bit
better.

Proposition 13.5 (Euclids’ Postulate 4). Given the following two configurations: - A
point 𝑝, and two orthogonal unit vectors 𝑢𝑝 , 𝑣𝑝 based at 𝑝 - A point 𝑞, and two orthogonal
unit vectors 𝑎𝑞 , 𝑏𝑞 based at 𝑞

There is an isometry 𝜙 of 𝔼2 which takes 𝑝 to 𝑞, takes 𝑢𝑝 to 𝑎𝑞 , and 𝑣𝑝 to 𝑏𝑞 .

Exercise 13.12. Prove Euclids’ forth postulate holds in the geometry we have built
founded on calculus.

Hint: there’s a couple natural approaches here.

• You could directly use Exercise 27.27 to move one point to the other and line up one of
the tangent vectors. Then deal with the second one: can you prove its either already
lined up, or will be after one reflection?

• Alternatively, you could show that every right angle can be moved to the “standard
right angle” formed by ⟨1, 0⟩, ⟨0, 1⟩ at 𝑂. Then use this to move every angle to every
other, transiting through 𝑂

At long last - we are down to the final postulate of Euclid - the Parallel Postulate, in its
original formulation, also mentions angles and so could not be formulated in our new
geometry until now.

Proposition 13.6 (The Parallel Postulate). Given two lines 𝐿1 and 𝐿2 crossed by another
line Λ, if the sum of the angles that the 𝐿𝑖 make with Λ on one side are less than 𝜏/2, then
the 𝐿𝑖 intersect on that side.

Of course, we do not need to prove this to finish our quest: we have already proven the
equivalent postulate of Playfair/Proculus in CITE. But, bot for completeness and the
satisfaction of directly grounding the Elements in our new formalism, I cannot help but
offer it as an exercise.
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Exercise 13.13. Prove the parallel postulate.
Hint: try the special case where the crossing line Λ makes a right angle with one of the
others (say 𝐿1). Use isometries to move their intersection to 𝑂, the crossing line Λ to the
𝑦-axis, and 𝐿1 to the 𝑥−axis. Now you just need to prove 𝐿2 is parallel to the 𝑥-axis if and
only if it intersects the 𝑦 axis in a right angle.

13.5. Conformal Maps

Show that the similiarity
(𝑥, 𝑦) ↦ 2(𝑥, 𝑦) preserves

all angles, for example.
We’ve already seen that isometries preserve the angles between any two tangent vectors
in the plane. But these are not the only maps with this property. In general, an angle
preserving map is called conformal

Recall that by default we
read angles

counterclockwise: this is
important in the definition

of conformality. For
example, PICTURE is not
conformal as it sends an
angle of 𝜃 to an angle of

𝜏 − 𝜃 . (Alternatively,
reading clockwise we may
say negative 𝜃 . Maps that

preserve angles after
reversing their sign are
called anti-conformal)

Definition 13.9. Amap 𝐹 ∶ 𝔼2 → 𝔼2 is conformal if it preserves all infinitesimal angles
in the plane. That is, if 𝑢, 𝑣 are two tangent vectors at 𝑝

Angle(𝑢, 𝑣) = Angle (𝐷𝐹𝑝(𝑢), 𝐷𝐹𝑝(𝑣))

Figure 13.16.: A conformal map preserves all angles, though it may distort lengths.

Because we have a simple relationship between angles and the dot product, we can
formulate this in an easy-to-compute way.

Corollary 13.7. A map 𝐹 ∶ 𝔼2 → 𝔼2 is conformal if for every pair of vectors 𝑢, 𝑣 based
at 𝑝 we have

cos 𝜃 = 𝑢 ⋅ 𝑣
‖𝑢‖‖𝑣‖ =

𝐷𝐹𝑝(𝑢) ⋅ 𝐷𝐹𝑝(𝑣)
‖𝐷𝐹𝑝(𝑢)‖‖𝐷𝐹𝑝(𝑣)‖
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We won’t have much immediate need for this material on conformal maps - as we are
primarily concerned with Euclidean isometries at the moment, which we already know
to preserve angles! But, when we study maps of spherical geometry (CITE) and espe-
cially hyperbolic geometry (CITE), being able to tell when a map is conformal will be
of great use - so we provide some material here to reference in the future.

Example 13.8 (Complex Squaring is Conformal). The complex squaring operation 𝑧 ↦
𝑧2 can be written as a s real funciton on the plane in terms of 𝑥, 𝑦 as

𝑆(𝑥, 𝑦) = (𝑥2 − 𝑦2, 2𝑥𝑦)
This function is conformal everywhere except at 𝑂, which we verify by direct calcula-
tion.

Figure 13.17.: The complex squaring function is conformal: it sends all the right angles
of the grid right angles.

The derivative matrix at 𝑝 = (𝑥, 𝑦) is

𝐷𝐹𝑝 = (2𝑥 −2𝑦
2𝑦 2𝑥 )

So, now we just need to take two vectors 𝑢 = ⟨𝑢1, 𝑢2 and 𝑣 = ⟨𝑣1, 𝑣2⟩ based at 𝑝, apply
the derivative, and see what the resulting angle is!

𝐷𝐹𝑝(𝑢) = ( 2𝑥𝑢1 + 2𝑦𝑢2
−2𝑦𝑢1 + 2𝑥𝑢2) 𝐷𝐹𝑝(𝑣) = ( 2𝑥𝑣1 + 2𝑦𝑣2

−2𝑦𝑣1 + 2𝑥𝑣2)
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After a lot of algebra, we can find the length of these two vectors

‖𝐷𝐹𝑝(𝑢)‖ = √4(𝑥2 + 𝑦2)(𝑢21 + 𝑢22) ‖𝐷𝐹𝑝(𝑣)‖ = √4(𝑥2 + 𝑦2)(𝑣21 + 𝑣22 )

And we can also find their dot product:

𝐷𝐹𝑝(𝑢) ⋅ 𝐷𝐹𝑝(𝑣) = 4(𝑥2 + 𝑦2)(𝑢1𝑣1 + 𝑢2𝑣2)

Thus, forming the quotient that measures the cosine of the angle between them, we can
cancel a factor of 4(𝑥2 + 𝑦2) from both the top and bottom!

𝐷𝐹𝑝(𝑢) ⋅ 𝐷𝐹𝑝(𝑣)
‖𝐷𝐹𝑝(𝑢)‖‖𝐷𝐹𝑝(𝑣)‖

= 4(𝑥2 + 𝑦2)(𝑢1𝑣1 + 𝑢2𝑣2)

√4(𝑥2 + 𝑦2)(𝑢21 + 𝑢22)√4(𝑥2 + 𝑦2)(𝑣21 + 𝑣22 )
= 𝑢1𝑣1 + 𝑢2𝑣2

√𝑢21 + 𝑢22√𝑣21 + 𝑣22
= 𝑢 ⋅ 𝑣

‖𝑢‖‖𝑣‖

But this still isn’t the easiest condition to check, as we have to test it for all pairs of
vectors 𝑢, 𝑣 at every point! Luckily, we can use the linearity of the dot product to help
us come up with an easier means of checking for conformality.

Theorem 13.4 (Testing for Conformality). Amap 𝐹 ∶ 𝔼2 → 𝔼2 is conformal if it satisfies
the following two conditions:

• It sends ⟨1, 0⟩𝑝 and ⟨0, 1⟩𝑝 to a pair of orthogonal vectors, at each point.
• These vectors 𝐷𝐹𝑝(⟨1, 0⟩) and 𝐷𝐹𝑝(⟨0, 1⟩) have the same nonzero length.

Proof.

Example 13.9 (Complex Squaring is Conformal). We can re-check that the squaring
map 𝑆(𝑥, 𝑦) = (𝑥2−𝑦2, 2𝑥𝑦) is conformal using the theorem above: since the derivative
at 𝑝 = (𝑥, 𝑦) is

𝐷𝐹𝑝 = (2𝑥 −2𝑦
2𝑦 2𝑥 )

we simply apply this to the standard basis vectors and see

𝐷𝐹𝑝(⟨1, 0⟩) = (2𝑥, 2𝑦) 𝐷𝐹𝑝(⟨0, 1⟩) = (−2𝑦, 2𝑥)
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These two vectors are orthogonal as their dot product is zero. And, they are both the
same length: 2√𝑥2 + 𝑦2. This length is nonzero unless (𝑥, 𝑦) = 𝑂, so 𝑆 is conformal
everywhere except 𝑂.

But wait! We can do even better than this: say that 𝜙 sends ⟨1, 0⟩𝑝 to the vector ⟨𝑎, 𝑏⟩𝜙(𝑝).
Then we know (via Theorem 13.4) that ⟨0, 1⟩ must be sent to the 𝜏/4 rotation of this!
So, 𝐷𝜙𝑝(⟨0, 1⟩) = ⟨−𝑏, 𝑎⟩𝜙(𝑝). But if we know where 𝐷𝜙 sends both of the standard basis
vectors, we know its matrix!

For those of you who have
taken complex analysis,
compare what we have
found here to the
Cauchy-Riemann
equations!

Corollary 13.8. The map 𝜙 ∶ 𝔼2 → 𝔼2 is conformal if and only if its derivative matrix
has the form

𝐷𝜙𝑝 = (𝑎 −𝑏
𝑏 𝑎 )

for some 𝑎, 𝑏 at each point 𝑝 of the plane.

Example 13.10 (Complex Squaring is Conformal). We can re-re-check that the squar-
ing map 𝑆(𝑥, 𝑦) = (𝑥2 − 𝑦2, 2𝑥𝑦) is conformal using the theorem above: just taking the
derivative

𝐷𝐹𝑝 = (2𝑥 −2𝑦
2𝑦 2𝑥 )

we see the diagonal terms are equal and the off diagonals are negatives of one another.
Thus, its conformal by Corollary 13.8.

Exercise 13.14 (Complex Exponentiation is Conformal). The complex exponential 𝑒𝑧
can be written as a real function on the plane in terms of 𝑥, 𝑦 as

𝐸(𝑥, 𝑦) = (𝑒𝑥 cos 𝑦, 𝑒𝑥 sin 𝑦)
Prove that 𝐸 is a conformal map.

Exercise 13.15. Prove that if a map 𝐹 is conformal and preserves the length of at least
one vector at each point (say, it sends ⟨1, 0⟩𝑝 to a unit vector at 𝐹(𝑝)), then 𝐹 is an isom-
etry.
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Now that we know how to measure angle and orthogonality, we can make sense of
infinitesimal areas.

Definition 14.1 (Infinitesimal Area in 𝔼2). An infinitesimal area at a point 𝑝 is a region
in the tangent space 𝑇𝑝𝔼2.

Because the tangent space is a linear space, we will primarily be interested in
infinitesmial areas described by polygons: the most common of which will be par-
allelograms as they are defined by two vectors. This suggests a natural means of
measuring infinitesimal area: just as we took the Pythagorean theorem as the definition
of infinitesimal length, we may take the area of a parallelogram (Exercise 14.5) as the
definition of infinitesimal area.

It may seem like we we are
bringing in a new concept
to our geometry here -
something that can’t be
defined in terms of our
starting point which only
allowed the measurement
of infinitesimal lengths.
But - as we will show in the
final section of this chapter,
this is not the case. We can
derive this formula for 𝑑𝐴
from a set of requirements
mentioning only lengths
and angles (angles of
course, are also defined in
terms of lengths).

Definition 14.2 (Measuring Infinitesimal area: 𝑑𝐴). The function 𝑑𝐴 is an infinitesmial
area measure on 𝑇𝑝𝔼2, which takes in two vectors 𝑢, 𝑣 and returns the area of the paral-
lelogram spanned by them:

Figure 14.1.: Area in the tangent space.

The most common (and useful!) parallelograms that we will encounter are rectangles,
due to our use of 𝑥, 𝑦 coordinates on the plane. Here infinitesimal area is quite simple:
if the length is 𝑑𝑥 and the height is 𝑑𝑦 , we have an infinitesimal rectangle with area the
product of base and height:

Just like lengths, once we have a means of measuring the infinitesemial notion, we can
zoom back out to recover what we are really after via integration.
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Figure 14.2.: The area of rectangles in the tangent space to a point

Definition 14.3 (Area in 𝔼2). If 𝑅 is a region in 𝔼2, its area is given by the following
integral expression

Area(𝑅) = ∬𝑅
𝑑𝐴 = ∬𝑅

𝑑𝑥𝑑𝑦

14.1. Iterated Integrals

Howdowe compute an integral over a 2-dimensional region, with respect to the infnites-
imal area 𝑑𝑥𝑑𝑦? Looking at a finite approximation gives one answer - we could sum
along rows first, adding up all the little areas with the same 𝑦 coordinates at once. Then
we could add up all the total area of each row. In the limit, this tells us to integrate 𝑥
first, and then *to integrate the result with respect to 𝑦 .

∬𝑅
𝑑𝐴 = ∬𝑅

𝑑𝑥𝑑𝑦 = ∫
y−slices

(∫𝑥−𝑠𝑙𝑖𝑐𝑒𝑠 𝑑𝑥) 𝑑𝑦

Conversely, we could have instead sliced our approximation into columns (integrating
𝑑𝑦 first), and then added up the area of the columns (integrating the results 𝑑𝑥). This
would give

∬𝑅
𝑑𝐴 = ∬𝑅

𝑑𝑦𝑑𝑥 = ∫
x−slices

(∫𝑦−𝑠𝑙𝑖𝑐𝑒𝑠 𝑑𝑦) 𝑑𝑥

Thus, thanks to the fact that 𝑑𝐴 factors as a product, an area integral really is just two
one dimensional integrals performed in succession! And to evaluate explicit areas, all
one needs to do is find a way to measure the length of the 𝑥-slices or 𝑦-slices of a
region.
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In practice, this will be our main means of calculating area. It becomes especially
tractable when the region 𝑅 can be described in terms of single-variable functions,
where everything reduces to a 1-dimensional integral!

Theorem 14.1 (Area Between Two Curves). Let 𝑓 , 𝑔 be functions with 𝑔(𝑥) < 𝑓 (𝑥) on
[𝑎, 𝑏]. Define 𝑅 as the region

𝑅 = {(𝑥, 𝑦) ∣ 𝑥 ∈ [𝑎, 𝑏], 𝑦 ∈ [𝑔(𝑥), 𝑓 (𝑥)]}

Figure 14.3.: The region between 𝑓 (𝑥) and 𝑔(𝑥).

Then its area can be computed via

Area(𝑅) = ∫
𝑏

𝑎
𝑓 (𝑥) − 𝑔(𝑥) 𝑑𝑥

Proof. Then at each fixed 𝑥 , the vertical slice through the region is the interval
[𝑔(𝑥), 𝑓 (𝑥)], and so the area integral can be written as an iterated integral: first over
[𝑔(𝑥), 𝑓 (𝑥)] for a fixed 𝑥 , then over 𝑥 ∈ [𝑎, 𝑏]

Area(𝑅) = ∬𝑅
𝑑𝐴 = ∫[𝑎,𝑏] ∫[𝑔(𝑥),𝑓 (𝑥)] 𝑑𝑦 𝑑𝑥

The inner integral here is straightforward to evaluate: there are no 𝑦 ’s at all - so by the
fundamental theorem we have

∫[𝑔(𝑥),𝑓 (𝑥)] 𝑑𝑦 = 𝑦 |
𝑓 (𝑥)
𝑔(𝑥) = 𝑓 (𝑥) − 𝑔(𝑥)
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Figure 14.4.: The area integral interpreted as an iterated integral, with ∫ 𝑑𝑦 done first.

Substituting back in gives the result:

Area(𝑅) = ∫[𝑎,𝑏] 𝑓 (𝑥) − 𝑔(𝑥) 𝑑𝑥

Figure 14.5.: The area between two curves is just the length of all the slices, added up
(integrated).

This is how we can define rigorously the area of a circle: we know (for example) that
the unit circle has equation 𝑥2 + 𝑦1 = 1, and so its top half can be written 𝑦 = √1 − 𝑥2
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and the bottom half by 𝑦 = −√1 − 𝑥2. Thus the area is

∫
1

−1 ∫
√1−𝑥2

−√1−𝑥2
𝑑𝑦𝑑𝑥 = ∫

1

−1
2√1 − 𝑥2𝑑𝑥

Figure 14.6.: Riemann sums for the integral defining the area of a cirlce with 4,8,16,32,
and 64 bars, respectively.

Corollary 14.1 (Defining 𝜋 ).

𝜋 = ∫
1

−1
2√1 − 𝑥2𝑑𝑥

Anytime we can describe a region with functions, we are back to calculus. Sometimes
this is impossible for an entire region all at once, but we can break it into smaller regions,
each of which are described by functions.

Example 14.1 (Area Between Piecewise Curves). Compute the area between the curve
𝑦 = 1

2𝑥2 and the piecewise curve below, for 𝑥 ∈ [0, 2].

𝑓 (𝑥) = {𝑥
2 𝑥 < 1

𝑥 𝑥 ≥ 1

Drawing the region, we decide to divide it into two regions 𝑅1 and 𝑅2, with 𝑅1 the
portion with 𝑥 ∈ [0, 1] and 𝑅2 the portion with 𝑥 ∈ [1, 2].
In each of these regions we can specify the boundaries as functions of 𝑥 , allowing us to
express them via single variable integrals (Theorem 14.1)

Area(𝑅1) = ∫
1

0
𝑥2 − 1

2𝑥
2 𝑑𝑥 = ∫

1

0
1
2𝑥

2 𝑑𝑥 = 1
2
1
3 = 1

6

Area(𝑅2) = ∫
2

1
𝑥 − 1

2𝑥
2 𝑑𝑥 = 1

2 − 1
6 = 1

3
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Figure 14.7.: The region 𝑅, and its division into two simpler regions 𝑅1 and 𝑅2.

The total area is the sum of these,

Area(𝑅) = 1
6 + 1

3 = 1
2

We can use this definition of area to compute the area of a triangle in the plane, since
we now know how to describe straight lines as affine curves.

Exercise 14.1 (Area of Right Triangle With Calculus). Use calculus to find the area
between the 𝑥-axis, the 𝑦-axis, and the linear equation with 𝑦-intercept (0, ℎ) and 𝑥-
intercept (𝑏, 0).

Exercise 14.2 (Area of a General triangle). Set up an area integral to measure the area
of a triangle with vertices 𝑂, (𝐿, 0), and (𝑝, 𝑞) (assume 𝐿, 𝑝 and 𝑞 are positive numbers:
it will be a piecewise area between curves).

Figure 14.8.: Triangles for various 𝑝, 𝑞, 𝐿.

Show the result gives you half the base times the height.

Similarly, we can make quick work of some impressive results of archimedes, after
checking that 𝑦 = 𝑥2 actually describes a parabola (in Exercise 12.8)

Hint: instead of finding
the height of the triangle
to use 1

2 𝑏ℎ, can you use
the fact that the

determinant of a matrix
calculates the area of a

parallelogram whose sides
are the column vectors,

and that the area of a the
triangle you want is half a

parallelogram?
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Exercise 14.3 (Quadrature of the Parabola with Calculus).

• Write down a formula for the area of the triangle whose third vertex lies at (𝑥, 𝑥2)
• Use calculus to find the point 𝑥 where the inscribed triangle has maximal area.
Then show that Archimedes was right: the slope of the tangent line to the
parabola at this point is exactly the same as the slope of the line segment forming
the triangle’s base!

• Finally, compute the area of the parabolic segment (via integration, as the area
between two curves). Show that its exactly 4/3rds the area of the triangle!

14.2. Isometries & Similarities

Now that we know how to evaluate an area integral, its time to study some of its prop-
erties. Our first question with every new concept we define should be how does this
concept interact with isometries? So we investiage this below.

Theorem 14.2 (Isometries Preserve Area). Let 𝑅 be a region in the plane, and 𝜙 an
isometry. Then

Area(𝜙(𝑅)) = Area(𝑅)

Proof. Let 𝑅 be a region in the plane, and at each point 𝑝 ∈ 𝑅 consider the unit or-
thogonal vectors 𝑒1 = ⟨1, 0⟩𝑝 and 𝑒2 = ⟨0, 1⟩𝑝 defining the unit area square used in the
computation of 𝑑𝐴. Since isometries preserve infiniteismal lengths and angles, 𝜙 takes
this to another infinitesimal unit square based at 𝜙(𝑝), also of unit area.

Figure 14.9.: Angles and infinitesimal lengths are preserved, so infinitesimal squares are
sent to squares of the same area.
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Thus, the integral ∬𝜙(𝑅) 𝑑𝐴 is adding up the exact same areas as ∬𝑅 𝑑𝐴, and they are
equal.

Theorem14.3 (Similarities Scale Area). Let𝑅 be a region in the plane, and 𝜎 an similarity
with scaling factor 𝑘. Then

Area(𝜎(𝑅)) = 𝑘2Area(𝑅)

Proof. Running a similar argument to the above, we see that the infinitesimal unit square
defined by 𝑒1 = ⟨1, 0⟩𝑝 and 𝑒2 = ⟨0, 1⟩𝑝 at each point is taken to a squarewith side lengths
𝑘 (since similarities uniformly scale infinitesimal lengths, but still preserve angles).

Figure 14.10.: Angles are preserved but infinitesimal lengths are scaled by 𝑘. Thus in-
finitesimal areas are scaled by 𝑘2.

The area of such a square is 𝑘2, so the integral defining Area(𝜙(𝑅)) counts an area of 𝑘2
every time the integral defining Area(𝑅) counts a unit area. Thus, the total area is 𝑘2
times the original.

14.3. Area and General Mappings

Both isometries and similarities are rather special: they send every infinitesimal unit
square to another square, possibly scaled in size by a constant factor.

In this section we are interested in discovering what happens to an area under a general
map 𝔼2 → 𝔼2. First, let’s consider a conformal map 𝜙. This map takes infinitesimal
squares to squares, but they no longer all need to be the same size.
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Figure 14.11.: Conformal maps take infintesimal squares to squares, but the size of the
square can differ across the region.

Indeed, by Corollary 13.8 we know that at each point 𝑝 ∈ 𝔼2 the sides of such an in-
finiteismal square are ⟨𝑎, 𝑏⟩ and ⟨−𝑏, 𝑎⟩ - each of length√𝑎2 + 𝑏2 so the total infinitesimal
area is scaled up from 1 by 𝑎(𝑥, 𝑦)2+𝑏(𝑥, 𝑦)2. (Here we’ve written 𝑎 and 𝑏 as functions of
𝑥, 𝑦 to emphasize that they may take different values at different points of the plane).

Thus the area of the region 𝜙(𝑅) can be computed starting from 𝑅, but multiplying each
infinitesimal area by this factor:

Area(𝜙(𝑅)) = ∫𝑅(𝑎(𝑥, 𝑦)
2 + 𝑏(𝑥, 𝑦)2) 𝑑𝑥𝑑𝑦

Example 14.2 (Area under the map 𝑧 ↦ 𝑧2). The squaring map from complex analysis
can be written as a function of real coordinates 𝑥, 𝑦 , as

𝑆(𝑥, 𝑦) = (𝑥2 − 𝑦2, 2𝑥𝑦)

This map takes the unit square 𝑅 = {(𝑥, 𝑦) ∣ 𝑥 ∈ [0, 1], 𝑦 ∈ [0, 1]} to the region 𝑆(𝑅)
depicted below.

Using all that we’ve learned, we can actually compute the area of this region without
having to even describe it explicitly! We know that at each point (𝑥, 𝑦), the derivative
map is

𝐷𝐹𝑝 = (2𝑥 −2𝑦
2𝑦 2𝑥 )
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Figure 14.12.: The image of the unit square under the complex squaring map.

Thus the change in area for the infinitesimal square based at (𝑥, 𝑦) is 4(𝑥2 + 𝑦2). This
allows us to compute the area as

Area(𝑆(𝑅)) = ∬𝑅
4(𝑥2 + 𝑦2)𝑑𝑥𝑑𝑦

Which we can now just do as an iterated integral:

∬𝑅
4(𝑥2 + 𝑦2)𝑑𝑥𝑑𝑦 = ∫

1

0
(∫

1

0
4(𝑥2 + 𝑦2) 𝑑𝑥) 𝑑𝑦

= ∫
1

0
4 (𝑥

3
3 + 𝑥𝑦2) |

1

0
𝑑𝑦

= ∫
1

0
4
3 + 4𝑦2 𝑑𝑦

= (43𝑦 + 4
3𝑦

3) |
1

0
= 8

3

Finally, let’s consider a general map 𝐹 ∶ 𝔼2 → 𝔼2 of the plane. We know 𝐹 does not
need to preserve infinitesimal lengths or angle, and so takes takes squares in the tangent
space to rectangles or parallelograms.

But we can figure out from this what 𝐹 does to infinitesimal areas: it takes the unit
area spanned by ⟨1, 0⟩ and ⟨0, 1⟩ to the parallelogram spanned by 𝐷𝐹𝑝(⟨1, 0⟩) and
𝐷𝐹𝑝(⟨0, 1⟩)!
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Figure 14.13.: A general mapping need not preserve angles or lengths, and so will take
the original infintiesimal squares definining 𝑑𝐴 = 𝑑𝑥𝑑𝑦 to parallelograms
of various sizes and shapes.

Figure 14.14.: The area of the parallelogram determined by these two vectors is just the
determinant of 𝐷𝐹 !
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Andwe knowhow to calculate the area of a parallelogram using the vectors determining
its sides (Exercise 27.17) - this is just the determinant of the derivative matrix.

Theorem 14.4. If 𝐹 ∶ 𝔼2 → 𝔼2 is any differentiable mapping, 𝐹 takes the unit infinitesi-
mal area in 𝑇𝑝𝔼2 to the area

| det𝐷𝐹𝑝 | = |𝜕𝑥𝐹1 𝜕𝑦𝐹1
𝜕𝑥𝐹2 𝜕𝑦𝐹2| = 𝜕𝑥𝐹1𝜕𝑦𝐹2 − 𝜕𝑦𝐹1𝜕𝑥𝐹2

This quantity is called the Jacobian of 𝐹 at 𝑝.

Much like we have done for isometries, similarities, and conformal maps before; this
lets us compute the area of a region 𝐹(𝑅) as an integral directly over the starting region
𝑅 itself! At each point 𝑝 ∈ 𝑅 we just insert the area scaling factor for how much 𝐹
changes the area of an infinitesimal square based there: the Jacobian.

Theorem 14.5. Let 𝑅 ⊂ 𝔼2 be a region in the plane, and 𝐹 ∶ 𝔼2 → 𝔼2 some mapping
that takes 𝑅 to a new region, 𝐹(𝑅). Then

Area(𝐹 (𝑅)) = ∫𝐹(𝑅) 𝑑𝐴 = ∫𝑅 | det𝐷𝐹|𝑑𝑥𝑑𝑦

We can use this to find areas that seem difficult at first: for example, we will be able
to calculuate the area of an ellipse in terms of the area of a circle (we’ll find the circles’
area in the next section).

Exercise 14.4. The map 𝐹(𝑥, 𝑦) = (𝑎𝑥, 𝑏𝑦) takes points on the unit circle to the points

of the ellipse 𝑥2
𝑎2 + 𝑦2

𝑏2 = 1. (Confirm this with algebra!) Thus, it takes the unit disk
𝐷 = {(𝑥, 𝑦) ∣ 𝑥2 + 𝑦2 ≤ 1} to the interior of this ellipse: call this region 𝐸.

Figure 14.15.: Stretching a circle into an ellipse.
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Computing the Jacobian we see 𝐹 scales areas by a factor of 𝑎𝑏:

𝐷𝐹 = (𝑎 0
0 𝑏) ⟹ |𝐷𝐹 | = det (𝑎 0

0 𝑏) = 𝑎𝑏

Figure 14.16.: This stretches all infinitesimal areas by a factor of |𝐷𝐹 | = 𝑎𝑏
Thus we can calculate the area of the ellipse 𝐸 as

Area(𝐸) = ∬𝐸
𝑑𝐴

= ∬𝐹(𝐷)
𝑑𝐴

= ∬𝐷
|𝐷𝐹 | 𝑑𝑥𝑑𝑦

= ∬𝑎𝑏 𝑑𝑥𝑑𝑦

= 𝑎𝑏∬𝐷
𝑑𝑥𝑑𝑦

= 𝑎𝑏Area(𝐷)

We will see in CITE that Area(𝐷) = 𝜋 , so that immediately gives Area(𝐸) = 𝜋𝑎𝑏.

One thing to be careful about: while all isometries preserve area, not all area-preserving
maps are isometries! Take any determinant 1 matrix on the plane and use it as a linear
map. This preserves area of all subsets (as derivative is itself, and so determinant of the
derivative is 1). But does not preserve lengths: try a hyperbolic like

(2 0
0 1/2)
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14.4. The Jacobian, Abstractly

This optional section gives a second means of deriving the jacobian, instead of taking
the fact that we alreasdy understand the area of a parallelogram. We could instead ask,
what sort of behaivor do we want the function 𝑑𝐴 to have; and try to derive its formula
from such a list.

Squares are shapes that we
can define purely in terms

of our new geometric
foundations: we’ve defined

angle (and hence right
angle) in terms of an

arclength, so a square is a
polygon with four right

angles and for equal sides
lengths.

Instead of being explicit about what number 𝑑𝐴 assigns to every area, we can attempt
to be more austere and just declare that 𝑑𝐴 assigns the unit square ⟨1, 0⟩, ⟨0, 1⟩ unit
area.
PICTURE

To get further than this, we need a proposal about how 𝑑𝐴 interacts with scalar multi-
plication. If 𝑣 , 𝑤 are two vectors and we multiply one of them by 𝑘, this should increase
the area they span by 𝑘: that is,

𝑑𝐴(𝑘𝑣 , 𝑤) = 𝑘𝑑𝐴(𝑣 , 𝑤)

For vector addition, we analogously propose that the area spanned by 𝑢 + 𝑣 and 𝑤 is the
same as the area spanned by 𝑢, 𝑤 and 𝑣 , 𝑤

𝑑𝐴(𝑢 + 𝑣, 𝑤) = 𝑑𝐴(𝑢, 𝑤) + 𝑑𝐴(𝑣, 𝑤)

PICTURE OF BOTH CASES

We’ve illsustrated the case of addition and scalar multiplication in the first vector above,
but of course it should not depend which vector we are talking about, so we propose
that 𝑑𝐴 is linear in each of its input vectors.
We have one final thing to consider: what is the relationship between 𝑑𝐴(𝑣 , 𝑤) and
𝑑𝐴(𝑤, 𝑣)? A natural thought is that these both describe the same area, an so should cer-
tainly be assigned the same number! But this is igorning a useful piece of information:
that switching between (𝑣 , 𝑤) and (𝑤, 𝑣) negates the sense of angles, essentially flipping
the parallelogram. To allow 𝑑𝐴 to record this information, we may impose that switch-
ing the input vectors negates the result. (Multi)-linear functions with this property
are called alternating

𝑑𝐴(𝑣 , 𝑤) = −𝑑𝐴(𝑤, 𝑣)

PICTURE

In fact, these properties alone are enought to fully determine the function 𝑑𝐴! And,
evaluating it on an arbitrary pair of input vectors, we see the usual formula for the
determinant is forced on us.
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Exercise 14.5. Using only the following facts about the function 𝑑𝐴(𝑣 , 𝑤), derive the
standard formula for the determinant

𝑑𝐴 (( 𝑎𝑐 ) , ( 𝑏𝑑 )) = 𝑎𝑑 − 𝑏𝑐

• 𝑑𝐴 evaluates to 1 on the square ⟨1, 0⟩, ⟨0, 1⟩.
• 𝑑𝐴 is alternating: 𝑑𝐴(𝑣 , 𝑤) = −𝑑𝐴(𝑤, 𝑣).
• 𝑑𝐴 is linear in both the first and second argument.
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15. 𝜋
One of the great mysteries of mathematics is the ubiquity of certain particular numbers.
It scarcely matters what field of mathematics you are working in, if you think hard
enough and dig deep enoughs you’ll inevitably run into the mysterious number

2.718281828459…

apearing in your calculations. (This will even happen to us, in this class, not too far from
now!) This number appears in everything from finance to probability, to differential
equations, group theory, real analysis, and non-euclidean geometry. But this is not even
the craziest of the numerical conspiracies: the true king of almost magically ubiquitous
numbers is

3.141592653589…

We have already met this number in this class, but our brief encounter (as the area of
the unit circle) does not provide much evidence or intution for why this should appear
everywhere inmathematics! That is the goal of this chapter: wewill see that a collection
of rather remarkable properties of Euclidean space make it so that many conceptually-
different mathematical quantities are all (1) constant and (2) have values directly related
to 𝜋 . Its easiest to explain all of this via examples, so instead of further discussion let’s
just dive right in.

15.1. Circle Constants

15.1.1. The Length Constant

For any circle 𝐶 in the plane we can define its length factor to be the ratio of its circum-
ference to its radius: that is, how many times do we need to lay out the radius to equal
the circumference? If we write circ(𝐶) to denote the circumference, or arclength of the
circle 𝐶 and rad(𝐶) to denote the radius, the quantity we are interested in here is just
their ratio:
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𝜏(𝐶) = circ(𝐶)
rad(𝐶)

If we write 𝐶𝑝,𝑟 for the circle centered at 𝑝 ∈ 𝔼2 of radius 𝑟 , we alternatively could
express this length ratio as

𝜏 (𝐶𝑝,𝑟 ) =
length(𝐶𝑝,𝑟 )

𝑟

Figure 15.1.: The length factor of a circle is the number of radii needed to make the
circumference.

We use the letter 𝜏 for this ratio as its value for the unit circle is 𝜏 as we have defined it
previously:

𝜏 ∶= 𝜏(𝐶𝑂,1) = length(𝐶𝑂,1)

Both the numerator and denominator of this definition depend on the circle 𝐶 being
considered - so there’s no a priori reason to assume that this ratio should be independent
of the choice of circle. Indeed - we will see very shortly in both spherical and hyperbolic
geometry the analog of 𝜏 (𝐶) takes different values for different circles!

But, as an incredible consequence of the existence of isometries and similarities of the
Euclidean plane, it turns out that here this number is a constant!

Theorem 15.1 (Length Factor is Constant). The ratio of a circles circumference to its
radius is a constant, independent of the circle.
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Proof. Let 𝐶𝑝,𝑟 be any circle in the plane - centered at some point 𝑝 and of some radius
𝑟 . Now let 𝑇 be the translation which takes 𝑝 to the origin 𝑂. Isometries preserve
distances, and thus send circles to circles. This means 𝑇 (𝐶𝑝,𝑟 ) is a circle of radius 𝑟 (a
distance) centered at 𝑂: in symbols

𝑇 (𝐶𝑝,𝑟 ) = 𝐶𝑂,𝑟

Isometries also do not change the lengths of curves (Theorem 10.2), so we know that
length(𝐶𝑝,𝑟 ) = length(𝐶𝑂,𝑟 ). And since it doesnt change distances (like the radius:
Proposition 11.3) we see that 𝐶𝑝,𝑟 and 𝐶𝑂,𝑟 have the same length ratios:

𝜏 (𝐶𝑝,𝑟 ) =
length(𝐶𝑝,𝑟 )

𝑟 = length(𝐶𝑂,𝑟 )
𝑟 = 𝜏(𝐶𝑂,𝑟 )

Now we will show that 𝐶𝑂,𝑟 has the same length factor as the unit circle, and thus
our original circle had the same length factor as the unit circle! To do so, we use the
similarity 𝜎(𝑥, 𝑦) = (𝑅𝑥, 𝑅𝑦). This has scaling factor 𝑟 , and so scales all lengths of curves
(Proposition 10.3), and all distances (Exercise 11.4) by 𝑟 . Thus, 𝜎 takes the unit circle
𝐶𝑂,1 to the circle 𝐶𝑂,𝑟 and also takes length(𝐶𝑂,1) to 𝑟 length(𝐶𝑂,1). Because both the
circumference of the circle and the radius got scaled by 𝑟 the length factor is unchanged:

𝜏 (𝐶𝑂,1) =
length(𝐶𝑂,1)

1 = 𝑟 length(𝐶0,1)
𝑟 = length(𝐶𝑂,𝑟 )

𝑟 = 𝜏(𝐶𝑂,𝑟 )

Stringing all the equalities together, we see

𝜏 (𝐶𝑝,𝑟 ) = 𝜏(𝐶𝑂,𝑟 ) = 𝜏(𝐶𝑂,1)

Thus every circle has the same length factor as the unit circle, so the length factor is
constant.

Definition 15.1 (The Circle Length Constant). The constant ratio of the circumference
to the radius of a circle to its radius is

𝜏 = length(𝐶𝑝,𝑟 )
𝑟

In Exercise 27.40 we found a good approximation to this following the method of
archimedes:

𝜏 ≅ 96 ⋅ 2 ⋅ √2 − √2 + √2 + √2 + √2 + √3 ≈ 6.282904…
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Thus in any mathematical problem involving a circle’s length, the number 𝜏 (𝐶) = 𝜏 =
6.28… is bound to show up: this is just the circumference measured in units of radii!

15.1.2. The Area Constant

We’ve found that similarites force the length factor of circles to be a constant - and this
explains at least some occurences of a geometric constant appearing in mathematics.
But lengths aren’t the only important quantity related to circles out there! It’s equally
natural to consider their area.

Here it doesn’t make sense to measure a circles area in units of radii, since radii are a
length and area is….not a length. Instead its more natural to measure area in units of
radii squared: how many squares with side length the radius does it take to fill up a
circle? For a given circle 𝐶 , we will call this area factor 𝜋(𝐶):

𝜋(𝐶𝑝,𝑟 ) =
Area(𝐶𝑝,𝑟 )

𝑟2

Figure 15.2.: The area factor of a circle is the number of squared radii needed to com-
pletely fill it’s area.

We use the letter 𝜋 for this as we have already defined 𝜋 to be this ratio for the unit
circle 𝐶𝑂,1:

𝜋 ∶= 𝜋(𝐶𝑂,1) = area(𝐶𝑂,1)
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Again, this fraction involves quantities related to the particular circle 𝐶𝑝,𝑟 in both the
numerator and denominator, so its totally conceivable that its value would depend on
the particular circle being considered! (And, in spherical and hyperbolic geometry, it
will).

But perhaps after seeing the crucial role of similarities in the argument for the constancy
of 𝜏 , perhaps you already have a sneaking suspicion that the analogous trick will prove
𝜋 to be constant here.

Theorem 15.2 (Area Factor is Constant). The ratio of a circle’s area to its radius squared
is constant, independent of the circle

Proof. The proof here is nearly identical to the length factor case, except we need to use
the fact that similarites scale area by the square of their similarity factor (Theorem 14.3),
instead of the fact that they linearly scale length.

Again since isometries don’t change distances or areas we can move an arbitrary circle
𝐶𝑝,𝑟 to the origin, 𝐶𝑂,𝑟 and know that

𝜋(𝐶𝑝,𝑟 ) = 𝜋(𝐶𝑂,𝑟 )

Next we see that 𝜋(𝐶𝑂,𝑟 ) is the same as the area factor of the unit circle, using the
similarity 𝜎(𝑥, 𝑦) = (𝑟𝑥, 𝑟𝑦), which sends 𝐶𝑂,1 to 𝐶𝑂,𝑟 and area(𝐶𝑂,1) to 𝑟2area(𝐶𝑂,1).

𝜋(𝐶𝑂,1) =
area(𝐶𝑂,1)

1 = 𝑟2area(𝐶0,1)
𝑟2 = area(𝐶𝑂,𝑟 )

𝑟2 = 𝜋(𝐶𝑂,𝑟 )

Stringing these together we see that every circle’s area ratio is the same!

𝜋(𝐶𝑝,𝑟 ) = 𝜋(𝐶𝑂,𝑟 ) = 𝜋(𝐶𝑂,1)

Definition 15.2. For any circle 𝐶 in the Euclidean plane, the ratio of its area to squared
radius is a constant denoted by

𝜋 = Area(𝐶𝑝,𝑟 )
𝑟2
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This tells us that we should expect yet another constant to be popping up throughout
mathematics: anytime a discussion of circles and their areas show up, we will run into
𝜋 as the natural conversion factor from radius squared to area!

Archimedes could have went on to estimate the value of 𝜋 by calculating the area of an
inscribed polygon or circumscribed polygon, by adding up the area of triangles.

Exercise 15.1 (𝜋 via inscribed areas.). The area of a triangle is half its base times it’s
height. Can you calculate the area of a polygon that circumscribes the circle to get
an approximation of 𝜋? Try starting with a hexagon. Then, can you find a way to
use trigonometric identities to double the number of sides repeatedly, like we did for
circumference?

However, Archimedes did not do this…he did something much more clever.

15.1.3. Equality

Alone these two facts don’t point towards a single, unified constnat showing up in math-
ematics, rather they suggest we should be seeing two different values, 𝜋 and 𝜏 , in two
different circumstances: area and length respectively.

It was already known to Euclid that these two constants exist: in CITE PROP Euclid
shows the circumference of a circle is always proportional to its radius, and in CITE
PROP he shows the area is always proportional to the radius squared. But it wasn’t
until the work of Archimedes that we discovered the truly astounding fact that these
two constants are related to one another! Recall the main result of the measurement of
the circle

Theorem 15.3. The area of a circle is equal to that of a triangle whose base is the circle’s
circumference, and whose height is the circles radius.

Because we know the area of a triangle to be half its base times its height, this tells us
that

𝜋𝑟2 = 1
2(𝜏 𝑟)(𝑟)

Or, cancelling the factors of 𝑟 and re-arranging,

𝜏 = 2𝜋
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Figure 15.3.: Archimedes’ measurement of the circle

That is, the two circle constants are just integer multiples of one another! This means
whether we are interested in lengths or areas, so long as we are doing mathematics that
invovles a circle this constant is going to appear. (This also explains why you see so
many formulas with a 2𝜋 in them: this is really the length constant 𝜏 ! But since they are
rationally related we’ve just chosen one of them, 𝜋 to write everything in terms of.)

As we have been doing throughout this section of the book, a good exercise is to prove
archimedes observation using modern techiques. We will give two approaches here, one
based on integration, and another on differentiation.

15.1.3.1. Integration

Both lengths and areas in our modern version of geometry are calculated via integrals,
so it’s no surprise that the values of 𝜋 and 𝜏 themselves are integrals. Indeed, as we saw
in Corollary 13.2 we can write the circumference of the unit circle as

𝜏 = ∫
1

−1
2

√1 − 𝑡2
𝑑𝑡

And, from the area chapter (Corollary 14.1) we saw we can express its area as

𝜋 = ∫
1

−1
2√1 − 𝑥2𝑑𝑥

In this homework excercise we will use familiar calculus techniques (just u-
substitution!) to relate these integrals to one another (without evaluating either!)
giving a modern proof of Archimedes’ theorem.
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Exercise 15.2. Prove that

∫
1

−1
1

√1 − 𝑡2
𝑑𝑡 = ∫

1

−1
2√1 − 𝑥2𝑑𝑥

Thus showing thtat 𝜏
2 = 𝜋 .

Hint: Do 𝑢-substitutions to the integrals to make them into the same integral. The goal
isn’t to evaluate them and get a number! This is just a Calc II problem - but a tricky one,
so here’s one outline you could follow:

(1) Rewrite the area integrand √1 − 𝑥2 as 1−𝑥2
√1−𝑥2 . Use properties of integrals to break

this into two integrals, and see

𝜋 = 𝜏 − ∫
1

−1
2𝑥2

√1 − 𝑥2
𝑑𝑥

(2) Nowwe just have to evaluate this new integral: Do the 𝑢-substitution 𝑢 = √1 − 𝑥2
to this, to show that

∫
1

−1
2𝑥2

√1 − 𝑥2
𝑑𝑥 = ∫

1

−1
2√1 − 𝑢2𝑑𝑢 = 𝜋

(This 𝑢-sub requires some work: you’ll need at some point to solve for 𝑥 in terms
of 𝑢!)

(3) Now just assemble the pieces! You never completed a single integral, but you still
managed to prove that 𝜏 = 2𝜋 .

15.1.3.2. Differentiation

To give a third proof of this fundamental equality, wewill start wtih the formula defining
the area of a circle of radius 𝑟 :

area(𝐶𝑝,𝑟 ) = 𝜋𝑟2

Let’s think a bit about the derivative of this function: this is easy to compute by hand

𝑑
𝑑𝑟 area(𝐶𝑝,𝑟 ) =

𝑑
𝑑𝑟 𝜋𝑟

2 = 2𝜋𝑟
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Figure 15.4.: Area of the circle as a function of radius.

but what does it mean? For this, we need to return all the way to the fundamentals, and
think about the definition of the derivative. To unclutter the notation, below I am going
to write area(𝑟) for the area of a circle of radius 𝑟 (the area doesn’t depend on the center
point after all!)

𝑑
𝑑𝑟 area(𝑟) =

area(𝑟 + ℎ) − area(𝑟)
ℎ

The numerator here is a difference of areas - between the area of a disk with radius 𝑟 + ℎ
and a disk of radius 𝑟 . This is what you get if you remove a disk of radius 𝑟 from a disk
of radius 𝑟 + ℎ, so this is the area of a thin circular ring.

Figure 15.5.: The difference between a disk of radius 𝑟 + ℎ and a disk of radius 𝑟 is a ring
of thickness ℎ.

What’s the area of this ring? In the limit as ℎ becomes infinitesimally small (as we take
the limit to become the actual derivative) we can calculate infinitesimally: imagine the
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circular ring is made of a bunch of tiny squares, whose height is ℎ: since their other
sides fit together to form the circumference, the sum of their bases is 𝜏 𝑟 . Thus,

area(𝑟 + ℎ) − area(𝑟) ≈ (𝜏 𝑟)ℎ

With this approximation becoming exact as ℎ → 0. But in the derivatrive we divide by
h, and are left with just 𝜏 𝑟 !

𝑑
𝑑𝑟 area(𝑟) = 𝜏 𝑟 = circ(𝑟)

This is an incredibly cool fact: so we should box it off as a theorem for future refer-
ence!

Theorem 15.4. The derivative of the area function for circles of radius 𝑟 is the circum-
ference function 𝑑

𝑑𝑟 area(𝑟) = circ(𝑟)

But now we are all but complete with our third way of proving 𝜏 = 2𝜋 . We know the
area function is area(𝑟) = 𝜋𝑟2, and so we can take its derivative to get 2𝜋𝑟 . Similarly,
we know the circumference formula is 𝜏 𝑟 , so this relathionship simplifies to

2𝜋𝑟 = 𝜏 𝑟

And, canceling the 𝑟 (or evaluating at the unit circle, 𝑟 = 1) gives the result!

15.1.4. Trigonometric Substitution

The intimate relationship between 𝜏 and 𝜋 is so fundamental that I cannot help but offer
yet another proof of this result. This may seemwasteful but is in fact often a useful thing
to do in mathematics - as different proofs generalize to different situations easier.

Here, we will focus directly on the area integral of Corollary 14.1,

𝜋 = ∫
1

−1
2√1 − 𝑥2𝑑𝑥

and try to directly evaluate it via the fundamental theorem of calculus (finding an an-
tiderivative, and plugging in the endpoints). To do a little pre-emptive simplifcation,
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we may notice that the integrand is an even function of 𝑥 so we may instead choose to
integrate on half the domain, say [0, 1], and double the result:

𝜋 = 4∫
1

0
√1 − 𝑥2𝑑𝑥

Now, we perform a rather clever substitution to the integral. Because we rigorously
studied the trigonometric functionswe recall that cos2 𝜃+sin2 𝜃 = 1, and thus if 𝑥 = sin 𝜃
we could simplify 1 − 𝑥2 as

1 − 𝑥2 = 1 − sin2 𝜃 = cos2 𝜃

Thus, √1 − 𝑥2 simply becomes | cos 𝜃|. And, because we computed the derivative of sin 𝜃
and cos 𝜃 in the chapter on angles, we know that

𝑑𝑥 = 𝑑(sin 𝜃) = cos 𝜃𝑑𝜃

The last portion of the integral we need to convert are the bounds. The lower bound of
𝑥 = 0 means we seek 𝜃 with 𝑥 = sin 𝜃 = 0. From our defintion of sin and cos, we see
this happens at 𝜃 = 0 since sin is the 𝑦 coordinate, and 𝜃 = 0 corresponds to the starting
point (1, 0). Next, for the top bound 𝑥 = 1 we seek the 𝜃 value with 𝑥 = sin 𝜃 = 1. This
occurs along the positive 𝑦 axis, so a quarter turn around the circle, or 𝜃 = 𝜏/4. Putting
all these pieces together, we see

∫
1

0
√1 − 𝑥2𝑑𝑥 = ∫

𝜏
4

0
| cos 𝜃| cos 𝜃𝑑𝜃 = ∫

𝜏
4

0
cos2 𝜃 𝑑𝜃

It appears we aren’t doing much better: we didn’t know the antiderivative of √1 − 𝑥2
which is what set all of this off, but we also don’t know the antiderivative of cos2 𝜃!
However, the reason this type of substitution is powerful is that there arent many square
root identities out there we can use to change how a function is represented, but there
are plenty of trigonometric identities.

Indeed, from the angle sum identity we derived,

cos(𝑎 + 𝑏) = cos 𝑎 cos 𝑏 − sin 𝑎 sin 𝑏

by setting 𝑎 = 𝑏 = 𝜃 and using the pythagorean identity cos2 𝜃 + sin2 𝜃 = 1, one can
show that
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cos2 𝜃 = 1 + cos 2𝜃
2

Exercise 15.3. Derive this identity.

This lets us rewrite our integral

∫
𝜏
4

0
cos2 𝜃 𝑑𝜃 = ∫

𝜏
4

0
1 + cos 2𝜃

2 𝑑𝜃 = 1
2 ∫

𝜏
4

0
𝑑𝜃 + 1

2 ∫
𝜏
4

0
cos 2𝜃 𝑑𝜃

The first of these integrals is straightforward: its 𝜏/4. For the second integral, we can
𝑢-sub 𝑢 = 2𝜃 to get

∫
𝜏
4

0
cos 2𝜃𝑑𝜃 = 1

2 ∫
𝜏
2

0
cos 𝑢 𝑑𝑢

But now - finally - we know the antiderivative! Since the derivative of sine is cosine,
we can compute

∫
𝜏
2

0
cos 𝑢𝑑𝑢 = sin 𝑢 |

𝜏
2

0
= sin (𝜏2) − sin(0) = 0 − 0 = 0

All that work for zero!! But, putting it all together, we see

∫
1

0
√1 − 𝑥2𝑑𝑥 = ∫

𝜏
4

0
cos2 𝜃𝑑𝜃 = 1

2
𝜏
4

And going back to the very beginning we recall that 𝜋 was exactly four times this inte-
gral. Thus

𝜋 = 412
𝜏
4 = 𝜏

2

Our fourth independent derivation that 𝜏 = 2𝜋 .
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15.2. Sphere Constants

To talk about things in spheres and cylinders rigorously, we neeed to study a bit of
3-dimensional Euclidean geometry. We will return to this in more detail later in the
course, but here we only give a slight taste, as it is important to our overall discussion
of 𝜋 .

Just as a circle was the set of points a fixed distance (the radius) from a fixed point
(the center), a sphere is defined just as a circle except now in three dimenions. We
found the equations for distance minimizing curves in 2D to be affine, and that let us
find the distance formula dist((𝑥, 𝑦), (ℎ, 𝑘)) = √(𝑥 − ℎ)2 + (𝑦 − 𝑘)2 and consequently the
fomrula for a circle (𝑥 − ℎ)2 + (𝑦 − 𝑘)2 = 𝑟2. All of this carries through with no changes
in three dimensions, where the distance formula becomes

dist ((𝑥, 𝑦 , 𝑧), (ℎ, 𝑘, ℓ)) = √(𝑥 − ℎ)2 + (𝑦 − 𝑘)2 + (𝑧 − ℓ)2

And consequently, the sphere centered at (ℎ, 𝑘, ℓ) of radius 𝑟 has the formula

(𝑥 − ℎ)2 + (𝑦 − 𝑘)2 + (𝑧 − ℓ)2 = 𝑟2

The surface area of the sphere is defined exactly aswe have done in the plane, by dividing
its surface into infinitesimal parallelograms 𝑑𝐴, and then integrating the area of these
parallelograms to get the final answer. The volume is defined analogously, except we
now need a notion of infinitesimal volume in 3-dimensions. Volume of an infinitesimal
3d rectangle is given by length times width times height, or in symbols

𝑑𝑉 = 𝑑𝑥𝑑𝑦𝑑𝑧

and so three dimensional volumes are calculated by three iterated integrals instead of
the double iterated integrals for area.

15.2.1. Fundamental Constants

Let 𝑆𝑝,𝑟 denote the sphere of radius 𝑟 centered at 𝑝, just as we did for 𝐶𝑝,𝑟 for the circle.
Like in two dimensions, we can define an area ratio and a volume ratio for the sphere,
comparing each quantity to the relevant power of 𝑟 .
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Theorem 15.5 (Surface Area Ratio is Constant). The ratio

area(𝑆𝑝,𝑟 )
𝑟2

is constant, and independent of the sphere considered.

Proof. The proof strategy here is exactly analogous to what we did for the length and
area constants of a circle: we prove that every sphere has the same surface area ratio
by using isometries and similarities to relate it to the unit sphere. First, we translate
𝑆𝑝,𝑟 to the origin, which does not change lengths or areas. Then, we use a similarity
to scale the unit sphere to the sphere of radius 𝑟 . This scales the surface area by 𝑟2 (as
similarities scale areas by 𝑟2) and it scales length by 𝑟 . Thus

area(𝑆𝑂,1)
1 = 𝑟2area(𝑆𝑂,1

𝑟2 = area(𝑆0,𝑟 )
𝑟2 = area(𝑆𝑝,𝑟 )

𝑟2

Theorem 15.6 (Volume Ratio is Constant). The ratio

vol(𝑆𝑝,𝑟 )
𝑟3

is constant, and independent of the sphere considered.

Proof. Run the same proof as above, but now notice that when we scale volume, in-
finitesimal volume is measured by 𝑑𝑥𝑑𝑦𝑑𝑧, so if each is scaled by 𝑟 we get

𝑟𝑑𝑥𝑟𝑑𝑦𝑟𝑑𝑧 = 𝑟3𝑑𝑥𝑑𝑦𝑑𝑧
Thus volumes are scaled by 𝑟3 under a similarity, and so

vol(𝑆𝑂,1)
1 = 𝑟3vol(𝑆𝑂,1

𝑟3 = vol(𝑆0,𝑟 )
𝑟3 = vol(𝑆𝑝,𝑟 )

𝑟3

Just as we gave names 𝜏 for the length constant and 𝜋 for the area constant of circles,
we may be tempted to give names to these two new fundamental constants that we just
discovered. And, temporarily we will do so, but these names will not stick around for
long - we will instead find both to be related to the circle constants! To keep things
concise during their breif existence we will name the surface area constant 𝐶𝑆𝑢𝑟𝑓 and
the volume constant 𝐶𝑉 𝑜𝑙 .
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15.2.2. Relationship to 𝜋 .

The work Archimedes was most proud of we have barely discussed yet in this class.
In his book The Sphere and the Cylinder, Archimedes managed to find a relationship
between the formulas for the surface area and volume of a sphere, and relate them to
those of a cylinder. This was of course a big deal because the volume of a shape with
curved sides had never been caclulated before, but it was an even bigger deal the form
that the answer took. Specifically, Archimedes found that for surface area, the area of
the sphere is exactly equal to the area of the round side of a the smallest cylinder that
can enclose it (whose radius is the same as the spheres, and whose height is the sphere’s
diameter)

Figure 15.6.: The cylinder and the sphere have the same surface area.

In modern notation, we would write this relationship with a formula. A cylinder is a
rolled up rectangle, and so we can calculate its area with base times height. The base
is the circumference of the cylinder (so, 𝜏 𝑟 since this is a circle!) and the height is 2𝑟 .
Thus

area(𝑆𝑝,𝑟 ) = (𝜏 𝑟)(2𝑟) = 2𝜏 𝑟2

Because we already proved 𝜏 is related to 𝜋 via 𝜏 = 2𝜋 we often instead see this written
as
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area(𝑆𝑝,𝑟 ) = 4𝜋𝑟2

This tells us immediately the value of the surface area constant, as its definition is just
the surface area over 𝑟2!

Theorem 15.7 (Value of the Surface Area Constant).

𝐶𝑆𝑢𝑟𝑓 = area(𝑆𝑝,𝑟 )
𝑟2 = 4𝜋

We will prove this using modern tools below, but I’ll postpone the proof until we talk
about Archimedes other great discovery - calculating the volume of a sphere.

Through an ingenious argument by slicing, Archimedes showed that the volume of the
sphere is the same as the volume of the following complicated sounding shape: the
volume in between the cylinder enclosing the sphere (from above), and the double cone
that fits inside it:

Figure 15.7.: Archimedes’ calculation of the volume of a sphere by comparing its slices
with the complement of a cone in a cylinder.

Archimedes original argument was by slicing: he imagined slicing each of these shapes
by a plane at different heights, and he showed that at any given height 𝑧, the cross
sections of the two shapes had the same area.

Exercise 15.4. Confirm Archimedes claim: show the slice of a sphere and cylinder-
minus-cone at height 𝑧 have the same areas, for any 𝑧.

Then Archimedes noted that the volume of a region is the integral of the area of its
slices (of course, not using these words, as they were not to be invented for another
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1800 years!) and so two shapes with all the same cross sectional areas must have the
same volumes.

He next computed the volume of a cylinder to be the area of its base times its height,
and the area of a cone to be 1/3 its base times height. This gave him the formula

vol(𝑆𝑝,𝑟 ) = (𝜋𝑟2)(2𝑟) − 1
3(𝜋𝑟

2)(2𝑟) = 2
3(𝜋𝑟

2)(2𝑟) = 4
3𝜋𝑟

3

But this immediately gives us the value of the sphere volume constant in terms of 𝜋 : thus
all the constants for circles and spheres are just rational multiples of a single mysterious
number!

Theorem 15.8 (Value of the Volume Constant).

𝐶𝑉 𝑜𝑙 =
vol(𝑆𝑝,𝑟 )

𝑟3 = 4
3𝜋

Archimedes found this fact so striking and so beautiful that he asked for a Sphere and
a Cylinder (the key ideas in this proof) to be engraved on his tombstone. As far as we
can tell in the historical record, his wish was heeded when he died in 212BCE- but his
grave was quickly forgotten to those living on his native island of Syracruse.

However, in 75BCE, the great Roman orator Cicero was visiting Syracruse and searched
out Archimedes - then already known as the greatest mathematical mind in history, and
found it due to this carving. In his own words:

“Once, while I was superintendent in Syracuse, I brought out from the dust
Archimedes, a distinguished citizen of that city. In fact, I searched for his
tomb, ignored by the Syracusans, surrounded on all sides and covered with
brambles and weeds. The Syracusan denied absolutely that it existed, but I
possessed the senari verses written on his tomb, according to which on top
of the tomb of Archimedes a sphere with a cylinder had been placed. But
I was examining everything with the eyes … And shortly after I noticed a
small hill not far emerged from the bushes. On it there was the figure of
a sphere and a cylinder. And I said immediately to the Syracusans “That’s
what I wanted!” > Cicero, 75 BCE
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Figure 15.8.: Slicing a sphere allows us to calculate volume by integrating the area of
the slices.

15.2.3. Modern Computation

Having seen the beauty of the results whichwe are after, wewill now seek to prove them
with modern (calculus-based) methods. We find the volume of the sphere by slicing into
disks, and we know the area of a disk from slicing it into line segments!

Because we know the number we are after is constant we are welcome to work directly
with the unit sphere so that extra letters like radii don’t complicate our lives. Call this
sphere 𝑆 = 𝑆𝑂,1. Then

vol(𝑆) = ∭𝑆
𝑑𝑉 = ∫

1

−1
(∬𝐶𝑟

𝑑𝐴) 𝑑𝑧

Where 𝐶𝑟 is the circle of radius 𝑟 that we get by slicing horizontally at height 𝑧. Because
we know the area of a circle formula is 𝜋𝑟2 we can subsitute this into our integral, and
reduce it to a single integration!

vol(𝑆) = ∫
1

−1
𝜋𝑟2 𝑑𝑧
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Figure 15.9.: The radius of a slice at height 𝑧 satisfies 𝑟2 + 𝑧2 = 1 so 𝑟 = √1 − 𝑧2.

All that remains is to figure out the radius of the slice at height 𝑧. This is easiest to do
by looking at a side view where we can use the distance formula in a plane:

Alternatively we may just do this algebraically, and note that if 𝑥2 + 𝑦2 + 𝑧2 = 1 then
𝑥2 + 𝑦2 = 1 − 𝑧2, so at height 𝑧 the points (𝑥, 𝑦) lie in a circle whose radius-squared is
1 − 𝑧2, or

𝑟(𝑧) = √1 − 𝑧2

Now plugging this into the area-of-a-disk formula, we can continue our integration by
slicing:

vol(𝑆) = ∫
1

−1
𝜋 (√1 − 𝑧2)

2
𝑑𝑧

= 𝜋 ∫
1

−1
1 − 𝑧2 𝑑𝑧

= 𝜋 (𝑧 − 𝑧3
3 ) |

1

−1
= 4

3𝜋

Because a homothety multiplies each infinitesimal length by its scaling factor, it in-
creases the infinitesimal volume by the cube of the scaling factor. Thus, scaling up from
the unit sphere to a sphere of radius 𝑟 scales this as

vol(𝑆𝑝,𝑟 ) = 4
3𝜋𝑟

3
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Now, we can apply everything we learned thinking about circles to give a quick modern
derivation of the area constant: area is the derivative of volume!

PICTURE

The reasoning goes through exactly analogously here: the difference quotient vol(𝑟+ℎ)−
vol(𝑟) is a thin spherical shell of thickness ℎ, so its volume is approximately the surface
area of the shere times ℎ, and this approximation becomes exact as ℎ → 0. Thus

area(𝑆𝑝,𝑟 ) = 𝑑
𝑑𝑟 vol(𝑆𝑝,𝑟 ) =

𝑑
𝑑𝑟

4
3𝜋𝑟

3 = 4𝜋𝑟2

15.3. Higher Dimenisons

What about the fourth dimension? Can we fiigure out how spheres work there? The
fact that lines are given by affine eqautions holds true in all dimensions, which allows
us to write down the distance formula in 4𝐷 and the equation of a sphere exactly as
before.
To keep things simple we can start again with the 4-dimensional unit sphere, which is
described by

𝑥2 + 𝑦2 + 𝑧2 + 𝑤2 = 1

Let’s call this sphere 𝐻 (or 𝐻𝑂,1) for hypersphere. We wish to find 𝐻 ’s volume by slicing,
where we take three dimensional slices with constant 𝑤 : these slices will intersect the
4-dimensional ball by solid three dimensional balls much as we sliced the 3D ball into
filled in 2d circles, and sliced circles into intervals!

It’s going to get difficult to keep dimensions straight here, so I’m going to start sub-
scripting our volumes: I’ll write vol3 for the usual three dimensional volume we know
and love, and I’ll write vol4 for the new four dimensional hypervolume. This slicing
tells us

vol4(𝐻) = ∫
1

−1
(∭𝑆𝑟

𝑑𝑥𝑑𝑦𝑑𝑧) 𝑑𝑤

= ∫
1

−1
vol3(𝑆𝑟 )𝑑𝑤

= ∫
1

−1
4
3𝜋𝑟

3 𝑑𝑤
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This leaves us once again with a single integral to do! And all we need is the relationship
between the radius 𝑟 and the height 𝑤 , which is exactly the same as in the dimension
below:

𝑟(𝑤) = √1 − 𝑤2

In theory, all we have to do now is plug this in and integrate! In practice this integral
is a bit more challenging than we have come across before (though nothing that you
haven’t seen already in a Calculus II course)

vol4(𝐻) = 4𝜋
3 ∫

1

−1
(√1 − 𝑤2)

3
𝑑𝑤

This integral requires a trigonometric substitution to complete. It’s perhaps easier to
deal with the bounds if we first realize the integral is an even function, and so we could
instead just integrate on [0, 1] and double the result:

4
3 ∫

1

−1
(√1 − 𝑤2)

3
𝑑𝑤 = 8𝜋

3 ∫
1

0
(1 − 𝑤2)

3
2 𝑑𝑤

Now we can make the substitution 𝑤 = sin 𝜃 , where we find 𝑤 = 0 corresponds to 𝜃 = 0
and 𝑤 = 1 corresponds to 𝜃 = 𝜏/4 (as sin 𝜏/4 = 1). After this substitution we have

vol4(𝐻) = 8𝜋
3 ∫

𝜏/4

0
(1 − sin2 𝜃)

3
2 𝑑 (sin 𝜃)

= 8𝜋
3 ∫

𝜏
4

0
(cos2 𝜃) 32 cos 𝜃𝑑𝜃

= 8𝜋
3 ∫

𝜏
4

0
cos4 𝜃𝑑𝜃

Now we have yet more work, as we have arrived at the integral of the fourth power of
cosine. This requires some trigonometric work with the double/half angle identites we
proved:

Exercise 15.5 (Integrating cos4(𝜃)). Use the identity cos2 𝑥 = 1
2 (1 + cos 2𝜃) twice to

show that
cos4(𝜃) = 3

8 + cos 2𝜃
4 + cos 4𝜃

8
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15. 𝜋

Then use this to confirm that

∫
𝜏
4

0
cos4 𝜃 = 3

8
𝜏
4

Putting this together with the above, we finally reach our answer (using that 𝜏 = 2𝜋 )

vol4(𝐻) = 8𝜋
3
3
8
𝜏
4 = 𝜋𝜏

4 = 𝜋2
2

This is the first time that our constant has not been a rational multiple of 𝜋 , but instead
a rational multiple of 𝜋2! Since homotheties scale four dimensional volumes by a factor
of 𝑟4, we get that the full volume formula for a hypersphere of radius 𝑟

Theorem 15.9 (Volume of the Hypersphere). The volume of the 4-dimensional hyper-
sphere of radius 𝑟 is

vol4(𝐻𝑝,𝑟 ) = 𝜋2
2 𝑟4

From this we can get the three dimensional surface area by differentiation. Again to
keep things straight, I’ll write area3 for the three dimensional analog of surface area in
4D space, and area2 for the usual 2D area in 3D space that we have thus far been just
calling area.

Theorem 15.10 (Surface of the Hypersphere).

area3(𝐻𝑝,𝑟 ) = 𝑑
𝑑𝑟 vol4(𝐻𝑝 , 𝑟 ) = 𝑑

𝑑𝑟
𝜋2
2 𝑟4 = 2𝜋2𝑟3

Thus, the 3-dimensional surface area constant for hyperspheres is 2𝜋2: also a multiple
of 𝜋2 because it arose from differentiating volume.

Exercise 15.6. Find the volume and surface area constants for the 5-dimensional sphere
via integration by slicing (for volume) and then differentiation (for surface area).
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15.4. A Surprise in Even Dimensions

If you complete Exercise 15.6 above, you’ll find that the 5-volume has a rather strange-
looking constant out front:

vol5 = 8
15𝜋

2𝑟5

What can we do with this information? Carry on the march to higher dimensions of
course! If we try to find the volume of the unit 6-sphere by slicing, (say the axis we slice
along is called 𝑤 again, for convenience) we can write

vol6 = ∫
1

−1
vol5(√1 − 𝑤2)𝑑𝑤

= ∫
1

−1
8
15𝜋

2 (√1 − 𝑤2)
5
𝑑𝑤

= 2 8
15𝜋

2 ∫
1

0
(√1 − 𝑤2)

5
𝑑𝑤

Unfortunately this time (again!) we cannot get rid of the square root since 5 is an odd
power, and we must resort to a trigonometric substitution 𝑤 = sin 𝜃 . Skipping the
now-familiar steps,

∫
1

0
(√1 − 𝑤2)

5
𝑑𝑤 = ∫

𝜏
4

0
cos6 𝜃 𝑑𝜃

Now we need only expand out cos6 via trigonometric identities and integrate:

Exercise 15.7. Confirm, similarly to a previous exericse that

∫ cos6 𝜃 𝑑𝜃 = 5
16𝑥 + 15

64 sin(2𝜃) + 3
64 sin(4𝜃) + 1

192 sin(6𝜃)

And thus, that the definite integral we are after is

∫
𝜏
4

0
cos6 𝜃 𝑑𝜃 = 5

16
𝜏
4
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Plugging this back into our original expression we get some almost magical cancellation
of all these constants:

vol6 = 2 8
15𝜋

2 5
16

𝜏
4

= 𝜋2
3
𝜏
4

= 𝜋2
3
𝜋
2

= 𝜋3
6

Theorem 15.11 (Volume of the 6-Sphere). The volume of the six dimensional sphere of
radius 𝑟 is

𝜋3
6 𝑟6

From here - if we were feeling brave - we could calculate the volume of the seven-
dimensional ball by slicing (which would not need a trig sub, as the slices are 6 dimen-
sional and the sixth power will get rid of the square root) yeilding

vol7 = 16
105𝜋

3

Then use this to calculate the volume of the 8-dimensional ball by slicing (which will
now need another trig sub, which will introduce another factor of 𝜋 through the bound
𝜏/4). The result here has some ugly calculation and marvelous cancellations, ending
with

vol8 = 𝜋4
24

A pretty interesting pattern is arising here - using vol2 for the two dimensional volume
(area) of a circle, we have

vol2 = 𝜋 vol4 = 𝜋2
2 vol6 = 𝜋3

6 vol8 = 𝜋4
24

It appears that the volume of the 2𝑛 dimensional ball is 𝜋𝑛/𝑛!. Incredibly, this turns out
to be correct:
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Theorem 15.12 (Even volumes).

vol2𝑛 = 𝜋𝑛
𝑛!

One way to prove this is to continue the process we have been doing, with the trig subs
and all, but via induction (and being clever, realizing we only need to know the constant
term of cos2𝑛(𝜃) - all the rest integrate to zero every time!)

But there’s an alternative way - one can try to integrate via slicing over two dimensions
at once, and get a recurrence relation relating the volume in dimension 𝑛 to the volume
in dimension 𝑛 − 2:

Proposition 15.1.
vol𝑛 = 𝜋

𝑛 vol𝑛−2

If you’re interested in doing this - come talk to me in office hours! But now for the truly
strange part: what is the sum of the volumes of all the even dimensional balls?

∑
𝑛≥0

vol2𝑛 = ∑
𝑛≥0

𝜋𝑛
𝑛! = 𝑒𝜋

WHAT?! This is the series expasion of 𝑒𝑥 evaluated at 𝜋 . But it gets even crazier. What
if we add up the volumes of the spheres of radius 𝑟? This multiplies each term by 𝑟2𝑛
(since they are even dimensional spheres) and equals

∑
𝑛≥0

𝜋𝑛
𝑛! 𝑟

2𝑛 = ∑
𝑛≥0

(𝜋𝑟2)𝑛
𝑛! = 𝑒𝜋𝑟2

Why in the world is the sum of the volume of all the even dimensional balls what you
get by plugging the area of the circle into the exponential function?! I have no idea…
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The Sphere
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16. Foundations

After a rather deep dive into the foundations and history of plane geometry, we are ready
to leave the familar behind and explore other worlds! The first new geometry we will
consider is…..well…..actually also familiar: its the sphere. We’ve evenmet this geometry
in our discussion of 𝜋 , where we noted that using analogous arguments to what we did
in the plane, the distance formula in three dimensions is a natural generalization of the
pythagorean theorem, which provides an equation for the sphere.

Definition 16.1 (The Sphere (Points)). The (unit) sphere is the set of points (𝑥, 𝑦 , 𝑧) ∈
ℝ3 lying at distance 1 from the origin.

𝕊2 = {(𝑥, 𝑦 , 𝑧) ∈ 𝔼3 ∣ 𝑥2 + 𝑦2 + 𝑧2 = 1}

It’s important to remember that by sphere mathematicians usually mean the surface, not
the interior (we will call the interior of the sphere the ball). Thus, 𝕊2 is two dimensional,
which is why we denote it this way, and call it the two-sphere.

The sphere has been studied since ancient times: we came across it most recently while
analyzing the work of Archimedes, but it became of particular importance outside of
mathematics around the same time, when Eratosthenes calculated the circumference of
the Earth (quite accurately). Centuries earlier around

450BCE, the pre-Socratic
philosopher Anaxagoras
correctly postulated that
the earth was a sphere,
floating freely in the
vaccuum. But no one knew
its size!

But in both of these contexts we are picturing the sphere
extrinsically, from the perspective of three-dimensional beings that could hold it in their
hands.

The big change in perspective here is that we are going to think of the sphere as a
geometry all on its own, just like we did for the plane! We will work with coordinates
in three dimensions to make our lives easier, but the surrounding 3-dimensional space
is of no interest or consequence to us: the only space that is “real” is the surface of the
sphere itself.

In some sense we are very used to this: as this is how we actually live our lives! Since
evolution did not grace the great apes with wings, we humans spend almost all of our
time walking around on the surface of a large sphere, unable to meaningfully interact
with the totality of the 3-dimensional space it is embedded in. However, this isn’t totally
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helpful, as our two main ways of sensing the world around us, sight and sound depend
on the physics of 3-dimensional space, and are not constrained to the sphere.

For me it is helpful to think about spherical geometry as the geometry a mathematically
gifted-ant would discover if it lived its entire life on an orange weak and downward
pointed eyes only able to perceive its immediate vicinity on the peel. What curves on
the oragne would the ant call lines? How would the ant measure angles and distances?
Does the ant’s mathematics contain the pythagorean theorem?The first treatments of

spherical geometry as a
true intrsinic geometry in

its own right come not
from silly thought

experiments about ants of
course, but rather from

navigation using the stars,
where the celestial sphere

modeled the sky, and
spherical trigonometry was

first developed.

16.1. Calculus on 2

Having put all the work into understanding a modern, calculus-based approach to ge-
ometry in the plane, we will reap significant benefits here by seeing how many of the
ideas remain conceptually the same on the sphere. Our infinitesimal foundations all
rely on being able to take derivatives, so the first thing we should wonder is what is
the derivative of a curve on the sphere? Happily, because the sphere lives in 𝔼3 and we
understand Euclidean calculus well, we can directly borrow that notion:

Definition 16.2 (Calculus on the Sphere). The sphere inherits its notion of calculus
from the 3-dimensional space it lives in: if 𝛾 is a curve on the sphere then 𝛾 (𝑡) =
(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) and 𝛾 ′ = ⟨𝑥′, 𝑦 ′, 𝑧′⟩.

To really get things moving, we need to define a notion of tangent space to each point on
the sphere. This space should be the set of all infinitesimal tangent vectors to curves to
the sphere. Here we need to put a little more thought in thanwe did for the plane, where
we just noted that the derivative to a planar curve was also a 2-dimensional vector, so
the tangent space at each point should be another copy of the plane. Why? Well here
we have represented points on the sphere with three cordinates, and so tangent vectors
also have three cordinates. But this doesn’t mean the tangent space at each point is three
dimensional! Indeed, there are many three dimensional vectors at each point which are
not tangent to any curve on the sphere.

Proposition 16.1 (Tangents to Curves on the Sphere). If 𝛾 is a curve lying on the surface
of the sphere passing through a point 𝛾 (𝑡) = 𝑝, then its tangent vector 𝛾 ′(𝑡) is orthogonal
to 𝑝 in 𝔼3.

Proof.
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Figure 16.1.: Tangent vectors to 2 at a point are the derivatives of curves passing through
that point.

Figure 16.2.: Tangent vectors to a curve on the sphere through 𝑝 ∈ 2 are orthogonal to
the point 𝑝, thought of as a vector from the origin in 𝔼3.
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This argument relied on the observation that the dot product has its own product rule,
which is a straightforward algebraic computation from its definition.

Exercise 16.1 (Product Rule for Dot Product). Let 𝑓 (𝑡) = ⟨𝑓1(𝑡), 𝑓2(𝑡), 𝑓3(𝑡)⟩ and 𝑔(𝑡) =
⟨𝑔1(𝑡), 𝑔2(𝑡), 𝑔3(𝑡)⟩ be two vector functions. Prove that the dot product satisifes the prod-
uct rule: 𝑑

𝑑𝑡 (𝑓 (𝑡) ⋅ 𝑔(𝑡)) = 𝑓 ′(𝑡) ⋅ 𝑔(𝑡) + 𝑓 (𝑡) ⋅ 𝑔′(𝑡)

Definition 16.3 (The Sphere (Tangent Vectors)). If 𝑝 ∈ 2, then the tangent space 𝑇𝑝2 is
the set of all vectors in 𝔼3 which are orthogonal to 𝑝:

𝑇𝑝2 = {𝑞 ∈ 𝔼3 ∣ 𝑝 ⋅ 𝑞 = 0}

In coordinates, if 𝑝 = (𝑝1, 𝑝2, 𝑝3),these are the points ⟨𝑥, 𝑦 , 𝑧⟩ such that 𝑝1𝑥+𝑝2𝑦 +𝑝3𝑧 =
0.

Figure 16.3.: Tangent spaces to the sphere are linear subspaces of 𝔼3 containing all vec-
tors perpendicular to the position.

16.2. Geometry on 2

Now that we have points and tangent vectors, we need to bring the actual geometry into
the picture. In our original development of𝔼2 we encoded all of geometry via the notion
of an infinitesimal length. We then went on to develop all the higher level concepts like
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lengths of curves, and eventually angles - before discovering that the we could measure
angles easily with the dot product! But since we can also measure infinitesimal lengths
with the dot product, we saw that we could alternatively take this as the basis of all of
geometry. We will take this bold new approach here with the sphere.

Definition 16.4 (The Sphere’s Dot Product). If 𝑣 = ⟨𝑣1, 𝑣2, 𝑣3⟩ and 𝑤 = ⟨𝑤1, 𝑤2, 𝑤3⟩ are
two tangent vectors on the sphere based at a point 𝑝 their dot product is computed using
the standard dot product on 𝔼3:

𝑣 ⋅ 𝑤 ∶= 𝑣1𝑤1 + 𝑣2𝑤2 + 𝑣3𝑤3

This gives rise immediately to our notion of infiniteismal length:

Definition 16.5 (Infinitesimal Length on 2). Given a vector 𝑣 = ⟨𝑣1, 𝑣2, 𝑣3⟩ in the tangent
space 𝑇𝑝2, the infinitesimal length of 𝑣 is the square root of its dot product with itself:

‖𝑣‖ = √𝑣 ⋅ 𝑣 = √𝑣21 + 𝑣22 + 𝑣23

Thus, each tangent space comes with an infinitesimal version of the pythagorean theo-
rem, just likewe had for𝔼2! Rememberwhat tangent spaces are all about: they’re encod-
ing the result of a limiting process of infinite zoom: the fact that we see the pythagorean
theorem here on the tangent space is just the statement that zooming in on a point,
a sphere appears to be flat! This we are quite used to from living on the surface of
the earth. Some people are too

impressed by this fact, and
have the mistaken
impression that the earth
actually is flat!

The magic we will see soon is that in fact all of spherical geometry can be
recovered from this infinitesimal flattness.

To define the length of a curve on 2 we follow the exact approach from 𝔼2, and use
integration to promote thse infinitesimal lengths to finite ones.

Definition 16.6 (Lengths of Curves on 2). Length of a curve is the integral of its in-
finitesimal lengths:

length(𝛾 ) = ∫𝐼 ‖𝛾
′(𝑡)‖𝑑

Now for angles, our new foundations make everythingmuch easier! Instead of working
hard (to define an angle as the arclength of the unit circle in the tangent space, spanned
by two tangent vectors at a point), we instead note that we already know how this is
related to the dot product in Euclidean space (CITE THM), and we know the tangent
space IS euclidean (Definition 16.5). Thus, we can take the relation to the dot product
as our definition:
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Definition 16.7 (Angles on 2). The angle between two vectors on the sphere is defined
using the inner product:

∢(𝑣, 𝑤) = arccos ( 𝑣 ⋅ 𝑤
‖𝑣‖‖𝑤‖)

Where here arccos can be calculated by the integral expression we derived in Proposi-
tion 13.2 (or by your calculator, which does this faster!)

Exercise 16.2. Consider the curves 𝛼(𝑡) = (cos 𝑡 , sin 𝑡 , 0) (the equator of the sphere),
and 𝛽(𝑡) = (0, sin(𝑡), cos(𝑡)) (a line of longitude). Prove that they

• Intersect each other at the 𝑡 = 𝜋/2
• Form a right angle at their point of intersection.

16.3. Isometries of 2

Our fundamental tool for working with Euclidean space was isometries. In our develop-
ment of the geometry, we tried to seek out as many isometries early on as we coould,
and then continually used them to make our lives easier: moving points to the origin,
lines to the 𝑥-axis, and so on.

The same approach will prove benificial on the sphere: it’ll be nice to be able to move
points to the north pole, or circles to the equator when we desire. So, let’s track down
some isometries! But first - what is an isometry here? We defined an isometry before
as a function which preserved infinitesimal lengths, but that was because infinitesimal
lengths were the foundation of our geometry. Now we’ve decided to take the dot prod-
uct as our foundations so, perhaps we should change our definition of isometry here
too?

Definition 16.8 (Isometries on 2). An isometry of 2 is a function 𝜙 ∶ 2 → 2 which
preserves the dot product. Precisely, this means that if 𝑝 ∈ 2 is a point and 𝑣 , 𝑤 ∈ 𝑇𝑝2
are tangent vectors, then

𝑣 ⋅ 𝑤 = (𝐷𝜙𝑝𝑣) ⋅ (𝐷𝜙𝑝𝑤)

However, it doesn’t actuallymatter whichwe take as our definition (preserving infinites-
imal length, or the dot product) they pick out precisely the same class of maps! In prac-
tice, when we want to prove somethign is an isometry, we will either show it preserves
the dot product, or that it preserves infinitesimal lengths, whichever is easier. This
perhaps surprising claim is justified by a result:
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Theorem 16.1. A function 𝑓 ∶ 2 → 2 (or 𝔼2 → 𝔼2, or 𝔼3 → 𝔼3…) preserves all infinites-
imal lengths if and only if it preserves the dot product.

One direction of this theorem is straightforward: if a map 𝜙 preserves the dot product,
then it certainly preserves infinitesimal lengths! After all, preserving the dot product
means that for any vector 𝑣 , we have

𝑣 ⋅ 𝑣 = (𝐷𝜙𝑝𝑣) ⋅ (𝐷𝜙𝑝𝑣)

But length is just the square root of this expression, so this immediately implies ‖𝑣‖ =
‖𝐷𝜙𝑝𝑣‖. The perhaps more surprising direction is the reverse: if a map preserves all
infinitesimal lengths, then it actually preserves the dot product. The trick here is to show
that it’s actually possible to compute the dot product of two vectors using infinitesimal
lengths (the reverse of what we did above!)

Exercise 16.3 (Dot Products from Lengths). Prove that if 𝑣 , 𝑤 are two vectors then the
following equation is true:

‖𝑣 + 𝑤‖2 = ‖𝑣‖2 + ‖𝑤‖2 + 2⟨𝑣 , 𝑤⟩

Solve this for the dot product (moving all the other terms to the other side of the
equation), and then prove the following fact: if ‖𝑢‖ = ‖𝐷𝜙𝑝𝑢‖ for all vectors, then
𝑣 ⋅ 𝑤 = (𝐷𝜙𝑝𝑣) ⋅ (𝐷𝜙𝑝𝑤) (Hint: apply 𝐷𝜙 to the equation!)

Because isometries are defined using the same basic machinery here as Euclidean space
(preserving infinitesimal quantities) the theorems we proved there about their compo-
sition and inversion carry over without any change:

Theorem 16.2. The composition of any two isometries of the sphere is an isometry, and
the inverse of any isometry of the sphere is an isometry.

So to find isometries of the sphere we just need to track down functions on 𝔼3 that
preserve the dot product. But in linear algebra at least, such functions already have a
name!

Definition 16.9. If 𝐴 is a linear map 𝔼𝑛 → 𝔼𝑛 such that preserves the dot product
(𝐴𝑣) ⋅ (𝐴𝑤) = 𝑣 ⋅ 𝑤 , then 𝐴 is called an orthogonal matrix.
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Figure 16.4.: The isometry (𝑥, 𝑦 , 𝑧) → (𝑥, 𝑦 , −𝑧) on the sphere.

Example 16.1. The linear map (𝑥, 𝑦 , 𝑧) ↦ (𝑥, 𝑦 , −𝑧) is reprsented by an orthogonal
matrix:

(
1 0 0
0 1 0
0 0 −1

)

Exercise 16.4. A permutation matrix is a square matrix where every row and column
has exactly one “1”, and the other entries are zero. Prove the following permuatation
matrix is an orthogonal matrix:

(
0 1 0
1 0 0
0 0 1

)

These maps preserve the dot product on 𝔼3, but we need a little more than that to be
sure they are isometries! Isometries of the sphere need to actually be maps 2 → 2.

Corollary 16.1. If 𝜙(𝑥) = 𝐴𝑥 is an orthogonal transformation of 𝔼3, then 𝜙 sends the
unit sphere to the unit sphere.

Proof. Since𝐴 is orthogonal it preserves the dot product. THus it preserves infinitesimal
lengths, and so it preserves distances in 𝔼3. This means if 𝑝 ∈ 2 (so that 𝑝 is distance 1
from the origin 𝑂) then 𝜙(𝑝) is also on the sphere (its distance 1 from 𝜙(𝑂), but 𝜙 sends
the origin to itself, because its a linear map).
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Putting these facts together gives the following powerful theorem telling us tons of
isometries of the sphere! In fact, these are all the

isometries of the sphere.
But we don’t need that here

Theorem 16.3. If 𝐴 is an orthogonal matrix, then the function 𝑝 ↦ 𝐴𝑝 is an isometry of
the sphere.

This theorem gives us access to tons of isometries: all we need to do is track down
orthogonal 3 × 3 matrices. We’ve already seen a couple explicit examples above (the re-
flection (𝑥, 𝑦 , 𝑧) ↦ (𝑥, 𝑦 , −𝑧) and the permutation matrices in the examples), but it will
prove useful to dig a little deeper and try to figure out what kind of matrices are orthog-
onal. The following theorem of Linear Algebra gives us a complete classification:

Theorem 16.4. A matrix is an orthogonal matrix if and only if all of its columns are unit
vectors, and each column is orthogonal (hence the name) to every other.

Proof.

Now that we know the algebraic description of isometries (3 × 3 number squares where
all the columns are orthonormal) we turn to the geometry: what do isometries of the
sphere do?

The two most useful properties of isometries by far in 𝔼2 were the ability to move
points around, and the ability to rotate any tangent vector to any other: these were the
properties we called homogenity and isotropy. It was these two properties that gave the
plane its incredible symmetry.

The sphere is of course very symmetric looking as well, and we are used to from our
experience in day-to-day life with the ability to rotate a sphere any which way we like.
But now we should prove it:

Proposition 16.2 (Any Point Moves to the North Pole). Let 𝑁 = (0, 0, 1) denote the
north pole of the sphere, and 𝑝 and arbitrary point on the sphere. Then there is an isometry
of 2 which moves 𝑁 to 𝑝. (And thus its inverse moves 𝑝 to 𝑁 ).
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16. Foundations

Figure 16.5.: Any point can be sent to the north pole of the sphere, or equivalently, you
can send any point to the north pole via an isometry.

The argument I give here is
a soft or qualitative

argument: we prove the
existence of something

without actually
computing it. If you would
like to actually compute a
specific matrix that takes

𝑁 to 𝑝 (whifch is often
useful in real-world

applications of spherical
geometry), you can do so
by starting with any two

vectors 𝑢, 𝑣 where that
{𝑢, 𝑣 , 𝑝} is linearly

independent, and apply the
Gram-Schmidt process.

:::{.proof} We will find an orthogonal matrix 𝐴 so that the isometry 𝜙(𝑥) = 𝐴𝑥 takes
𝑁 to 𝑝. Since 𝑁 = (0, 0, 1), applying a linear map 𝐴 to the vector 𝑁 gives us the third
colum of 𝐴. So, to begin to assemble such a map we will make its third column be 𝑝:

𝐴 = (
∗ ∗ 𝑝1
∗ ∗ 𝑝2
∗ ∗ 𝑝3

)

Now we just need to find values for six missing entires so that the all columns are
orthogonal and unit length. In fact, there are many ways to do this! And we don’t
need any explicit solution we just need to know of their existence. So we will work
column-by-column.

Call the second column of this matrix 𝑢 = (𝑢1, 𝑢2, 𝑢3). We know this must be orthogonal
to 𝑝, so we have an equation this must satisfy:

𝑢 ⋅ 𝑝 = 𝑢1𝑝1 + 𝑢2𝑝2 + 𝑢3𝑝3 = 0
This is a single linear equation in three variables, and so it has many solutions (a two-
dimensional space of solutions, in fact)! Taking any solution, we can rescale it to unit
length, and use that as our second column.

Now for the first column, we have three unkowns (its three entires): but we have two
equations - it must dot product with both the second and third column to zero. This still
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has an infinite number of solutions (in linear-algebra-speak, there’s one ‘free variable’),
and choosing any solution and normalizing it gives a viable first column. :::

Theorem 16.5 (The Sphere is Homogeneous). Given any two points 𝑝 and 𝑞 on the
sphere, there is an isometry taking 𝑝 to 𝑞:

Proof. Let 𝑁 be the north pole of the sphere. Then by Proposition 16.2, we can find an
isometry |𝑝ℎ𝑖 taking 𝑁 to 𝑝, and another isometry 𝜓 taking 𝑁 to 𝑞. We will apply our
by-now-standard trick, and compose one of these with the inverse of the other!

Specifically, the map 𝜙−1 is an isometry which takes 𝑝 to 𝑁 , and 𝜓 takes 𝑁 to 𝑞 so the
composition 𝜓 ∘ 𝜙−1 takes 𝑝 to 𝑞, as desired.

Next, we wish to see the sphere is also isotropic. We will do this in two parts (just like
we did for 𝔼2)! First, we show that you can rotate the sphere about some specific point,
and then we use homogenity to show we can actually do this at any point.

Figure 16.6.: Rotating the sphere about a point.

Proposition 16.3. Let 𝑁 be the north pole, and 𝑣 be any unit vector in 𝑇𝑁 2. Then there
exists an isometry 𝜙 of the sphere which fixes 𝑁 and takes ⟨1, 0, 0⟩ ∈ 𝑇𝑁 2 to 𝑣 .

Proof. First, what sort of a vector is 𝑣? Its a unit vector in 𝑇𝑁 2, but what set of vectors
is this? By Definition 16.3, its the set of vectors orthogonal to 𝑁 = (0, 0, 1). That is, the
vectors ⟨𝑣1, 𝑣2, 0⟩: its a horizontal Euclidean plane! So, ⟨𝑣1, 𝑣2⟩ is a unit vector in this
plane, and we want to rotate ⟨1, 0⟩ to this vector, and we know a matrix in the plane
(from Euclidean geometry!) that does this:
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(𝑣1 −𝑣2
𝑣2 𝑣1 )

How can we write down a transformation of 𝔼3 which does this to the horixontal plane
and fixes the vertical direction (thus fixing 𝑁 )? We can just insert it as the top 2 × 2
block of the matrix:

𝐴 = (
𝑣1 −𝑣2 0
𝑣2 𝑣1 0
0 0 1

)

Its easy to see that this takes ⟨1, 0, 0⟩ to 𝑣 : as 𝑣 is the first column of this matrix! So all
we need to see is that this is actually an isometry: that 𝐴 is an orthogonal matrix.

But this is likewise straightforward: we can take the dot product of any two columns and
see we get zero (try it!) and, each column is unit length (because 𝑣 was by hypothesis,
and (0, 0, 1) is).

Exercise 16.5. Use Proposition 27.3 and Theorem 27.7 to show the sphere is isotropic:
that given any point 𝑝 ∈ 2 and any two unit vectors 𝑣 , 𝑤 ∈ 𝑇𝑝2, there exists an isometry
of 2 fixing 𝑝 and taking 𝑣 to 𝑤 .

(Hint: first show you can do this when 𝑝 is the north pole! Then use homogenity and a
conjugation)

Now we have access to isometries that can move any point to any other point, and
also rotate any vector to any other vector. This prepares us to prove the analog of the
Euclidean theorem Exercise 27.27.

Exercise 16.6. Let 𝑝, 𝑞 be any two points on the sphere, and 𝑣 a unit vector at 𝑝 and 𝑤
a tangent vector at 𝑞. Then there is an isomtery of 2 taking (𝑝, 𝑣) to (𝑞, 𝑤).

These are essentially all the facts that we will need about isometries of the sphere! But
we would be remiss to not mention one very useful dichotomy between isometries of
the sphere: the familiar groups of rotations vs reflections. Like everything else we’ve
studied in this section, this concept is also captured infinitesimally (ie with linear alge-
bra).
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Figure 16.7.: The sphere is homogeneous and isotropic.

Definition 16.10. An isometry of the sphere 𝜙(𝑥) = 𝐴𝑥 is a reflection if the det𝐴 = −1
and is a rotation if det𝐴 = 1.

This lets us see computationally that the matrix in Example 16.1 and ?@exm-
permutation-orthogonal are both reflections, whereas the matrix we created in
?@prp-sphere-homogeneous-step is a rotation.

Exercise 16.7. Prove that you can find a rotation which takes 𝑁 to any point 𝑝 of the
sphere.

(Hint: our earlier construction produces an isometry, but we don’t know if its a rotation
or reflection. If it is a reflection, can youmodify it somehow so that it becomes a rotation,
without changing the fact that it sends 𝑁 to 𝑝?)
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Now that we’ve made it through the fundamentals of spherical geometry, we are ready
to move on from the infinitesimal to the actual, finite geometric properties we are usu-
ally interested in.

In this section, again much of the details will be similar to what we have already seen
in the Euclidean plane, and because of those similarities we will be able to make rather
fast progress. However the actual statements we can prove will start to differ - signaling
something is truly different about this geometry. We will take up the cause of this
difference - curvature - in the following chapter.

17.1. Lines

In Euclidean geometry we considered several distinct definitions of the term line, and
then proved that all three definitions pick out the same class of curves. This allowed us
the freedom to freely switch between the three definitions,

• Length Minimizing
• Straightest
• Lines of Symmetry

when convenient. The same holds for the sphere: when we are seeking the fundamental
curves of this geometry we can either look for length minimizers, or for cuves that do
not turn, or curves that are fixed by an isometry.

Careful readers will notice
that here I am just
claiming that all three
definitions remain the
same on the sphere, we
have not yet proved it. We
will prove it in time, but it
will be best to wait until we
have developed some more
tools, so we can avoid
difficult and
unenlightening integrals.

I will often call a curve satisfying any of these three equivalent properties a line, because
these curves play the same role in the theory of the sphere that our original lines do in
the plane. But theres a more ancient term which originated with the sphere, and is now
commonly used for this generalization of line all across mathematics.

Definition 17.1 (Geodesic). A geodesic on the sphere is a curve satisfying any of the
three equivalent properties which defined lines in the plane.
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The term geodesic is Greek, originally deriving from γεωδαισία, or division of earth,
as a line across the surface of the earth divides it in two. This grew into geodesy or
measurement of the earth in english, and then to geodesic in mathematics.

17.1.1. Curves Fixed by Isometries

Because we just spent all this effort dealing with isometries it will turn out to be easiest
to discover which curves are lines using the lines of symmetry definition. Recall that we
say a point 𝑝 is fixed by an isometry 𝜙 if 𝜙(𝑝) = 𝑝. Analogously, we say that an entire
curve 𝛾 is fixed by 𝜙 if for each value of 𝑡 , the point 𝛾 (𝑡) is fixed by 𝜙 - like the line a
mirror sits on when it reflects the plane. What is the analog on 2?

Example 17.1. The equator (𝑥, 𝑦 , 0) of the sphere is a geodesic.

Proof. Consider the first isometry of the sphere we met, (𝑥, 𝑦 , 𝑧) ↦ (𝑥, 𝑦 , −𝑧). Which
points are fixed by this? Well, if 𝑧 is nonzero the point is not fixed, as its sent to a point
with third coordinate −𝑧. However, whenever 𝑧 = 0 this point is fixed by the isometry!
Thus, the set of points (𝑥, 𝑦 , 0) on 2 is fixed, making it a line of symmetry, and thus a
geodesic.

This is the first major difference between the sphere and the plane: we found a geodesic
on the sphere, but that geodesic closes up, and is finite in length!

Corollary 17.1. Euclid’s Postulate 2 is false for the sphere, as line segments cannot be
extended indefinitely: once you extend a segment of the equator to length 𝜏 = 2𝜋 , it closes
up!

From our perspective as 3-dimensional beings looking at the sphere one easy way
to describe the equator is that its the intersection of a plane through the origin with
the sphere. Such things are called great circles (for a reason we’ll understand better
shortly)

Definition 17.2 (Great Circle). A great circle is a curve on the sphere which is the
intersection of 2 with a plane passing through the origin in 𝔼3.

So far, we know that one great circle is a geodesic. But we also know tons of isometries
of the sphere! And just like we did for Euclidean space (where we started only knowing
the 𝑥-axis was a line) we can use these to find all the other lines:
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Figure 17.1.: A great circle is the intersection of the sphere with a plane through the
origin.

Theorem 17.1 (Great Circles are Geodesics). Let 𝐶 be any great circle on 2. Then 𝐶 is a
geodesic.

Proof. Just like we did for the equator, our goal is to find an isometry of 2 which fixes
the great circle 𝐶 . Our strategy will mirror when we did this in Euclidean space - we’ll
find an isometry that takes 𝐶 to the equator, and then use the fact that we know how to
reflect in the equator to figure out how to reflect in 𝐶 .
But how to do this? Well, the isometries we found for 2 are all orthogonal transforma-
tions, which take pairs of orthogonal vectors to other orthogonal vectors (in fact, they
preserve the entire dot product, and thus the angle between any two vectors of course).
Since the natural language we have available for talking about isometries discusses or-
thogonality, how could we describe the equator using this language?

The equator is all the points which are orthogonal to the north pole 𝑁 = (0, 0, 1)! Simi-
larly, our great circle 𝐶 is the intersection of 2 with some plane 𝑃 - and this plane has a
unit normal vector 𝑣 ∈ 𝔼3, where we can describe 𝐶 as the points of the sphere which
are orthogonal to 𝑣 .
With this simple observation, we are already almost done! We know that we can find
an isometry which takes 𝑁 to 𝑣 (Proposition 16.2), so call such an isometry 𝜙. Because
of how we constructed these isometries, we know 𝜙 is an orthogonal transformation,
and preserves angles. Thus, if 𝑝 is any point of 2 orthogonal to 𝐶 , its sent to a point
which is orthogonal to 𝑁 ! This means the circle 𝐶 is sent to the equator, as required.

Now let 𝑅(𝑥, 𝑦 , 𝑧) = (𝑥, 𝑦 , −𝑧) be the reflection in the equator that we used to prove it
was a geodesic. From 𝑅 and 𝜙 we can build the isometry
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Figure 17.2.: Every great circle is a geodesic, as it can be moved via an isometry to the
equator.

𝜓 = 𝜙 ∘ 𝑅 ∘ 𝜙−1

This takes 𝐶 to the equator, reflects in the equator, and then returns the equator to 𝐶 .
Thus any point on 𝐶 is unchanged by 𝜓 , so 𝐶 is a fixed curve by this isometry - its a
geodesic!

The realization that great circles are geodesics has another nice corollary - it makes it
easy for us to draw a line between any two points of the sphere! This was the content
of Euclids’ axiom I, so we may say that this still holds on 2.In modern mathematics,

the ability to draw a
geodesic between any two
points of a space remains
very important - spaces

where you can do this are
called geodesic metric

spaces.

Proposition 17.1. Given any two points 𝑝 and 𝑞 of 2, its possible to draw a geodesic
segment connecting them.

Proof. If 𝑝, 𝑞 are two points of the sphere, form a plane 𝑃 through the origin containing
both 𝑝 and 𝑞. (When 𝑝 is not exactly opposite 𝑞 on 2 they are linearly independent, so
this plane is just their span. If 𝑝 = −𝑞 then you can take any plane you like containing
the line of multiples of 𝑝). This plane intersects the sphere in a great circle containing
both 𝑝 and 𝑞, so there is a geodesic of 2 that passes through 𝑝 and 𝑞.
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Figure 17.3.: A great circle can be drawn through any two points.

Instead of describing geodesics as connecting two points, we can also describe geodesics
in terms of their starting point and a starting direction. Like we did in Euclidean space,
we can use Exercise 27.51 to see that given any point 𝑝 and any unit tangent vector 𝑣
on the sphere, there is a geodesic passing through 𝑝 in direction 𝑣 (use this exercise
to translate the equator, which passes through (1, 0, 0) with tangent ⟨0, 1, 0⟩ to 𝑝 and 𝑣
respectively).

Figure 17.4.: There is a unique geodesic through each point 𝑝 on the sphere, in each
direction 𝑣 .

17.1.2. Straightness on the Sphere

This section is suggested - but optional - reading, as we have already found all the
geodesics above! But, while the definition of line of symmetry was the easiest to trans-
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late onto the sphere, its worth pausing a bit to talk about how we might define straight-
ness here. In Euclidean space we said a curve was straight if its tangent vector did not
change in time. But this definition will not do for 2! Indeed, any curve whose tangent
vectors do not change in time can be written as an affine equation, and none of these
lie on the sphere!

What does “straight” mean on the sphere? It still means “does not turn”, but we must
be careful since we are working with the sphere inside of ℝ3, and all curves restricted
to the sphere bend with the sphere itself.

Definition 17.3 (Spherical Acceleration). If 𝛾 is a curve on the sphere, its spherical
acceleration at 𝑝 is the projection of 𝛾 ′′ onto the tangent space 𝑇𝑝2.

Figure 17.5.: Spherical acceleration of a curve (short yellow vector) is the projection of
𝛾 ′′ onto the tangent space.

This definition is precise, but not useful - we would like to have a formula which will let
us compute the exact value of the spherical acceleration of any curve. And to get one -
we need to do some Euclidean geometry! The key will be the ability to project a vector
onto a plane.

Theorem 17.2. Let 𝑃 be a plane in 𝔼3 with normal vector 𝑛. Then if 𝑣 ∈ 𝔼3 is a vector (a
point, thought of as a vector from the origin), the projection of 𝑣 onto 𝑃 is given by

proj(𝑣) = 𝑣 − 𝑣 ⋅ 𝑛
𝑛 ⋅ 𝑛 𝑛

Proof. Let 𝑣 be any vector, and 𝑃 a plane with normal vector 𝑛.
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Figure 17.6.: The projection of a vector 𝑣 onto a plane 𝑃

Our goal is to figure out how much of the vector 𝑣 lies in the plane 𝑃 , and our approach
will be kind of backwards. We will figure out how much of 𝑣 is not in the plane, and the
subtract this!

To figure out how much of 𝑣 is not parallel to the plane 𝑃 , we need to figure out how
much is in the direction of the normal vector 𝑛. That is, we wish to comptue the projec-
tion of 𝑣 onto the line spanned by 𝑛:

Figure 17.7.: The projection of a vector 𝑣 onto the normal vector 𝑛 to a plane.

This is actually a problem of Euclidean plane geometry, which we can solve using angles
and the dot product! Let’s look just in the Euclidean plane containing 𝑣 and 𝑛, where
the projection of 𝑣 onto 𝑛 forms a right triangle with hypotenuse 𝑣 . From here, we can
see the quantity we want is ‖𝑣‖ cos 𝜃 , where 𝜃 is the angle between 𝑣 and 𝑛.

But, we also know that cos 𝜃 is defined in terms of the dot product!
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Figure 17.8.: Calculating the projection of 𝑣 onto the line spanned by 𝑛.

cos 𝜃 = 𝑣 ⋅ 𝑛
‖𝑣‖‖𝑛‖

Thus, the projection onto 𝑛 is

‖𝑣‖ cos 𝜃 = ‖𝑣‖ 𝑣 ⋅ 𝑛‖𝑣‖‖𝑛‖ =
𝑣 ⋅ 𝑛
‖𝑛‖

This is the length of the projection of 𝑣 onto 𝑛: what we need now is a vector in the
direction of 𝑛, which has this length. The solution? Just multiply by the unit vector in
direction 𝑛!

𝑣 ⋅ 𝑛
‖𝑛‖

𝑛
‖𝑛‖

This can be simplified algebraically, since we have two copies of ‖𝑛‖ in the denominator
now:

𝑣 ⋅ 𝑛
𝑛 ⋅ 𝑛 𝑛

Phew! But - this is the amount of the vector not in the plane. It’s exactly the part of 𝑣
that we don’t care about! To get what we want, we need to subtract this from 𝑣 :

proj = 𝑣 − 𝑣 ⋅ 𝑛
𝑛 ⋅ 𝑛 𝑛
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It’ll be useful to note that this formula simplifies a bit if ‖𝑛‖ = 1, to become just

proj(𝑣) = 𝑣 − (𝑣 ⋅ 𝑛) 𝑛

. This allows us to project onto any plane we wish in 𝔼3, so long as we know its normal
vector. But our goal is to project onto the tangent plane to 2, so we can do even better,
since we know exactly what the tangent spaces are (CITE). Indeed, if 𝑣 is a vector in 𝔼3
based at a point 𝑝 on the sphere, we can write down a projection map directly to the
sphere:

Definition 17.4 (Projecting onto 𝑇𝑝2.). If 𝑣 is a vector in 𝔼3 based at 𝑝, then its projec-
tion onto 𝑇𝑝2 is

proj2(𝑣) = 𝑣 − (𝑣 ⋅ 𝑝)𝑝

Indeed, at the point 𝑝 ∈ 2, the tangent space is the set of all vectors orthogonal to 𝑝 - so
the normal vector to 𝑇𝑝2 is just 𝑝 itself! This

Corollary 17.2 (Spherical Acceleration). Given a curve 𝛾 (𝑡) on 2, its spherical accelera-
tion is

acc𝛾 (𝑡) = proj2(𝛾 ′′(𝑡))
= 𝛾 ′′(𝑡) − (𝛾 ′′(𝑡) ⋅ 𝛾 (𝑡)) 𝛾 (𝑡)

Now we can formally define what it means for a curve on the sphere to be straight.
Because this process produces an equation that 𝛾 has to satisfy to be a geodesic, it is
called the geodesic equation and versions of it are fundamental to modern geometry -
from the sphere to hyperbolic space to black holes and beyond.

Definition 17.5 (The Geodesic Equation for 2). A curve on the sphere is a geodesic if
its spherical acceleration is zero. That is, 𝛾 is a geodesic if acc𝛾 (𝑡) = 0, or

𝛾 ′′(𝑡) − (𝛾 ′′(𝑡) ⋅ 𝛾 (𝑡)) 𝛾 (𝑡) = 0
This looks pretty daunting -
at least in comparison to
what we had to do in
Euclidean space! There, our
equation for straightness
was just 𝛾 ′′ = 0, which we
could solve by hand using
Calculus I. This equation
howver is much more
complicated! If we write
out 𝛾 in terms of
components
𝛾 (𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) we
can expand this equation
all the way out into a
system of three equations,
for 𝑥, 𝑦 , 𝑧:

𝛾 ′′ = (𝛾 ′′ ⋅ 𝛾 )𝛾
Writing
𝛾 (𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) we
can fully write this out as a
vector equation

(
𝑥 ′′
𝑦 ′′
𝑧′′

) = ((
𝑥 ′′
𝑦 ′′
𝑧′′

) ⋅ (
𝑥
𝑦
𝑧
))(

𝑥
𝑦
𝑧
)

And, this vector equation is
really just a system of three
equations, which I’ll write
out below (expanding the
dot product, which is the
common factor multiplied
to all of them):

{
𝑥 ′′ = (𝑥 ′′𝑥 + 𝑦 ′′𝑦 + 𝑧′′𝑧) 𝑥
𝑦 ′′ = (𝑥 ′′𝑥 + 𝑦 ′′𝑦 + 𝑧′′𝑧) 𝑦
𝑧′′ = (𝑥 ′′𝑥 + 𝑦 ′′𝑦 + 𝑧′′𝑧) 𝑧

}

In less symmetrical
geometries, the only way
forward from here is to
actually solve this system
of coupled differential
equations! However,
luckily for the sphere
there’s plenty of symmetry,
and we can avoid this mess.

Now its our goal to show that the collection of curves which are straight on the sphere is
the same as the collection which are fixed by some symmetry: that just like in Euclidean
space, these two notions of geodesic coincide!

Theorem 17.3 (Straight Curves on the Sphere). All great circles are straight - they have
zero spherical acceleration.
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Proof. First, we start with the equator 𝑒(𝑡) = (cos 𝑡 , sin 𝑡 , 0). We need to show that
acc𝑒(𝑡) = 0, by computing

acc𝑒 = 𝑒′′ − (𝑒′′ ⋅ 𝑒)𝑒

Computing we see 𝑒′′ = −𝑒 since its components are sinusoids, and so 𝑒′′ ⋅ 𝑒 = (−𝑒) ⋅
𝑒 = −(𝑒 ⋅ 𝑒) = −1 because 𝑒 lies on the unit sphere. Plugging this in, we see that
acc𝑒 = 𝑒′′ − (−1)𝑒 = 𝑒′′ + 𝑒 But now we can use once more that 𝑒′′ = −𝑒! Thus

acc𝑒 = 𝑒′′ + 𝑒 = −𝑒 + 𝑒 = 0

So, the equator experiences no spherical acceleration, and thus is straight as claimed.

Next, we need to show this for an arbitrary great circle 𝑐(𝑡). Let 𝑃 be the plane containing
this great cirlce, and 𝑝 be its normal vector. Then since we know there is an isometry
of 2 taking 𝑁 to 𝑝 (CITE), we have an isometry taking 𝑐(𝑡) to the equator 𝑒(𝑡), and
thus its inverse is an isometry taking 𝑒(𝑡) to 𝑐(𝑡): because this isometry is an orthgonal
transformation I will represent it by its matrix 𝐴, so we can write

𝑐(𝑡) = 𝐴𝑒(𝑡)

Where the juxtaposition 𝐴𝑒 is matrix multiplication. Now we wish to use the fact that
we know 𝑒 is straight, to show that 𝑐 is too. Our overall goal is to compute acc𝑐(𝑡), so
let’s write this out:

acc𝑐 = 𝑐′′ − (𝑐′′ ⋅ 𝑐)𝑐
= (𝐴𝑒)′′ − ((𝐴𝑒)′′ ⋅ (𝐴𝑒))(𝐴𝑒)

To simplify, we need to compute the second derivative of the composition 𝐴𝑒(𝑡). Let’s
just take one derivative at a time: by the chain rule

(𝐴𝑒(𝑡))′ = 𝐷𝐴𝑒(𝑡)𝑒′(𝑡)

and, since 𝐴 is a linear map it is its own derivative: 𝐷𝐴𝑒(𝑡) = 𝐴! Thus this simplifies to
the satement “you can pull 𝐴 out of the derivative”, and similarly upon differentiating
once more:

(𝐴𝑒(𝑡))′ = 𝐴𝑒′(𝑡) ⟹ (𝐴𝑒(𝑡))′′ = 𝐴𝑒′′(𝑡)
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Plugging this into our spherical acceleration formula, we find

acc𝑐 = 𝐴𝑒′′ − ((𝐴𝑒)′′ ⋅ (𝐴𝑒))𝐴𝑒

There’s still plenty of simplification to be done! The first order of business is to deal
with the dot product here. Since 𝐴 is an isometry it preserves the dot product by
definition:(𝐴𝑣) ⋅ (𝐴𝑤) = 𝑣 ⋅ 𝑤 . Applying this in our case we can remove the 𝐴s above,
resulting in

𝐴𝑒′′ − (𝑒′′ ⋅ 𝑒)𝐴𝑒

Now, whatever 𝑒′′ ⋅ 𝑒 is, its just a number for each value of 𝑡 . Sine 𝐴 is a linear map, we
can pull it inside the map, and then use linearity to combine everything together:

𝐴𝑒′′ − (𝑒′′ ⋅ 𝑒)𝐴𝑒 = 𝐴𝑒′′ − 𝐴((𝑒′′ ⋅ 𝑒)𝑒)
= 𝐴(𝑒′′ − (𝑒′′ ⋅ 𝑒)𝑒)

But now we are done! Look at what we are applying the linear map 𝐴 to here: its
nothing other than the spherical acceleration of the equator 𝑒! And we already know
that 𝑒 is straight, so this is zero. Finally, since 𝐴 is a linear map it sends zero to zero,
and so

acc𝑐 = 𝐴(acc𝑒) = 𝐴(0) = 0

Thus 𝑐 is also straight!

This argument was pretty long and algebraic, moreso than many of the more geometric
arguments we’ve given throughout the course. I wanted to present it this way to show
the power of all the tools we built: we managed to prove something about the curve 𝑐
using nothing but poperties of isometries and calculus: this is how many arguments in
modern geometry proceed.
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17.1.3. Distance on the Sphere

Now that we know the geodesics of the sphere, we can really get geometry moving by
deriving the distance function.
But there is one subtelty we have to confront first. In Euclidean space, we proved that
given any two points there was a unique line segment connecting them. And then we
took the length of this line segment as the distance between them. But this seemingly
simple fact is false on the sphere! Here geodesics are circles, and given two generic
points there are actually two ways to connect them with segments of a great circle -
going around the circle one way, or the other!

Figure 17.9.: There are at least two geodesics between any two points of the sphere!
Generically, one is shorter than the other.

Exercise 17.1. True or false, between any two points on the sphere there are exactly
two geodesic segments connecting them. (Can there ever be more? If so, when and how
many?)

Of course, in general one of these is shorter than the other, and this does not pose any big
theoretical problem. We just have to ammend our terminology a bit, as in the plane we
found the distance between two points was the lenght of the line segment connecting
them.

Definition 17.6. The distance between two points 𝑝,𝑞 on the sphere is the length of
the shortest curve connecting them. This is the length of the shorter of the geodesic
segments defined by the great circle passing through 𝑝 and 𝑞.

Belive it or not, we’ve already done all the rest of the hard work, and the distance for-
mula is sitting here waiting for us to realize it! First, let’s consider two points on the
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equator. Since the equator is just the unit circle in the Euclidean plane (𝑥, 𝑦 , 0), these
two points determine two vectors on the unit circle, and what we want to know is the
length of arc between them.

Figure 17.10.: Distance on the sphere is an arclength of a great circle. Thus, distance is
an angle!

But this is the definition of angle! So, in spherical geometry, we have an beautiful rela-
tionship between distance and angle:

The distance between 𝑝 and 𝑞 on 2 is the same as the angle between them as
vectors in 𝔼3.

Even better, we spent plenty of time working out exaclty how to measure angles quan-
titatively, in the end discovering a nice relationship between the angle 𝜃 and the dot
product. Furthermore, while we developed all of this material just in the plane, isome-
tries do not change lengths (and thus do not change angles), so we can take this result
from the Equator and apply it to any great circle on 2 via an isometry:

Theorem 17.4. let 𝑝, 𝑞 be two points on 2. Then the distance between them is equal to

dist(𝑝, 𝑞) = arccos(𝑝 ⋅ 𝑞)

Just like the distance formula in𝔼2 was the key to unlocking the rest of geometry (circles,
trigonometry, and 𝜋 ), so is this distance formula, to unlocking the rest of the geometry
of the sphere.

17.2. Circles

A circle is defined to be the set of points which are the same distance (the radius) from a
fixed point (the center). We wish to study these curves in spherical geometry, now that
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we have the distance function available to us.

Like many things, its easiest to start working about a familiar point (the origin in 𝔼2,
the north pole in 2) and generalize beyond that using isometries.

Proposition 17.2 (Circles about the North Pole). The circle of radius 𝑟 about𝑁 = (0, 0, 1)
in 2 is given by the points

𝐶𝑁 ,𝑟 = {(𝑥, 𝑦 , cos(𝑟)) ∈ 2}

Figure 17.11.: A circle about the north pole 𝑁 of radius 𝑟 , and a “cross section view”
showing why all 𝑧 coordinates are cos 𝑟 .

Proof. We just need to see these are the points which lie at distance 𝑟 from 𝑁 along 2.
The crucial point is that we are measuring distances along the sphere, not in 𝔼3, so

𝑑((𝑥, 𝑦 , 𝑧), 𝑁 ) = arccos((𝑥, 𝑦 , 𝑧) ⋅ 𝑁 )
= arccos((𝑥, 𝑦 , 𝑧) ⋅ (0, 0, 1))
= arccos(𝑧)

Thus, for (𝑥, 𝑦 , 𝑧) to lie on the circle it must (1) be a point on the sphere and (2) have
arccos(𝑧) equal to the radius - equivalently 𝑧 = cos(𝑟).

Corollary 17.3 (Circles on the Sphere). Circes are intersections of planes which do not
pass through the origin with the sphere.

260



17.2. Circles

We see this is true in the case centered on 𝑁 , as the circle consists of all points with a
fixed constant 𝑧 coordinate: this is just a horizontal plane intersecting the sphere! To
argue the general case, we use isometries: we know that any great circle can be taken
to any other by an orthogonal transformation of 𝔼3 - and these are linear maps so they
take planes to planes.

Thus, starting from a circle around the north pole cut out by a horizontal plane, moving
this plane by an orthogonal transformation takes this plane to another plane, and its
intersection to another circle!

Figure 17.12.: Every circle on 2 is the intersection with some plane not through the ori-
gin.

We have come across two distinct curves on the sphere which can be described as the
intersecdtions of the sphere with planes. First, we had the great circles, correspnding
to planes through the origin, which are the spherical analog of straight lines. These
second ones are planes not through the origin, which correspond to geometric circles.
What is going on here - how can these two different classes of curves seem so similar?
After all, just shifting a plane slightly downwards can turn it from something curved (a
circle) to something straight (a geodesic).

In fact, this is not as strange as it seems at first, and there’s a sort of analog happen-
ing already in the Euclidean plane. Here, as a circle’s radius grows larger and larger,
the circle itself appears ‘straighter’ nearby. The difference is that this only becomes
exact in the limit where the circle’s radius goes to infinity, whereas on the sphere, this
straightening of circles happens at a finite radius: 𝑟 = 𝜏/4.
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Figure 17.13.: On 2 both circles and geodesics can be found as intersections of planes
with the sphere.

17.2.1. Area and Circumference

Now that we know what the circles on 2 are, its time to get quantitative and study their
radii and circumference. In Euclidean space, we used isometries to show that any two
circles of the same radius could be brought to one another. This same argument goes
through without change on the sphere:

Exercise 17.2. There is an isomery taking any circle of radius 𝑟 to any other.

This was our first step to understanding the length constant 𝜏 : because isometries do
not change lengths, this told us that every circle of radius 𝑟 has the same circumference.
And now, we know the same thing for the sphere! But the key step to understanding 𝜋
and 𝜏 was figuring out how circles of different radii were related.

Theorem 17.5. The only similarities of the sphere are isometries: there are no maps which
nontrivially uniformly stretch infinitesimal distances.

Proof. Let 𝜎 be such a similarity, which scales all infinitesimal lengths by 𝑘. Then 𝜎
preserves the dot product, and sends infinitesimal squares to other squares, expanding
their area by 𝑘2 (CITE). This doesn’t sound like a problem, until you remember that the
entire spherical universe has a finite area!

The area of the unit sphere 2 is 4𝜋 , and if 𝜎 ∶ 2 → 2 is the supposed similarity above, it
would take this area to an area 4𝜋𝑘2. But - this map is supposed to take the sphere to
the sphere (it can’t take it to a larger sphere in 𝔼3: that’s a different space)!

Thus, since the image is the same sphere we know that its area is still 4𝜋 , so 4𝜋𝑘2 = 4𝜋 ,
or 𝑘2 = 1. Thus, the only possibility is 𝑘 = 1 (as 𝑘 is the scaling factor, a positive
number), which corresponds to isometries.
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This simple fact - that 2 does not have any similarities - has profound consequences
for its geometry. First off, it assures there’s no hope of generalizing our proof that
circumference/radius is a constant. Of course, this does not guarantee that its not a
constant (perhaps we just need a different style of argument). To see what’s really
going on, we need to do some computations!

Before diving into the general case, its helpful to look at a couple of special cases: we
will consider circles of very small radius, great circles, and circles of very large radius.

Figure 17.14.: A small circle has circumference-to-radius close to 2𝜋 ≈ 6.28

If the radius 𝑟 is very small, then the circle itself fits within a very small region of 2,
and small regions of space are well-approximated by their tangent plane. Thus, we
expect that small circles are very close to being Euclidean circles (think about drawing
a circle on the sidewalk, which is a small portion of the spherical earth). Being nearly
Euclidean, we expect their ratios of circumference to diameter to be very close to the
Euclidean value of 𝜏 , or 2𝜋 ≈ 6.28.
Now, what about a great circle? For specificity, let’s consider the equator as a circle
about the north pole. The radius is a quarter of a way around the sphere (half way
would be from the north pole to the south pole, and the north pole to the equator is half
of that). But the circumference is one full revolution around the sphere: so this means
that circumference over radius is 𝜏

𝜏/4 = 4! This shows us a very important fact - the
sphere’s analog of 𝜏 (the ratio of circumference to radius) cannot be a constant! It takes
on values slightly larger than 6 for small circles, but takes on the exact value of 4 for a
great circle.

How small can this ratio get? Consider a circle of a very large radius: close to 𝜋 - so the
radius runs from the north pole all the way down to something close to the south pole.
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Figure 17.15.: A great circle has circumference-to-radius equal to 4.

Figure 17.16.: Large radii circles have circumference-to-radius as small as you like.
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The set of all points which lie at this distance from 𝑁 is short curve near the south pole.
So here the ratio of circumference to radius is a small circumference to a big radius - its
a very small number!

These qualitative considerations not only show us that the spherical analog of 𝜏 is not
a constant, but also that we expect it to be able to take on any values between 0 and
6.28. But to get more precise than this we actually need to sit down and do some calcu-
lations…

Proposition 17.3. Show the circumference of the circle of radius 𝑟 is

2𝜋 sin(𝑟)

Proof. We know already that the circle of radius 𝑟 about the north pole 𝑁 is contained
in the plane 𝑧 = cos(𝑟). But this is a Euclidean plane! So, we can measure this circles
circumference using Euclidean geometry.

Figure 17.17.: Because circles on 2 lie on Euclidean planes, we can use Euclidean geome-
try to calculate their circumference.

Say its radius in the plane is 𝑑 (note its radius on 2 is 𝑟 , but this lies on the sphere, not
on the plane). Then we can use our understanding of Euclidean circles to see 𝐶 = 2𝜋𝑑 .
But what is 𝑑? Looking at a side view of our configuration, 𝑑 is the opposite side of a
right triangle with angle 𝑟 inside a unit circle:

Thus, 𝑑 = sin(𝑟) and so 𝐶 = 2𝜋 sin(𝑟) as claimed.

Corollary 17.4 (There is no length constant.). There is no single number like 𝜏 which is
a universal constant for all circles on the sphere, like there was for circles on the plane.
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Figure 17.18.: The Euclidean radius is the sine of the spherical radius, since the spherical
radius is an angle (distance equals angle on 2)

Proof. Recall we defined the function 𝜏 (𝑟) to be the circumference of a circle of radius
𝑟 , divided by its radius. In Euclidean space we found this was a constant, independent
of circle. But on the sphere, we see

𝜏 (𝑟) = 2𝜋 sin(𝑟)
𝑟

which is not constant!

This pattern continues for area, where we show there is also no analog of 𝜋 by seeing
that areas of circles do not grow quadratically with radius. But first - how do we find
the area of a circle on the sphere? We need to to use integration, to add up all the small
infinitesimal area elements! Here the easiest way to do this is to invert our relationship
between area and circumference discoved in Theorem 15.4. This same logic applies on
the sphere, showing circumference to be the derivative of area.

𝑑
𝑑𝑟 area(𝑟) = lim

ℎ→0+
area(𝑟 + ℎ) − area(𝑟)

ℎ ≈ circ(𝑟) ⋅ ℎ
ℎ = circ(𝑟)

Thus, if 𝐴′(𝑟) = 𝐶(𝑟), we can recover the formula for area via integration:

𝐴(𝑟) = ∫
𝑟

0
𝐶(𝑟)𝑑𝑟
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Figure 17.19.: The numerator of the derivative of area describes a thin ring, whose area
is approximately the circumference of the circle times the difference in
radii.

Proposition 17.4 (Area of a Circle). The area of a circle of radius 𝑟 on 2 is

𝐴(𝑟) = 4𝜋 sin2(𝑟/2)

Figure 17.20.: When measuring the area inside a circle on 2, we mean the area of the
spherical cap whose boundary is the circle, and which contains the circles
center.

Proof. This is just an explicit computation, using the result of ?@exr-sphere-circle-
circumference.

𝐴(𝑟) = ∫
𝑟

0
2𝜋 sin(𝑟)𝑑𝑟
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= −2𝜋 cos(𝑟)|
𝑟

0
= 2𝜋(1 − cos(𝑟))

= 4𝜋 1 − cos 𝑟
2 = 4𝜋 (√

1 − cos 𝑟
2 )

2

= 4𝜋 sin2 ( 𝑟2)
Where, in the last two lines, we have used the half-angle formula to simplify our original
answer, into a form that looks more similar to what we are used to in the Euclidean case.

Exercise 17.3. Use the series expansion of sin 𝑥 to give the first few terms of a series
expansion of 𝐴(𝑟). Show that the first nonzero term is 𝜋𝑟2: this means when 𝑟 is small,
𝐴(𝑟) is approximately 𝜋𝑟2. What does this mean geometrically?

17.3. Three Dimensions

The three dimensional version of spherical geometry is given by the surface of the four
dimensional ball, just as the two dimensional sphere is the surface of the ball in three
dimensions.

While it is hard to directly picture this space in four dimensions, its possible to compute
things directly analgously to what we did above.

Definition 17.7 (Points and Tangent Spaces). The points of 3 are the four tuples of
length 1 in 𝔼4:

3 = {(𝑥, 𝑦 , 𝑧, 𝑤) ∣ 𝑥2 + 𝑦2 + 𝑧2 + 𝑤2 = 1}
A vector 𝑣 = ⟨𝑣1, 𝑣2, 𝑣3, 𝑣4⟩ is tangent to 3 at 𝑝 = (𝑥, 𝑦 , 𝑧, 𝑤) if it is orthogonal to 𝑝:

𝑇𝑝3 = {𝑣 ∣ 𝑣 ⋅ 𝑝 = 0}

Much of the mathematics of 2 carries over to 3 with little change. In particular - we can
find the geodesics by finding the straight curves, and see that they are again just great
circles.

Theorem 17.6 (Geodesics). Geodesics on 3 are great circles: they are intersections of 3-
dimensional hyperplanes in ℝ4 with the unit sphere. For example 𝑒(𝑡) = (cos 𝑡 , sin 𝑡 , 0, 0)
is a geodesic.
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Exercise 17.4. Prove this: write out what it means to have zero tangential acceleration,
and prove that 𝑒(𝑡) = (cos 𝑡 , sin 𝑡 , 0, 0) is such a curve.

Because the geodesics are the same class of curves, we can measure distance in the same
way - its an arc length of a circle, so distance equals angle!

Theorem 17.7. If 𝑝, 𝑞 ∈ 3 then the distance between 𝑝 and 𝑞 is given by

dist(𝑝, 𝑞) = arccos(𝑝 ⋅ 𝑞)

Exercise 17.5. Let 𝑁 = (0, 0, 0, 1) be the north pole of 3. What are teh points of the
sphere of radius 𝑟 about 𝑁 ?

Exercise 17.6. What is the surface area of a sphere of radius 𝑟? What is its volume?
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18. Curvature

We’ve seen that in some ways the sphere behaves similarly to the plane, and in other
ways its quite different. Qualitatively, the big difference stems from the lack of any
similarities other than isometries: this makes there be no unviersal constant like 𝜋 or 𝜏 ,
for one. Our goal in this chapter is to quantify that difference.

In doing so, we will uncover the precise quantity of curvature: which measures how
much geometry differs from that of the flat plane. This chapter will be short, but is
discovery crucially important to all geometry beyond that of Euclidean space!

18.1. Circumference of Circles

Our first real quantitative difference between the sphere and the plane had to dowith the
the size of circles, so this is where we begin. We know (Definition 15.1) that for circles
in Euclidean space 𝐶 = 2𝜋𝑟 , and by (?@exr-sphere-circle-circumference) that the
analog in the sphere is 𝐶 = 2𝜋 sin(𝑟). Circles on the sphere grow slower than circles in
the plane, as we can see by graphing these two functions.

Figure 18.1.: A graph of the circumference of circles as a function of their radius, in
Euclidean (red) and Spherical (yellow) geometry.
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18.1.1. Limits

But how can we turn this slower insight into something quantitative, and infinitesimal?
We want to be able to measure the curvature of the sphere at a point 𝑝, so we should
naturally be looking not at circles of some fixed finite radius, but rather families of circles
that are shrinking down centered at the point 𝑝. How do these behave? Zooming in on
the graph above we reach a first dissapointment: it’s hard to tell their behavior apart
from Euclidean circles!

Figure 18.2.: Zooming in on small values of 𝑟 , spherical geometry looks very much like
plane geometry, which is reflected in the fact that it is difficult to tell their
circumference functions apart.

This is because the series expansion of sin(𝑟) starts out with 𝑟 − 1
3! 𝑟3+⋯ and so 2𝜋 sin(𝑟)

starts out with 2𝜋𝑟 − ⋯ - the same as in the Euclidean case! We already knew this -
that at small scales the geometry of the sphere looks Euclidean, so what we are more
interested in is the difference between the two geometries: that is, we care about

lim𝑟→0 𝐶𝔼2(𝑟) − 𝐶2(𝑟)

Or, at least - something like this! This can’t be the right quantity all alone as when 𝑟
shrinks, both of these go to zero, and so the limit just gives zero! This problem is remi-
niscent of when we define the derivative in Calculus I: if we just look at the difference
in 𝑦 values

limℎ→0(𝑓 (𝑥 + ℎ) − 𝑓 (𝑥))
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18.1. Circumference of Circles

the result goes to zero - which is not helpful! This is because we really need to be
measuring a ratio - how much is this difference changing as 𝑥 changes (or, in our case,
as 𝑟 changes).
This might suggest we take a look at the quantity

𝐶𝔼2(𝑟) − 𝐶2(𝑟)
𝑟

But if we graph this quantity as 𝑟 → 0we see this still goes to zero! In fact, the same hap-
pens if we normalize by a denominator of 𝑟2: neither of these lets us see the difference
between the sphere and the plane show up in the limit yet.

However, when we normalize by 𝑟3, we actually get something that converges to a finite
nonzero number!

Exercise 18.1. Check this, that as 𝑟 → 0+ the following limits both exist, and are both
equal to zero:

lim𝑟→0
𝐶𝔼2(𝑟) − 𝐶2(𝑟)

𝑟 = 0

lim𝑟→0
𝐶𝔼2(𝑟) − 𝐶2(𝑟)

𝑟2 = 0

But

lim𝑟→0
𝐶𝔼2(𝑟) − 𝐶2(𝑟)

𝑟3 ≠ 0

what is its value?

Hint: recall that 𝐶𝔼2(𝑟) = 2𝜋𝑟 and 𝐶2(𝑟) = 2𝜋 sin(𝑟), and L’Hospital’s rule.

This is a number that an inhabitant of the sphere could calculate for themselves: for
smaller and smaller values of 𝑟 they could compute this ratio by measuring things on
the sphere, and look at what value the limit is approaching. And, the fact that they
do not get zero would tell them definitively that they live somewhere other than the
plane!

At this point, we could just define this ratio to be the curvature, but its convenient
instead to normalize it: we multiply by a normalizing constant so that the curvature of
the unit sphere is equal to +1:
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Definition 18.1 (Curvature). If 𝑋 is any surface and 𝐶𝑋 (𝑟) is the function which gives
the circumference of the circle of radius 𝑟 centered at 𝑝, then the curvature at 𝑝 is defined
by the limit

𝜅(𝑝) = ( 3𝜋 ) lim𝑟→0
𝐶𝔼2(𝑟) − 𝐶𝑋 (𝑟)

𝑟3

A nice feature of this definition is that, being based totally off of lengths, its easy to
check that curvature is not changed by isometries.

Figure 18.3.: Curvature is an isometry invariant.

Theorem 18.1. If 𝜙 is an isometry that takes 𝑝 to 𝑞, then 𝜅(𝑝) = 𝜅(𝑞).

Proof. Let 𝜙 be an isometry taking 𝑝 to 𝑞. Then as 𝜙 does not change distances, it takes
circles of radius 𝑟 (a distance) based at 𝑝 to circles of radius 𝑟 based at 𝑞. And, as 𝜙 doesn’t
change the length of curves, it does not change the circumference of these circles.

Since the numerator and denominator of the limit expression are built purely using the
distance 𝑟 and circumference (and the Euclidean circumference, which is just 2𝜋𝑟 - a
multiple of 𝑟 .) none of these quantities are changed by isometries, so the limit that we
need to evaluate at 𝑝 is the exact same limit as the one we need to evaluate at 𝑞: thus
we get the same number both times.

PICTURE

This has a nice corrolary for homogeneous spaces: if there’s an isomery that takes any
point to any other, then the curvature at every point must be the same!
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18.1. Circumference of Circles

Corollary 18.1. The unit sphere has constant curvature +1, and the Euclidean plane has
curvature 0.

18.1.2. Series & Derivatives

We can also approach this more algebriacally than geometrically, after realizing that the
correct geometric notion (a normalized difference) looks somewhat like a derivative. In
particular, the series expansion of sin(𝑟) is

sin(𝑟) = 𝑟 − 1
3! 𝑟

3 + 1
5! 𝑟

5 − ⋯

so the series expansion of the circumference of a circle on 2 is

𝐶2(𝑟) = 2𝜋𝑟 − 𝜋
3 𝑟

3 + 𝜋
60𝑟

5 − ⋯

And so, we can see that the third series coefficient is exactly what our limit was com-
puting! But what is the third coefficient is a series expansion? Remember Taylor’s
formula:

𝑓 (𝑥) = 𝑓 (0) + 𝑓 ′(0)𝑥 + 𝑓 ′′(0)
2! 𝑥2 + 𝑓 ′′′(0)

3! 𝑥3 + ⋯

The third coefficient is just the third derivative divided by 3!. So, this means we can re-
place our limiting expression with 𝐶′′′(0)/3!, and get a new expression for curvature:

Definition 18.2. Let 𝐶(𝑟) be the circumference function for circles of radius 𝑟 centered
at a point 𝑝, on some surface. Then the curvature at 𝑝 is given by

𝜅(𝑝) = −𝐶′′′(0)
2𝜋

Proof. This is just a computation, plugging in our new term in place of the limit:
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𝜅(𝑝) = (−3𝜋 ) lim𝑟→0
𝐶𝑋 (𝑟) − 𝐶𝔼2(𝑟)

𝑟3
= (−3𝜋 ) 𝐶′′′(0)

3!
= −1

𝜋
𝐶′′′(0)

2
= −𝐶′′′(0)

2𝜋

18.2. Area of Circles

We could also choose quantify the curvature of a space by comparing the area of circles
to their Euclidean counterparts. Just like above, we could imagine two separate ways
of extracting a quantitative number:

• A normalized limit of the difference between Spherical and Euclidean areas
• A normalized derivative of the Area Function

In both cases, we want to fix the normalizing factors so that the limit exists and the
curvature comes out to be +1.

Exercise 18.2 (Curvature and Area: I). Give a limit definition of the form

𝜅 = lim𝑟→0
area2(𝑟) − area𝔼2(𝑟)
normalizing factor

which computes the curvature of the sphere. What’s the normalizing factor?

Exercise 18.3 (Curvature and Area: II). Give a limit definition of the form

𝜅 = 𝐶 ⋅ 𝑑
𝑛

𝑑𝑟𝑛 area2(𝑟)|𝑟=0
which computes the curvature of the unit sphere. What is 𝑛, what is 𝐶?
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18.3. Distance Between Geodesics

18.3. Distance Between Geodesics

Besides circles, there’s another interesting difference between the sphere and the plane
we could try to quantify to measure curvature: how quickly geodesics spread out.

You are not responsible for this material now, but we will come back to it as
an example when discussing the differences between spherical and hyperbolic
space

Figure 18.4.: Starting off at the same point and walking away from each other at angle
𝜃 , how far away are two travelrs after going distance 𝑑?

To be precise, saywe have two geodesics passing through a point 𝑝, which initiallymake
an angle of 𝜃 with respect to one another at the point of intersection. After traveling
for distance 𝑑 along each geodesic, how far apart are the resulting points?

The question that tursn out to be most interesting mathematically isn’t the actual dis-
tance for some finite value of 𝜃 (as the formulas can get quite messy), but rather a more
infinitesimal notion, looking only at geodesics right next to our original one. Thus we
want to zoom in on 𝜃 near zero, which means we want to differentiate!

To make this precise, need a definition

Definition 18.3. Given a geodesic 𝛾 through some point 𝑝 at 𝑡 = 0, let 𝛾𝜃 be the geodesic
which makes angle 𝜃 with 𝛾 at 𝑝.

The collection of all geodesics for 𝜃 varying within some small interval about 0 is called
a geodesic variation about 𝛾 .
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18. Curvature

Figure 18.5.: A geodesic variation through 𝑝.

Definition 18.4. Given a geodesic 𝛾 , we can measure the infinitesimal spread of nearby
geodesics by taking a geodesic variation 𝛾𝜃 (𝑡) and differentiating with respect to 𝜃 at 0:

𝐽 (𝑡) = 𝑑
𝑑𝜃 |𝜃=0

𝛾𝜃 (𝑡)

We can work this out in Euclidean space using the distance formula: if the point is 𝑂
and we set one geodesic 𝛾 off in direction ⟨1, 0⟩, the geodesic at angle 𝜃 starts with initial
direction ⟨cos 𝜃, sin 𝜃⟩ by definition. Since geodesics are affine functions 𝑝 + 𝑡𝑣 we can
write down their equations directly from this:

𝛾 (𝑡) = (𝑡, 0) 𝛾𝜃 (𝑡) = (𝑡 cos 𝜃, 𝑡 sin 𝜃)

We see that these are spreading out linearly from one another with time, but how do
we quantify this mathematically? By the infinitesimal variation!

𝐽 (𝑡) = 𝑑
𝑑𝜃 |𝜃=0

𝛾𝜃 (𝑡)

= 𝑑
𝑑𝜃 |𝜃=0

(𝑡 cos 𝜃, 𝑡 sin 𝜃)

= (−𝑡 sin 𝜃, 𝑡 cos 𝜃)|
𝜃=0

= (0, 𝑡)

Themagnitude of the geodsic variation tells us how quickly nearby geodesics are spread-
ing out away from 𝛾 . Here, in flat space we see
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18.3. Distance Between Geodesics

‖𝐽 (𝑡)‖ = ‖(0, 𝑡)| = 𝑡

Figure 18.6.: A geodesic variation and its Jacobi field in Euclidean space. |𝐽 (𝑡)| = 𝑡 means
that nearby geodesics spread out linearly over time.

But what about on the sphere? Here, we may take our geodesic to be a line of longitude,
say

𝛾 (𝑡) = (sin 𝑡 , 0, cos 𝑡)

which passes through the north pole 𝑁 = (0, 0, 1) at time zero, with initial direction

𝛾 ′(0) = 𝑑
𝑑𝑡 |𝑡=0

(sin 𝑡 , 0, cos 𝑡) = ⟨1, 0, 0⟩

How do we find the geodesics through 𝑁 making angle 𝜃 with 𝛾? By using isometries
of course! We can rotate the sphere fixing 𝑁 by angle 𝜃 using CITE

𝛾𝜃 (𝑡) = (
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

)(
sin 𝑡
0

cos 𝑡
) = (

cos 𝜃 sin 𝑡
sin 𝜃 sin 𝑡

cos 𝑡
)

Now we have our geodesic variation, so all we need to do is differentiate it with respect
to 𝜃 .

279



18. Curvature

𝐽 (𝑡) = 𝑑
𝑑𝜃 |𝜃=0

𝛾𝜃 (𝑡)

= 𝑑
𝑑𝜃 |𝜃=0

(cos 𝜃 sin 𝑡 , sin 𝜃 sin 𝑡 , cos 𝑡)

= (− sin 𝜃 sin 𝑡 , cos 𝜃 sin 𝑡 , 0)|
𝜃=0

= (0, sin 𝑡 , 0)

Figure 18.7.: A geodesic variation on 2 and its Jacobi field. The fact that |𝐽 (𝑡)| = sin(𝑡)
tells us that nearby geodesics that start spreading out eventually come back
together, after distance 𝑡 = 𝜋 .

Again, the magnitude of this vector measures the rate at which nearby geodesics are
diverging from one another:

‖𝐽 (𝑡)‖ = ‖(0, sin 𝑡 , 0)‖ = sin 𝑡

How do we interpret this? Well the sine function first grows until 𝑡 = 𝜏/4 and then
begins to shrink: this means that geodesics first begin to diverge then at 𝑡 = 𝜏/4 begin to
converge once more. Of course, we already knew this - becuase the geodesics are great
circles (and we had found their explicit formulas to even compute the variation).

We’ve seen the qualitative behavior of these variations depends on the curvature: if the
curvature is zero, then geodesics spread out linearly, but when its positive they oscillate
sinusoidally between converging and diverging. In fact :::{#thm-jacobi-equation} Let
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𝐽 (𝑡) be an infinitesimal variation along a geodesic. Then if the space we are considering
has constant curvature 𝜅, the infinitesimal variation satisfies the differential equation

𝐽 ′′ + 𝜅𝐽 = 0
:::

18.4. Spheres of Other Sizes

So far, our entire discussion has been taking place for the unit sphere, but unlike Eu-
clidean space, there are multiple different spherical geometries: things behaved differ-
ently depending on the radius of the sphere. For each positive real number 𝑅 we can
define spherical geometry of radius 𝑅, denoted 2

𝑅, as follows.

Definition 18.5 (Spherical geometry of Radius 𝑅.). Let 2𝑅 denote the set of points which
are distance 𝑅 from the origin in𝔼3. For each point 𝑝 ∈ 2

𝑅, the tangent space 𝑇𝑝2𝑅 consists
of all points in𝔼3 which are orthogonal to 𝑝 (definition unchanged from the unit sphere),
and the dot product for measuring infintiesimal lengths and angles is the standard dot
product on 𝔼3 (also unchanged from the unit sphere).

The development of each of these spherical geometries is qualitatively very similar to
that for 2: we can see without any change that (𝑥, 𝑦 , 𝑧) ↦ (𝑥, 𝑦 , −𝑧) is an isomery so the
equator is a geodesic, and orthogonal transformations are still isometries so all great
circles are geodesics.

What changes is the quantitative details: the formulas for length area and curvature.
In the next two problems, your job is to redo the calculations that I did for 2, for the
geometry 2

𝑅:

Exercise 18.4 (Circumference and area.). What is the formula for the circumference
and radius of a circle of radius 𝑟 on 2

𝑅?

Hint: base your circles at 𝑁 = (0, 0, 𝑅) and look back at our arguments from class to see
what must change, and what stays the same.

Exercise 18.5. Using the definition of curvature as a limiting ratio of circumfereces
(Definition 27.4), compute the curvature of 2𝑅, and show that

𝜅 = 1
𝑅2
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18. Curvature

Think about what this relationship says: as a sphere gets bigger in radius, it’s curvature
(which measures the difference between it and the Euclidean plane) quickly decreases!
That is, the bigger a sphere you have, the more difficult it is to tell apart from a plane at
a ppint.

Figure 18.8.: Small spheres have large curvature, making it easy to see. Large spheres
have small curvature, making it more difficult to notice.

This mathematical fact has tricked an unfortunate number of people into believing that
large spheres like the earth are flat. But now we know better:

Example 18.1 (Curvature of the Earth). The earth’s circumference is 40 million meters
(in fact, the meter was originally defined so that the distance from the equator to the
north pole was 10 million meters!). This means the radius of the earth is

𝑅 = 40, 000, 000
2𝜋 ≈ 6, 366, 197m

and so the curvature of the earth is

𝜅 = 1
𝑅2

= 1
40, 528, 473, 456, 935

≈ 0.000000000000024674011002723

But while small, 0.00000000000002 is not zero, and on large enough scales this small
amount of curvature actually has a big effect, on flight paths, air currents, the formation
of hurricanes, etc.
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We’ve made great progress on understanding the sphere: we’ve discovered the
geodesics, found enough isometries to do meaningful work (we can move any point
to any other, and any geodesic to any other), analyzed circles and defined both
acceleration and curvature. With these tools in hand we are ready to confront some
of the most surprising differences between the geometry of the sphere and that of the
plane, which are become visible when studying polygons.

An 𝑛-gon is a polygon with n vertices (or equivalently, with 𝑛 edges). In the plane we
studied 3−gons (triangles), 4-gons (quadrilaterals), and beyond, but we nevermentioned
2-sided shapes. Why? Well 2-gons (or bigons, if you are feeling fancy) do not exist in
𝔼2!

This is because for a two sided shape to exist, its two sides would have to meet each
other twice (once at each vertex). Andwe proved that Euclidean lines are given by affine
equations, and such curves can only intersect once, lest they be equal (linear algebra!).

Figure 19.1.: Two lines in 𝔼2 intersect exactly once, if they intersect at all.

However, this basic behavior of lines is very different on the sphere.

Theorem 19.1 (Geodesics intersect twice). Any two distinct geodesics on 2 intersect ex-
actly twice.

Proof. Let 𝐶1 and 𝐶2 be two geodesics on 2. Each is a great circle, and so is described
by a plane passing through the origin. But two planes passing through the origin of 𝔼3
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must intersect each other in a line! Thus, these two planes have an entire line through
the origin in common, and this line must intersect the sphere in two points. These two
points are then intersections between 𝐶1 and 𝐶2.

Figure 19.2.: Any two planes through the origin intersect in a line implies that any two
geodesics on 2 intersect in exactly two points.

There cannot be any more intersections, as we can see also by thinking about the linear
algebra of planes in 𝔼3: if our curves had three points of intersection on the sphere, at
least one of them would not be a multiple of the others (as the only multiple of a point
𝑝 which still lies on 2 is −𝑝). Thus, we have three non-collinear points which lie on
both geodesics. But, three points in 𝔼3 fully determine a plane, so if these points lie on
both planes, the planes are equal, and so the geodesics themselves are equal (thus not
distinct).

Recall the definition of parallel - we said that two lines were parallel if they did not
intersect! But all lines on 2 intersect: thus there are no parallel lines at all!

Corollary 19.1. There are no parallel lines on the sphere. Thus, playfair’s axiom is false
for 2.

Playfairs axiom (which stated that given any line, and any point not on that line) is equiv-
alent to Euclid’s 5th postulate, assuming the first four. We do not have this equivalence
available to us here (because not all of the first four are true in spherical geometry!) so
we have to separately ask about the5𝑡ℎ:
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Exercise 19.1 (Euclid’s Fifth Postulate is False on 2). Show that Euclids postulate is
false by finding a counterexample: give two geodesics on the sphere that intersect a
third in angles which sum to 𝜋 , but nonetheless intersect.

Its actually hard to
precisely make sense of
Euclid’s postulate on the
sphere, in his original
wording, as it talks about
finding an interesction on
one side of the crossing
line or the other. But on the
sphere there are no sides:
everything meets up on the
back!

But besides andswering these interesting foundational questions, realizing that pairs of
geodesics intersect each other twice has another important corollary:

Corollary 19.2 (Bigons Exist). Bigons exist in spherical geometry.

Thus, we begin our study of polygons not with triangles as we did in Euclidean space,
but at an even lower, more basic level: we begin with bigons!

19.1. Bigons

A bigon has two angles, and two sides. At first, we know nothing else about them, so
we might give a different name to each side and to each angle, like so:

Figure 19.3.: A bigon is a two-sided polygon.

Just like in trigonometry, our goal here is to try to discover relations between the sides
and angles of a bigon. However, unlike trigonometry - the relations here turn out to be
very simple: there just aren’t many ways to make a bigon!

Proposition 19.1. Both sides of a bigon have length 𝜋 :

Proof. We saw in Theorem 19.1 that if one vertex of a bigon is 𝑝, then its sides, being
geodesics, meet again at the point antipodal to 𝑝. Thus, each side of the bigon is exactly
half of a great circle, and so has length 1

22𝜋 = 𝜋 .
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Next, we should ask about the bigon’s angles: is it possible to have a bigon with two
angles of different measures?

Proposition 19.2. The two angles of a bigon are equal to one another.

Proof. To make things easier to picture, we can use an isometry to move one of the
vertices of our bigon to the north pole (and thus the other to the south pole, since they
are antipodal).

Now, the sides of the bigon make a right angle with the equator (since they are great
circles going from the north to south pole) and so reflection in the equator sends the
bigon to itself, exchanging its two vertices.

Figure 19.4.: Reflecting a bigon about the equator exchanges its two vertices, showing
the two angles must be the same.

But now we are done! Isometries preserve angle, and so if there’s an isometry that
swaps the vertices of the bigon they must have the same angle.

Thus bigons only have one free parameter: once you know the angle a bigon has at one
vertex, you know everything there is to know to construct the entire bigon.

Indeed - up to isometry there is exactly one bigon for every angle 𝜃 ∈ (0, 2𝜋), where
the bigon with angle 𝜋 is exactly one hemisphere of the sphere, and a bigon with angle
> 𝜋 covers more than half the sphere. Strange world spherical geometry is, where a
polygon can have only two sides and take up more than half of the universe!

The final geometric quantity we may wish to understand is the area of a bigon.
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Figure 19.5.: Bigons are determined by their angle measure.

Figure 19.6.: Bigons of small medium and large angle size on 2.

19.2. Triangles

Having discovered literally everything there is to know about bigons, its time to move
on to the world of triangles. First, we should be careful and check that triangles even
exist! This might sound silly - but our recent experience with bigons should warn us to
be extra careful.

Think for a moment from
the perspective of an
inhabitant of spherical
geometry, who are so
accustomed to dealing with
bigons that when they start
trying to understand
Euclidean geometry, they
don’t think twice and just
immediately start their
theory by investigating
bigons. Whatever theorems
they prove would be
useless because they all
implicitly are of the form
the existence of bigons
implies XXX and the
premise is false: bigons do
not in fact exist at all!

Proposition 19.3 (Spherical Triangles Exist). Any three points not all lying on the same
great circle determine a triangle.

Proof. Let 𝑝 𝑞 and 𝑟 be any three points on 2 not on the same great circle. Draw the
shorter geodesic segment connecting 𝑝 and 𝑞 (recall, there are two of these, as 𝑝 and 𝑞
both lie on a great circle: if 𝑝 and 𝑞 are antipodes then choose either segment).

Likewise, draw the shorter segments connecting 𝑝 to 𝑟 and 𝑞 to 𝑟 . All we need to do to
show this forms a triangle is to argue that these two new segments do not cross the first
segment.

287



19. Polygons

Figure 19.7.: Left: the case we want to show does not happen, where the geodesics in-
tersect more and do not form a triangle. Right: what actually happens,
because we know geodesics are great circles.

Of course, they do intersect the first segment at its endpoints 𝑝 and 𝑞! But they can’t
intersect it anywhere else - the entire great circles they define intersect the great cirlce
containing 𝑝 and 𝑞 only at these points, and then at their antipodes −𝑝 and −𝑞.
But, since the segment connecting 𝑝 and 𝑞 was the shorter of the two geodesic segments,
its not long enough to include both 𝑝 as one of its endpoints, and −𝑝 as a point in the
interior: then it would stretch more than half way around the sphere! Thus, these other
intersections are not on the segment, and the three segments meet only at their vertices,
forming a triangle.

Now that we are confident in their existence, we turn to the most surprising - and at
the same time the most useful - property of spherical triangles: their area is intimately
tied to their angle sum.

Theorem 19.2 (Area of a Spherical Triangle). The area of a spherical triangle is equal to
the angle sum, minus 𝜋 . In symbols, if a triangle 𝑇 has angles of measure 𝛼, 𝛽 and 𝛾 , then

area(𝑇 ) = 𝛼 + 𝛽 + 𝛾 − 𝜋

The style of proof here is quite clever, and uses our work with bigons! Indeed, we will
cover the sphere with six bigons starting from our triangle, and find the triangle’s area
by counting area overlaps.

Proof.
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Exercise 19.2. What is the analogous formula for the area of a triangle on the sphere
of curvature 𝜅?

Hint: recall that the map taking the unit sphere to the sphere of radius 𝑅 is a similarity
of 𝔼3, and use what we know about similarities effect on area and angles to deduce this
directly from the unit sphere case, without repeating the proof given in class.

This formula has some immediate and surprising consequences. Since polygons have
nonzero (and positive!) area, we can use as a powerful tool in proving the nonexistence
of various objects on the sphere. The strategy goes:

• Assume for contradiction a certain object exists
• break it into triangles
• compute the area of the shape, using these triangles
• find the area is zero or negative: contradiction!
• Thus, the object does not exist.

19.3. Quadrilaterals

Theorem 19.3 (Area of Spherical Quadrilaterals). The area of a convex spherical quadri-
lateral is equal to its angle sum minus 2𝜋 .

Proof. Let 𝑄 be a quadrilateral on 2, with angles 𝛼, 𝛽, 𝛾 , 𝛿 . Choose two opposite vertices
of 𝑄, and draw the line segment connecting them. This segment lies fully inside the
quadrilateral (by convexity), and divides it into two triangles 𝑇1 and 𝑇2, dividing the
angles 𝛼 = 𝛼1 + 𝛼2 and 𝛾 = 𝛾1 + 𝛾2 between them:

Figure 19.8.: Determining the area of a quadrilateral by decomposing it into triangles.

Now we can compute the area as the sum of the area of the triangles:
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area(𝑄) = area(𝑇1) + area(𝑇2)
= (𝛼1 + 𝛽 + 𝛾1 − 𝜋) + (𝛾2 + 𝛿 + 𝛼2 − 𝜋)
= (𝛼1 + 𝛼2) + 𝛽 + (𝛾1 + 𝛾2) + 𝛿 − 2𝜋
= 𝛼 + 𝛽 + 𝛾 + 𝛿 − 2𝜋

This has some immediate surprising consequences, including the nonexistence of rect-
angles!

Corollary 19.3 (Rectangles do not exist.).

Proof. Assume that there is a quadrilateral 𝑅 on 2 with four right angles. Then by the
above, we can compute the area

area(𝑅) = (𝜋2 + 𝜋
2 + 𝜋

2 + 𝜋
2 ) − 2𝜋 = 0

But this is impossible, quadrilaterals cannot have zero area! Thus, we must have been
wrong, and a right angled quadrilateral cannot in fact exist.

Exercise 19.3. What is the analogous formula for the area of a quadrilateral on a sphere
of curvature 𝜅?

19.4. Platonic Solids

Besides proving nonexistence results like that for rectangles, the triangle area formula
helps us determine what regular polygons can be used to tile the sphere.

Recall we call a polygon regular if it has rotational symmetries about its center: in
particular this implies that all its sides are the same length, and all its angles have the
same measure (since isometries preserve both lengths and angles).

In the Euclidean plane, we know that regular polygons of all side numbers ≥ 3 ex-
ist (these are how Archimedes approximated the circle, after all!), but their angles are
strictly determined by their number of sides. We proved in a previous homework that
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the angle sum of an 𝑛-gon is (𝑛 − 2)𝜋 , and if all the angles of a regular 𝑛 gon are equal,
each angle must measure 𝜃𝑛 = 𝑛−2

𝑛 𝜋 .
This puts a strong restriction on which regular polygons can be used to tile the plane.
To tile the plane, a necessary (but not sufficient) condition is that we need to be able to
fit 𝑘 copies of each polygon around a vertex, without any gaps or overalps. This tells us
that the angles of a polygon that can tile must be 𝜃 = 2𝜋

𝑘 .

Figure 19.9.: Angles need to be an integer divisor of 2𝜋 to fit evenly around a point
without gaps or overlap.

Thus, to figure out which polygons even have a chance of tiling the Euclidean plane, we
want to know for which 𝑛 (the number of sides) there the angle 𝜃𝑛 is actually 2𝜋 over
an integer. We can start listing:

𝜃3 = 3 − 2
3 𝜋 = 𝜋

3 = 2𝜋
6

𝜃4 = 4 − 2
4 𝜋 = 𝜋

2 = 2𝜋
4

𝜃5 = 5 − 2
5 𝜋 = 3𝜋

5
𝜃6 = 6 − 2

6 𝜋 = 2𝜋
3

𝜃7 = 7 − 2
7 𝜋 = 5𝜋

7
Thus, we see that its possible to fit six triangles around a vertex, four squares around
a vertex and three hexagons around a vertex, but as the angles 𝜃5 and 𝜃7 aren’t even
divisions of 2𝜋 , there’s no nice way to fit pentagons or 7-gons around a vertex, and thus
no hope of using them to tile the plane.

This is the start to the classification of regular tilings of the plane, where by what we see
from the angle measures, its possible for triangles, squares and hexagons, but impossible
for all other shapes!
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Figure 19.10.: The three regular polygons that tile the Euclidean plane.

Our goal here is to investigate what changes on the sphere.

Exercise 19.4 (Spherical Pentagons).

• Find a relationship between the area 𝐴 of a spherical regular pentagon and its
angle measure 𝛼 . Hint: divide the spherical pentagon into five triangles

• Show that there exists a spherical pentagon whose angle evenly divides 2𝜋 : how
many of these spherical pentagons fit around a single vertex?

• What is the area of such a spherical pentagon? How many of these pentagons
does it take to cover the entire sphere?

The resulting tiling of the sphere is the dodecahedron - one of the Platonic solids dis-
covered by the Greeks (though, usually these are imagined as having flat faces, instead
of actually lying directly on the surface of the sphere). This is pretty encouraging, our
simple investigation into areas of triangles led us all the way to the dodecahedron! But
can it go farther? Can we learn exactly which polygons can tile the sphere from such
meager data?

Exercise 19.5 (No Tiling by Hexagons). Show that there is no regular hexagon which
can tile the sphere.

And, it only gets worse from here:

Exercise 19.6. Prove that for any 𝑛 ≥ 7, there are no regular spherical 𝑛 gons that can
tile the sphere.
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The problem we run into with hexagons is that their area must be zero, and its worth
commenting briefly on what that means. Having zero area means the angle sum needed
is equal to the Euclidean angle sum - and so this is just telling us that the sphere is the
wrong spot to be looking for such a tiling; instead it exists in the Euclidean plane!

But what are we learning in the case of 7-gons and above? If we try to find any value of
𝑘 where the angles would be 2𝜋/𝑘, we get a negative area: this means the shapes both
don’t exist on the sphere and don’t exist in Euclidean space. However, we will meet
these tilings shortly, in hyperbolic space

Figure 19.11.: A tiling of the hyperbolic plane by heptagons.

So, we’ve found a pentagon that tiles 2, and no higher 𝑛-gons do. This leaves only three
cases left to investigate: the bigons, triangles, and quadrilaterals!

For bigons, the condition that they tile the sphere is just that their angles are 2𝜋/𝑛: this
is possible for every 𝑛 ≥ 2, so we have an infinite collection of different bigon tilings:

But, these aren’t really that interesting: they’re just what you get by drawing an 𝑛-gon
on the equator, and then extending perpendicular geodesics up to the north and south
poles. Indeed, these are so simple that these tilings are often not even counted among
the platonic solids!

The more interesting shapes appear when 𝑛 = 3 and 𝑛 = 4.

Exercise 19.7. Prove that there is exactly one quadrilateral that can tile the sphere.
How many fit around each corner? How many quadrilaterals does it take to cover the
sphere?
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Figure 19.12.: Bigons of angle 2𝜋/𝑛 tile the sphere.

Which platonic solid does this correspond to?

Exercise 19.8. There are three different equilateral triangles that can be used to tile the
sphere. Find them! For each triangle:

• How many fit around each vertex?
• How many are needed to cover the sphere?
• What platonic solid does this correspond to?

19.5. Trigonometry

We’ve already gotten an incredible amount of information out of just knowing how to
relate angles to area of spherical triangles. But there is much more to be gained from
studying the quantitative relationships between angles and lengths as well. This is the
study of spherical trigonometry!

We will not devle too deeply into this material in this course, as it is a huge topic dating
all the way back to the greeks, and navigation by the stars! Instead we aim to just give
a taste.

As in Euclidean space, its easiest to start with as simple of triangles as possible. In 𝔼2
these were right triangles, as having a right angle makes a lot of things easier. In the
sphere - we can do one better: well, really two better - there are triangles which have
three right angles!

To see these exist - you can make one by starting with a right angle at the north pole,
and following both geodesics down to the equator, then stopping and using the segment
of the equator connecting the endpoints as the third side. The top angle was right by

294



19.5. Trigonometry

construction, and these next two are also right angles, as they are the intersection of the
equator with geodesics through the north pole (as you showed on your last homework
assignment).

Figure 19.13.: A triangle with three right angles on the sphere.

However, there is not a very interesting theory of the trigonometry of three-right angled
triangles: it turns out that up to isometry, this example above is the only one.

Proposition 19.4. All triply right triangles on 2 are isometric to one another.

Proof.

Thus we completely understand these right triangles: they all have angles 𝜋/2 (of
course!), but they also have side lengths 𝜋/2, and they have area $𝐴 = 3𝜋2 − 𝜋 = 𝜋

2 :
every geometric measurement here is equal to 𝜋/2!

The next simplest case is that of doubly-right triangles. Let’s call the third angle of such
a triangle 𝛼 . These are also quite restricted: take the side opposite 𝛼 which contains the
two right angles, and move it to a segment of the equator by isometries. Now, the other
two sides are geodesics which make right angles with the equator: they intersect at the
north pole! So, our triangle has two sides of length 𝜋/2.

Now that we know this, the area is immediate: this is half of a bigon with angle 𝛼 , so
its area is 1

2 (2𝛼) = 𝛼 . We can also quickly determine the third side length: the angle at
𝑁 is 𝛼 , and so the arclength along the equator (which is a unit circle) is also 𝛼 .
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Figure 19.14.: All measurements of a triply right triangle are 𝜋/2.

Figure 19.15.: The trigonometry of a doubly-right triangle.
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19.5.1. Right Triangles

Things get both more interesting, and more complicated in the case of triangles with
a single right angle. The fundamental trigonometric relationship for a right triangle is
how the lenght of its hypotenuse depends on the lengths of its legs. In Euclidean space,
this is the famous Pythagorean theroem, but in spherical geometry it takes on another
form.

Theorem 19.4 (Spherical Pythagorean Theorem). Given a right triangle on 2 with side
lengths 𝑎, 𝑏 and hypotenuse 𝑐, these three lengths satisfy the equation

cos(𝑐) = cos(𝑎) cos(𝑏)

Figure 19.16.: Right triangles on 2 have their own analog of the pythagorean theorem,
equating the cosine of the hypotenuse to the product of the cosines of the
other two sides.

Exercise 19.9 (Deriving The Pythagorean Theorem). Prove that the formula given
above really does hold for the legs and hypotenuse of a right triangle on 2, using the
distance formula that we’ve already calculated:

cos dist(𝑝, 𝑞) = 𝑝 ⋅ 𝑞

Hint: move your triangle so the right angle is at the north pole, and the legs are along the
great circles on the 𝑥𝑧 and 𝑦𝑧 plane. Now you can write down exactly what the other two
vertices are since you know they are distance 𝑎 and 𝑏 along these geodesics from 𝑁K
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On a sphere of radius 𝑅, a similar formula exists: here to be able to use arguments in-
volving angles we need to divide all the distances by the sphere’s radius, but afterwards
an argument analogous to the above exercise yields

cos ( 𝑐𝑅) = cos ( 𝑎𝑅) cos (
𝑏
𝑅)

Its often more useful to rewrite this result in terms of the curvature 𝜅 = 1/𝑅2

Theorem 19.5 (Pythagorean Theroem of Curvature 𝜅). On the sphere of curvature 𝜅,
the two legs 𝑎, 𝑏 and the hypotenuse 𝑐 of a right triangle satisfy

cos (𝑐√𝜅) = cos (𝑎√𝜅) cos (𝑏√𝜅)

As a sphere gets larger and larger in radius, it better approximates the Euclidean plane.
We might even want to say something like in the limit 𝑅 → ∞ (so, 𝜅 → 0) the spherical
geometry becomes euclidean. But how could we make such a statement precise? One
way is to study what happens to the theorems of spherical geometry as 𝜅 → 0; and
show that they become their Euclidean counterparts. The exercise below is our first
encounter with this big idea:

Exercise 19.10 (Euclidean Geometry as the Limit of Shrinking Curvature). Consider
a triangle with side lengths 𝑎, 𝑏, 𝑐 in spherical geometry of curvature 𝜅. As 𝜅 → 0, the
arguments of the cosines in the Pythagorean theorem become very small numbers, so
it makes sense to approximate approximate these with the first terms of their Taylor
series.

Compute the Taylor series of both sides of

cos (𝑐√𝜅) = cos (𝑎√𝜅) cos (𝑏√𝜅)

in the limit 𝜅 → 0, we can ignore all but the first nontrivial terms. Show here that only
keeping up to the quadratic terms on each side recovers the Euclidean Pythagorean
theroem, 𝑐2 = 𝑎2 + 𝑏2.

Like in the plane, we might next hope to discover relationships between the sides of a
spherical right triangle and its angle measures. And, indeed we can!

The corresponding laws of spherical trigonometry are as follows:

Youwill not be responsible for the derivation of these formulas, nor for remem-
bering them: if you ever need them they will be given to you!
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Figure 19.17.: A right triangle with angles 𝛼, 𝛽 and opposite sides 𝑎, 𝑏.

Theorem 19.6 (Spherical Trigonometric Relations). For a right triangle with angles 𝛼, 𝛽 ,
corresponding opposite sides 𝑎, 𝑏 and hypotenuse 𝑐 the following relations hold:

sin 𝛼 = sin 𝑎
sin 𝑐 sin 𝛽 = sin 𝑏

sin 𝑐

cos 𝛼 = tan 𝑏
tan 𝑐 cos 𝛽 = tan 𝑎

tan 𝑐

Its instructive to compare these to their Euclidean counterparts: where the sin 𝛼 = 𝑎/𝑐
and cos 𝛼 = 𝑏/𝑐 for instance. The spherical versions have the same ratios, but the
lengths are showing up inside trigonometric functions themsevlves!

These can be derived (though we will not, for the sake of time) using the geometry of
planes in 𝔼3 - since great circles on the sphere are just intersections of planes through
the origin with the sphere.

Here’s a nice derivation, which finds the angles between planes (and thus the angles
between great circles) by finding the angles between their normal vectors.

One of the most biggest differences between spherical trigonometry and its Euclidean
counterpart is that its possible to derive formulas for the length of a triangles’ sides in
terms of only the angle information! This is impossible in Euclidean space because of
the existence of similarities: there are plenty of pairs of triangles that have all the same
angles but wildly different side lengths! No so in the geometry of the sphere.

Exercise 19.11. Using the trigonometric identities in Theorem 27.10 together with the
spherical pythagorean theorem Theorem 27.8, show that the side length 𝑎 of a right
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19. Polygons

Figure 19.18.: The angles of a spherical triangle are angles between planes in 𝔼3, which
lets us use Euclidean trigonometry to derive spherical trigonometric rela-
tionships.

triangle can be computed knowing only the opposite angle 𝛼 and the adjacent angle 𝛽
as

cos 𝑎 = cos 𝛼
sin 𝛽

Hint: start with the formula for cos 𝛼 . Write out the tangents in terms of sines and cosines,
then apply the pythagorean theorem to expand a term. Finally, use the definition of sin 𝛽
to regroup some terms.

Formulas such as this are incredibly useful for calculating the side lengths of polygons,
by dividing them into triangles and using facts that are known about their angles.

Exercise 19.12 (Spherical Trigonometry). Use spherical trigonometry to figure out the
side lengths of the pentagon you discovered in the first exercise.

Hint: can you further divide the five triangles you used before, into ten right triangles inside
the pentagon?
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20. Cartography

The sphere is a 2-dimensional object its inside is three
dimensional, but remember
the geometry that concerns
us is only the surface.

, but so far we have been studying it using the
three coordinates of Euclidean 3-space in which it lives. This is sometimes incredibly
convenient - it let us describe the geodesics of the sphere in a simple way as intersec-
tions of 2 with planes, for example. But in other respects it causes extra complication:
functions now have three variables, meaning their derivatives are 3 × 3 matrices (con-
taining 9 numbers), when they we should only require 2×2matrices (four numbers, less
than half!) if we could find a way to really work with the sphere intrinsically as a 2D
object.

While the number of variables alone certainly increases complexity, worse computa-
tional woes are caused by the fact that the cartesian 𝑥, 𝑦 , 𝑧 of 𝔼3 just arent a good fit
for the sphere they are well adapted to describe straight objects like lines and planes,
but the sphere bends in all three directions, making it so that even using symmetry we
can’t move things around until something turns into a 1-dimensional problem the best we can do is move

something to a great cricle
that lies in a coordinate
plane, like the equator,
which sets one variable to
zero.

This makes certain computations prohibitively difficult: youmay recall that so far out of
the three properties we claimed equivalently define geodesics, (length-minimizing, zero
acceleration, and fixed by symmetries), we have actually only proven the latter two to
be equivalent. The reason is simply that dealing with length integrals of the form

∫
𝑏

𝑎 √𝑥′(𝑡)2 + 𝑦 ′(𝑡)2 + 𝑧′(𝑡)2 𝑑𝑡

lead to some pretty long calculations, and massively increase the complexity of actually
doing a the calculation, leading to some pretty unenlightening pages of integrals.

But the good news is, there’s another perspective on spherical geometry which ad-
dresses these shortcommings of the 𝔼3-based-approach.

• Its naturally intrinsically 2-dimensional, dealing only with 2D vectors and 2 × 2
matrices.

• It allows (some) geodesics to be described in a simple way, making various length
integrals more tractable.
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• It can be drawn on a chalkboard or in a notebook, so I don’t have to lug a physical
sphere up and down to the fourth floor for each class!

And the best feature of this new approach to geometry is that we are already familiar
with it - humans have been using it to represent spheres since antiquity. It’s the study
of maps.

In this chapter we will look at some historical examples of maps, try to discover the
underlying mathematical concepts that tie them all together, and then look at one (par-
ticularly simple) map as an example, to see how calcualtions are done.

20.1. Examples

The idea to try and accurately portray regions of the spherical earth on a portion of the
Euclidean plane dates back to antiquity, and in the 2nd century CE Ptolemy wrote a
book - Geographica containing a perscription of coordinates for mapmaking, and a map
of the known world (the Mediterranean basin).

Figure 20.1.: Ptolemy’s world map (a redrawing in the 15th century from the original
2nd century coordinates).

Over the intervening centuries many hundreds of different mapmaking styles have been
created, with each map specifically designed to serve certain purposes best. Perhaps the
most famous map is the Mercator projection, designed in 1569 by Gerardus Mercator
(whose real name was Gerhard Kremer):

This map was originally designed to simplify navigation by ship: it has the very useful
property that any angle you measure on the map accurately reflefts the true angle value
on the globe (more about this, later).
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Figure 20.2.: The Mercator projection.

While this map became famous for preserving angles, it is also infamous for not accu-
rately representing areas. In reality Africa is a gigantic continent (the United States
approximately fits just into the Sahara Desert!), but here it appears to be about the
same size as Greenland: an island which is actually fourteen times smaller. To appreci-
ate the amount of distortion here, we can look at an overlay of each country with an
accurately-sized version of itself.

Figure 20.3.: The Mercator projection versus the true size of countries.

To interactwith such a graphic in real time, visit thewebstie https://www.thetruesize.com/,
which allows you to choose a country to drag around the mercator projection, and see
its true size relative to other countries on the map!

Of course, its natural that there’s distortion to the shape and size of regions on the map:
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we are trying to flatten the curved geometry of the sphere into a region of the plane!
After we’ve developed a bit more mathematical material, we will prove a theorem to this
effect. To help visualize the distortions of map, French mathematician Nicolas Auguste
Tissot introduced the drawing of small disks on amap - representing the images of small
uniformly sized circles on the earth. Such a shape is now known in mapmaking as a
Tissot’s Indicatrix (plural: Tissot’s Indicatrices).

Figure 20.4.: Tissot’s Indicatrices on the Mercator Map: each of these orange disks is the
same size and shape on the globe.

The pairing of a map with Tissot’s Indicatrices gives a helpful way to both visualize the
earth while simultaneously being aware of the distortion incurred by this projection.
We will adopt this as good style throughout the rest of the text, and anytime we draw
a new map for the first time, we will accompany it with Tissots Indicratices (though
once we start into the mathematics, we will leave this mapmaker terminology behind
and start calling them map disks, or infinitesimal disks).

A natural question after seeing the Mercator map is, can you find a map that doesn’t
mess up areas so much? And indeed, you can! The map projection below is attributed to
John Lambert in 1772 and is usually called the Lambert Cylindrical Projection, but the
key idea traces back to Archimedes!

The Archimedes/Lambert map preserves the area of all regions, but it does so at its own
cost: now angles are distorted! Recall that each of Tissots Indicatrices represents a small
perfect circle on the globe - so the fact that these are being represnted as thinner and
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Figure 20.5.: The Archimedes/Lambert Cylindrical Projection map preserves area, but
distorts shape and angle as seen by Tissots indicratices.
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thinner ovals near the poles means the map is stretching much more in one direction
than in the other.

There are all sorts of area-preserving maps like this. The Archimedes/Lambert projec-
tion leaves the area near the equator relatively undistorted, but stretches horizontally
near the poles. Instead, the Smyth projection manages to conserve area by stretching
vertically inside the tropics, and horizontally outside:

Figure 20.6.: The Smyth Projection is area preserving, stretching equatorial regions ver-
tically and polar regions horizontally.

This vertical stretching makes a map wtih smaller aspect ratio, and this trend can be
continued: the Tobler projection stretches most of the earth vertically and only the
arctic circle horizontally, to make a map which is a perfect square:

There are also other map styles which choose to preserve angles (like Mercator), such
as the Lambert Cone Projection

or the Pierce Projection which does unequally display area, but attempts to arrange it so
the big distortions happen out at sea, and do not affect the landmasses as much.

Another map in this category is stereographic projection, which will be the most im-
portant map of all mathematically (see the future chapter by the same name). Having
drawn Tissots Indicatrices, you can easily tell these maps scale distances nonuniformly
over the globe, but at each point scale all distances by the same amount, as circles are
sent to circles!

Other maps may try to preserve certain distances, instead of lengths or angles. The
Azimuthal Equidistant projection shows the correct distance from the north pole to any
point on the map, while distorting both angles and areas. One particularly egregious
distortion: the south pole is mapped to an entire ring (a circle of constant distance from
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Figure 20.7.: The Tobler Projection

Figure 20.8.: The Lambert Cone Projection
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Figure 20.9.: The Pierce projection

Figure 20.10.: Stereographic projection
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the north pole), an unfortunate feature causing some people on the internet to take this
map literally, and claim there is a great ice wall surrounding our disk shaped world.

Figure 20.11.: The Azimuthal Equidistant projection: a Flat Earther’s favorite map.

So far, all the maps we’ve looked at have tried to depict the earth in some reasonable
shaped region of the plane, and just livewith the resulting distortion. But one can instead
try to as best preserve angle and area as possible, and instead distort the shape of the
map itself. Notable maps in this family include the tetrahedral projection,

as well as the Waterman projection, based on a truncated octahedron

or the even wilder Dymaxion projection

For a beautiful collection of interactive map projections you can play with check this
website by Jason Davies!

20.2. Foundations

Alright - so we’ve now seen a bunch of maps, and spent some time thinking about how
to interpret them. But how do we make this subject mathematical? To do mathematics
we need definitions, and so the first thing we have to do is figure out abstractly, what is
a map. What features are in common to all of the examples above?

One thing they all have in common is that they are all represented by some region in the
Euclidean plane. The other fundamental commonality is that each point in that region
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Figure 20.12.: The Tetrahedral projection. Fold the sides of the triangle upwards until
the three corners meet at the top, to form a regular tetrahedron.

Figure 20.13.: Waterman Projection
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Figure 20.14.: Dymaxion Projection

represents some unique point of the sphere. Mathematically, pairings of points of one
space uniquely with points of another space are modeled by a certain type of function:
a bijection. So a map is a function!

Definition 20.1 (Map). A map is a region 𝑅 ⊂ 2 of the sphere, and a subset 𝑀 ⊂ 𝔼2 of
the Euclidean plane, together with a bijection 𝜙 ∶ 𝑅 → 𝑀 . We call this map a chart, and
we call the image of 𝑀 = 𝜙(𝑅) the map of 𝑅 via the chart 𝜙.

Figure 20.15.: A map 𝑀 , its chart 𝜙 and parameterization 𝜓 .

So, charts are functions that take pieces of the sphere and flatten them out onto pieces
of the plane. But charts are (by definition) invertible, and so their inverse is a function
which takes a region in the plane and presses it onto the sphere. Going this direction is
also quite useful, so we’ll give these a name, and call them parameterizations.
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20. Cartography

Definition 20.2 (Parameterization). A parameterization of a region 𝑅 ⊂ 2 is an invert-
ible function 𝜓 ∶ 𝑀 → 2 from some map 𝑀 ⊂ 𝔼2 onto 𝑅 ⊂ 2.

The inverse of any chart is a parameterization, and the inverse of any parameterization
is a chart. For this course, we will restrict our study to maps for which both the chart
and parameterization are continuous and differentiable, so we can do geometry with
infinitesimal vectors! In mathematics more generally, such maps are called diffeomor-
phisms.

Because the earth is a sphere and the plane is…not a sphere, its actually impossible to
make a map which depicts every single point of the earth continuouslyThis is readily belivable, if

you try to imagine
continuously flattening a

sphere onto the plane so no
two points overlap, but its
formal proof requires the

subject of topology

Oftentimes, we
are able to depict most of the earth (say, except for single lines or points where we cut
it), and this causes no major issues. But if you insist on having a map of every point
on the sphere, you need more than one map. Mathematicians call such a collection an
atlas.

Definition 20.3 (Atlas). An atlas is a collection of maps such that each point 𝑝 ∈ 2 is
in the domain of the chart of at least one of the maps.

Figure 20.16.: An atlas of charts covers the entire sphere.

We will not have a need to consider atlases in this brief chapter, but they play a large
role in the theoretical foundations of mathematical mapmaking: the subject known as
Riemannian geometry.

Here, our goals are straightforward: given a map 𝑀 with chart 𝜙 and parameterization
𝜙, we want to be able to compute true things about the sphere, using only the two di-
mensional map 𝑀 . To do so, we’ll treat 𝜙 and 𝜓 as translation devices taking us between
the map and the actual sphere, and calculus to get quantitative results.
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20.3. Getting Quantitative

20.3. Getting Quantitative

The goal of a map is to compute in 𝑀 but learn about 2. We want to take a curve in 𝑀 ,
and figure out how long the curve it represents on the sphere is. If two curves in in
our map intersect (say, the path of two roads) we want to figure out what angle they
intersect at on the sphere, while only measuring things using angles and vectors in 𝑀 .
And so on…

Figure 20.17.: True geometric quantities are on the sphere (left), but wewant to compute
them using a map (right).

20.3.1. Lengths

Probably unsurprisingly at this point in the course, the solution to all these problems is
to zoom in, and use calculus to answer these things. This lets us replace the problem of
curve lengths with infinitesimal lengths.

Proposition 20.1. If 𝛾 ∶ [𝑎, 𝑏] → 𝑀 is a curve drawn in a map 𝑀 , then its map-length
(the length of the curve it represents on the sphere) can be computed as

maplength(𝛾 ) = ∫
𝑏

𝑎
‖𝐷𝜓𝛾 (𝑡)𝛾 ′(𝑡)‖𝑑𝑡

Proof. This is just a direct computation with the chain rule! If 𝛾 is a curve in 𝑀 , then
we can use the parameterization 𝜓 to move it onto 2, so we get the true curve 𝜓(𝛾 (𝑡)) on
the sphere. Now, we can compute the length of this - which is what we actually want!
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maplength( ) ∶= length(𝜓 ∘ 𝛾 )

= ∫
𝑏

𝑎
‖(𝜓 (𝛾 (𝑡)))′‖ , 𝑑𝑡

= ∫
𝑏

𝑎
‖𝐷𝜓𝛾 (𝑡)𝛾 ′(𝑡)‖ 𝑑𝑡

Thus, the fundamental quantity we need to be able to compute is the map-length of
an individual vector: given a vector 𝑣 ∈ 𝑇𝑝𝑀 , find out how long of a vector it really
represents on the sphere.

Figure 20.18.: The map-length of a vector is defined as the length of the vector it repre-
sents on the sphere.

Definition 20.4. Let 𝑀 be a map of a region of the sphere with parameterization
𝜓 ∶ 𝑀 → 2. If 𝑣 ∈ 𝑇𝑝𝑀 then the map-length of 𝑣 is given by

‖𝑣‖map = ‖𝐷𝜓𝑝(𝑣)‖𝔼3

Once we can compute infinitesimal lengths like this, not only have we solved the prob-
lem of finding the length of a curve on a map, but we can also draw the Tissot Indi-
catrices! Tissot imagined these as small disks at each point, and we can model them
precisely as infinitesimal diskl in the tangent space.
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Definition 20.5 (Map Disk). At each point 𝑝 ∈ 𝑀 , the map disk is the set of all tangent
vectors 𝑣 of maplength less than or equal to 1. We will denote this disk 𝔻2

map(𝑝):

𝔻2
map(𝑝) = {𝑣 ∈ 𝑇𝑝𝑀 ∣ ‖𝑣‖map ≤ 1}

Figure 20.19.: The map-disk is the region in the tangent space 𝑇𝑝𝑀 which is mapped by
the parameterization to a unit (infinitesimal) disk on the sphere.

20.3.2. Angles

We can similarly compute angles in a map, first use the parameterization to take us back
to the sphere, and then measure the ‘true’ angle value there.

Proposition 20.2 (Map Angle). Let 𝑀 be a map of some region of the sphere, with pa-
rameterization 𝜓 . If 𝑣 , 𝑤 are two tangent vectors based at 𝑝 ∈ 𝑀 , their map angle is given
by

𝜃map = arccos (
(𝐷𝜓𝑝𝑣) ⋅ (𝐷𝜓𝑝𝑤)
‖𝐷𝜓𝑝𝑣‖‖𝐷𝜓𝑝𝑤‖

)

Proof. This is just the Euclidean formula for angles,

𝜃 = arccos ( 𝑉 ⋅ 𝑊
‖𝑉 ‖‖𝑊 ‖)

on the (EUclidean) tangent space to 2 in 𝔼3, applied to the vectors 𝑉 = 𝐷𝜓𝑝𝑣 and 𝑊 =
𝐷𝜓𝑝𝑤 , which are the result of moving our vectors from the map to the sphere with 𝜓 .
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Figure 20.20.: Themap-angle between two vectors in𝑀 is the angle between the vectors
they represent on the sphere.

20.3.3. Areas

Finally, how do we calculate map area? Again - we can think infinitesimally, and ask
what happens to infinitesimal areas, and then integrate the result. An infinitesmial aread
𝑑𝐴 in the Euclidean plane can be thought of as an infinitesimal unit square with sides
𝑑𝑥 = ⟨1, 0⟩ ∈ 𝑇𝑝𝑀 and 𝑑𝑦 = ⟨0, 1⟩ ∈ 𝑇𝑝𝑀 along the 𝑥 and 𝑦 directions respectively.

Figure 20.21.: Infinitesimal area on the plane is easiest to measure when using the or-
thonormal basis vecdtors in the 𝑥 and 𝑦 directions: in this case 𝑑𝐴𝔼2 =
𝑑𝑥𝑑𝑦 .

But such a unit square might not represent a unit area on the sphere! Think about the
mercator projection: if this little square were near the north or south pole, mapping it
onto the sphere would shrink it alot (as projecting from the earth to the map increases
size near the poles), so this square would actually represent a small area.Indeed, we will see later

that the area of an
infinitesimal unit square in
the Mercator projection at

latitude 𝜃 is actually cos2 𝜃 ,
which is very small near

the poles 𝜃 = ± 𝜋
2
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To calculate the infinitesimal map area (𝑑𝐴)map, we need to push the unit basis vectors
𝑒1 = ⟨1, 0⟩ and 𝑒2 = ⟨0, 1⟩ in 𝑇𝑝𝑀 to the sphere using 𝜓 , and then measure the area that
their images span in the tangent space 𝑇𝜓(𝑝)2.

Figure 20.22.: The infinitesimal area 𝑑𝐴map on the plane is measured by taking an in-
finitesimal square, sending it to the sphere via the parameterization 𝜙,
and then measuring the area of the resulting parallelogram.

Such an area is rather annoying to measure in general, as the vectors 𝐷𝜓𝑝𝑒1 and 𝐷𝜓𝑝𝑒2
are both vectors with three coordinates. We know how to find the area spanned by two
vectors in the plane, via the determinant (which we derived on homework way back in
the calculus chapter!)

Definition 20.6. Let𝑀 be a map of some region of the sphere with parameterization 𝜓 ,
and 𝑒1 = ⟨1, 0⟩, 𝑒2 = ⟨0, 1⟩ the unit basis vectors in 𝔼2. The map-area at a point 𝑝 ∈ 𝑇𝑝𝑀
is

(𝑑𝐴)map = ‖(𝐷𝜓𝑝𝑒1) × (𝐷𝜓𝑝𝑒2)‖ 𝑑𝑥𝑑𝑦

Luckily, we will not often need to utilize the full generality of this definition. We will
call a parameterization rectangular if it sends the 𝑥 and 𝑦 directions on 𝑀 to pairs of
orthogonal directions on 2. Maps such as the Mercator,

Archimedes/Lambert,
Smyth and Tobler
projections are all
rectangular.

For these maps, we can avoid the use of the cross product
alltogether:

Proposition 20.3. Let 𝑀 be a map with rectangular parameterization 𝜓 . Then the in-
finitesimal area is given by

(𝑑𝐴)map = ‖𝐷𝜓𝑝𝑒1‖‖𝐷𝜓𝑝𝑒2‖ 𝑑𝑥𝑑𝑦

Proof. For maps with rectangular paramterizations, 𝐷𝜓𝑝𝑒1 and 𝐷𝜓𝑝𝑒2 are orthogonal to
each other, and span a small rectangle in 𝑇𝜓(𝑝)2.
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Because the area of a rectangle is hust base times height - we can simply transfer 𝑒1 and
𝑒2 to the sphere via 𝜓 , meaure their lengths, and take the product:

𝑒1 ↦ 𝐷𝜓𝑝𝑒1 𝑒2 ↦ 𝐷𝜓𝑝𝑒2
(𝑑𝐴)map = ‖𝐷𝜓𝑝𝑒1‖‖𝐷𝜓𝑝𝑒2‖ 𝑑𝑥𝑑𝑦
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In this chapter we will apply some of the theory we developed to work with some well-
known map projections used for depicting the earth. This is a slight digression from
the logical flow of our text, as none of this work is strictly needed for anythign that
follows (and those interested in the purely mathematical story can move immediately
to the next chapter, stereographic projection, where we apply these same techniques to
the map we will use the most).

However, taking a brief look at examples serves two purposes: one, it will help us be-
come more comfortable with the theory of maps, as we will do several explicit compu-
tations:

• We will calculate the map-length of a curve in the Orthographic projection.
• We will calculate the map-area of regions in Archimedes map, and show it is area
preserving.

• We will compute angles in the Mercator map, and show it is angle preserving

And two; the study ofmaps is a beautiful application ofmathematics to thewider human
world - wemight as well take a look - just for cultural reasons - while we are so nearby.

21.1. Orthographic Projection

To write down a map we need to give its chart: a map 𝜙 from some region in 2 onto a
region of the plane. And perhaps the simplest formula taking points in 𝔼3 (where the
sphere lives) to points of 𝔼2 is just deletion of a coordinate:

(𝑥, 𝑦 , 𝑧) ↦ (𝑥, 𝑦)

We can picture such a map as the vertical orthogonal projection of space onto the 𝑥𝑦
plane, and the result as the shadow of an object under a vertical light source

This cannot give a map of the entire earth at once, as each vertical line that intersects
the sphere off the equator hits it in two points (𝑥, 𝑦 , 𝑧) and (𝑥, 𝑦 , −𝑧). However, if we
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Figure 21.1.: Orthographic projection maps one hemisphere of the sphere onto the unit
disk in the plane.

restrict ourselves to one hemisphere, vertical projection does define a bijection between
that hemisphere and the unit disk in the plane.

Figure 21.2.: Images of earth from far away in space are close to orthographic pro-
jections: like this one from the Discovr spacecraft 1 million miles away.
True orthographic projection would be the view “from infinitely far away”
where lines of sight would be parallel.

Definition 21.1 (Orthographic Map). Let the region 𝑅 ⊂ 2 be the northern hemisphere
𝑅 = {(𝑥, 𝑦 , 𝑧) ∈ 2 ∣ 𝑧 ≥ 0}, and 𝑀 be the unit disk in the Euclidean plane 𝑀 = {(𝑥, 𝑦) ∈
𝔼2 ∣ 𝑥2 + 𝑦2 ≤ 1}. Then the orthographic projection of 𝑅 onto 𝑀 is given by the chart 𝜙
and its inverse parameterization 𝜓 ,

𝜙(𝑥, 𝑦 , 𝑧) = (𝑥, 𝑦)

𝜓 (𝑥, 𝑦) = (𝑥, 𝑦 , √1 − 𝑥2 − 𝑦2)

Here’s an animation to help get comfortable with this map, where there’s a slider that
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21.1. Orthographic Projection

lets you slowly interpolate between the northern hemisphere and its planar projection
onto the disk:

Before delving into the quantitative calculus, let’s try to develop a bit of a qualitative
understanding of this map. Here’s two facts we can see directly from its definition:

• Geodesics through the north pole 𝑁 on 2 are mapped to straight lines through
the origin 𝑂 in the map.

• Circles about the north pole 𝑁 are sent to Euclidean circles about the origin 𝑂 in
the map.

To see the first point, note that (1) geodesics on the sphere are great circles, which are the
intersetion of 2 with planes through the origin. Thus (2), geodesics containing the north
pole 𝑁 correspond to vertical planes (containing the 𝑧-axis), and so (3) the projection of
a vertical plane onto the 𝑥𝑦 plane is just a line.

To see the second point, recall that the circle of radius 𝑟 about𝑁 is described a Euclidean
circle in the horizontal plane 𝑧 = cos 𝑟 . The vertical projection deletes the 𝑧 coordinate
but leaves the 𝑥 and 𝑦 unchanged, so these circles map directly to circles in the 𝑥𝑦
plane.

Figure 21.3.: Circles on the sphere about 𝑁 are cirlces in horizontal Euclidean planes.
These project horizontally to circles in the map.

This has the consequence that the equator of the sphere alsomaps to a circle on the plane
- its the unit circle bounding our map 𝑀 . So, in 𝑀 we have some geodesics represented
by straight lines, and one geodesic represented by a circle! This implies that other

geodesics of the sphere
necessairly are represented
by some curves that
interopolate between
straight lines and circles:
not all geodesics are going
to look like
easy-to-understand curves
in our map! That’s one of
the distortions we will have
to learn to live with.

To get any quantitative understanding of this map, the first step is to take the derivative
of the parameterization 𝜓 :

𝜓(𝑥, 𝑦) = (
𝑥
𝑦

√1 − 𝑥2 − 𝑦2
)
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When working with such a
map, its often easiest to

recall that
𝑧 = √1 − 𝑥2 − 𝑦 2 and just

write ‘𝑧’ anytime this
expression occurs, to save
mental space. Thus, we

would write

𝐷𝜓 = (
1 0
0 1
−𝑥
𝑧

−𝑦
𝑧

)

𝐷𝜓 = (
1 0
0 1
−𝑥

√1−𝑥2−𝑦2
−𝑦

√1−𝑥2−𝑦2
)

This derivative matrix is the key to all further calculation. From it we can directly
compute map-lengths of vectors and curves, map-angles, and map-areas following the
general theory.

Example 21.1 (Orthographic Map-Length of ⟨1, 0⟩). If 𝑒1 = ⟨1, 0⟩ is based at 𝑝 = (𝑥, 𝑦)
in the orthographic map 𝑀 , its map-length is

‖⟨1, 0⟩‖map =
√

1 − 𝑦2
1 − 𝑥2 − 𝑦2

To see this, notice that 𝐷𝜓𝑝⟨1, 0⟩ is simply the first column of the derivative matrix, and
then we need only compute its length in 𝔼3:

‖⟨1, 0, −𝑥𝑧 ⟩‖ = √1 + 𝑥2
𝑧2

= √
𝑧2 + 𝑥2

𝑧2

=
√
1 − 𝑥2 − 𝑦2 + 𝑥2

1 − 𝑥2 − 𝑦2

=
√

1 − 𝑦2
1 − 𝑥2 − 𝑦2

Knowing the infinitesimal lengths in the 𝑥 direction lets us compute the total length of
the horixontal curve 𝛾 (𝑡) = (𝑡, 0) in our map. In 𝑀 this is just the diameter of the disk,
so its length appears to be 2: but we know this isn’t right! The diameter of the disk
represnts half of a great circle going from the equator to the north pole and back, so its
length should be 𝜋 . Let’s do the calculation to confirm:

Exercise 21.1. The map-length of the curve 𝛾 (𝑡) = (𝑡, 0) from 𝑡 = −1 to 𝑡 = 1 in the
orthographic projection is 𝜋 .
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To see this, recall that the map length of 𝛾 is given by integrating the infinitesimal map-
lengths of its tangent vectors:

lengthmap(𝛾 ) = ∫
1

−1
‖𝛾 ′‖map 𝑑𝑡

Because 𝛾 (𝑡) = (𝑡, 0) its immediate to see 𝛾 ′(𝑡) = ⟨1, 0⟩ for all time, and using the above
exercise then we see at the point (𝑥, 𝑦) = 𝛾(𝑡) = (𝑡, 0), the map length of ⟨1, 0⟩ is

√
1 − 02

1 − 𝑡2 − 02 = 1
√1 − 𝑡2

Integrating this gives a familiar expression: we saw this exact integral in the definition
of the arc cosine function (Proposition 13.2)! Since arccos(𝑥) = ∫1𝑥 1

√1−𝑡2 𝑑𝑡 , we see the
expression we have come to is exactly arccos(−1), which by definition is the arclength
along the top half of the unit circle (ie all the way from 𝑥 = 1 to 𝑥 = −1). Thus

lengthmap(𝛾 ) = ∫
1

−1
𝑑𝑡

√1 − 𝑡2
= arccos(−1) = 𝜋

Beyond applying this just to the basis vector ⟨1, 0⟩we can us the same technique to find
the length of any vector in 𝑇𝑝𝑀 :

Example 21.2 (Orthographic Map Infinitesimal Lengths). If 𝑣 = ⟨𝑎, 𝑏⟩ is based at 𝑝 =
(𝑥, 𝑦) in the unit disk 𝑀 , its map-length in the orthogonal projection is

‖𝑣‖map = √

We calculate this by applyign 𝐷𝜓𝑝 to 𝑣 , and then finding the length in 𝔼3:

𝐷𝜓𝑝⟨𝑎, 𝑏⟩ = 𝑎 (
1
0
−𝑥
𝑧
) + 𝑏 (

0
1
−𝑦
𝑧
) = (

𝑎
𝑏

−𝑎𝑥−𝑏𝑦
𝑧

)

Computing the length, we get
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‖𝐷𝜓𝑝𝑣‖ = √
𝑎2 + 𝑏2 + (−𝑎𝑥 − 𝑏𝑦)2

𝑧2

=
√
𝑎2 + 𝑏2 + ( 𝑎𝑥 + 𝑏𝑦

1 − 𝑥2 − 𝑦2 )
2

Knowing the map-length of an arbitrary vector on 𝑇𝑝𝑀 lets us precisely describe the
map-disks:

Example 21.3 (Orthographic Map Disks). At the point 𝑝 = (𝑥, 𝑦), the map-disk is the
set of all vectors ⟨𝑎, 𝑏⟩ ∈ 𝑇𝑝𝑀 where

𝑎2 + 𝑏2 + ( 𝑎𝑥 + 𝑏𝑦
1 − 𝑥2 − 𝑦2 )

2
≤ 1

At the center of our map where (𝑥, 𝑦) = (0, 0), this equation for the map-disk reduces
to the equation for the standard round unit disk 𝑎2 + 𝑏2 = 1. This means at the origin,
we expect to see essentially no distortion in either size or angle! Howver, as soon as 𝑥 or
𝑦 are nonzero, things quickly change. Consider the point (𝑥, 𝑦) = (0, 1/2). What’s the
map-disk here? Just plugging in gives

𝑎2 + 𝑏2 + (
0 + 1

2𝑏
1 − 02 − 1

4
)
2
≤ 1

and after a bit of simplification, we find

𝑎2 + 13
9 𝑏2 ≤ 1

This is an ellipse! Thus, we see at (0, 1/2) the map is not distorting distance in the 𝑥
direction (the coefficient of 𝑎 is still 1) but it is distorting distance in the 𝑦 direction.
Since it’s affecting the two directions unequally, we expect that it will not be preserving
angles very well, so let’s confirm.

Example 21.4 (Orthographic Map Angle). The vectors ⟨1, 0⟩ and ⟨0, 1⟩ are not map-
orthogonal, even though the look orthogonal in the Euclidean plane where we drew the
map!
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To see this, all we need to do is compute the map-dot-product between ⟨1, 0⟩ and ⟨0, 1⟩
and see that its nonzero. With the derivative of our paramgerization already in hand,
this is quick work:

𝐷𝜓𝑝⟨1, 0⟩ = ⟨1, 0, −𝑥/𝑧⟩
𝐷𝜓𝑝⟨0, 1⟩ = ⟨0, 1, −𝑦/𝑧⟩

These are the two true vectors that ⟨1, 0⟩ and ⟨0, 1⟩ on our map represent, so the map
dot product is equal to their actual dot product on 2:

⟨1, 0, −𝑥/𝑧⟩ ⋅ ⟨0, 1, −𝑦/𝑧⟩ = 𝑥𝑦
𝑧2 = 𝑥𝑦

1 − 𝑥2 − 𝑦2

Thus, whenever 𝑥 and 𝑦 are both nonzero, the vetors ⟨1, 0⟩ and ⟨0, 1⟩ dont actually point
in orthogonal directions on our map!

Exercise 21.2. Can you find the coordinates (𝑥, 𝑦) of a point on the map where the
vectors ⟨1, 0⟩ and ⟨0, 1⟩ only make a 45-degree angle with one another?

Hint: can you make the problem easier for yourself by restricting 𝑥 and 𝑦 to lie on some
line, so the problem ends up having one variable instead of two?

You can see how this would make such a map difficult to use for navigation: it would
look like the map is telling you to turn 90 degrees but in reality you should only turn
half that!

21.2. Archimedes' Map

In Archimedes’ most cherished work The Sphere and the Cylinder, he proved that the
surface area of the sphere and the cylinder agreed by showing that horizontally pro-
jecting the surface of the sphere onto the cylinder preserved infinitesimial areas, and
thus (via integration) the total area. This suggests a means of creating a map of the
earth which displays the true areas for each region: first project horizontally onto the
surronding cylinder, then unroll the cylinder onto the plane.

For step 1, what happens when we horizontally map a point (𝑥, 𝑦 , 𝑧) ∈ 2 to the cylinder?
Well, its height or 𝑧 coordinate does not change, and the 𝑥𝑦 coordinates do not chnage
direction, only length. That means that there must simply be some scalar 𝑠 such that

(𝑥, 𝑦 , 𝑧) ↦ (𝑠𝑥, 𝑠𝑦 , 𝑧)

327



21. Examples

Figure 21.4.: Definining Archimedes’ Map

How do we find this scaling factor 𝑠? Well, we know at the end we want the point to
lie on the cylinder, so that its 𝑥 and 𝑦 coordinates lie on the unit circle. This means we
need

(𝑠𝑥)2 + (𝑠𝑦)2 = 1 ⟹ 𝑠 = 1
√𝑥2 + 𝑦2

We can then use the fact that (𝑥, 𝑦 , 𝑧) originally lies on the sphere, so that 𝑥2+𝑦2+𝑧2 = 1
to see we can replace this with 1

1−𝑧2 if we wish, to get

(𝑥, 𝑦 , 𝑧) ↦ ( 𝑥
√1 − 𝑧2

, 𝑦
√1 − 𝑧2

, 𝑧)

Now, we just need to unroll the cylinder onto the plane: this means we continue to
leave the height, or 𝑧 direction alone, but we wish to find the angle 𝜃 which the 𝑥 and 𝑦
coordianates make on the unit circle. Because the tangent of this angle is opposite over
adjacent, we can get an explicit formula:

Figure 21.5.: The angle 𝜃 is defined by looking down on the cylinder with respect to the
𝑥 axis: its tangent is 𝑦/𝑥 .

tan 𝜃 =
𝑦

√1−𝑧2
𝑥

√1−𝑧2
= 𝑦

𝑥
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21.2. Archimedes’ Map

Definition 21.2 (Archimedes’ Map). Let 𝑅 ⊂ 2 be everything except the north and
south poles, and let𝑀 ⊂ 𝔼2 be the rectangle𝑀 = {(𝜃, ℎ) ∣ −𝜋 < 𝜃 ≤ 𝜋, −1 < ℎ < 1}. We
define Archimedes’ chart as

𝜙(𝑥, 𝑦 , 𝑧) = (𝜃, ℎ) = (arctan 𝑦
𝑥 , 𝑧)

and its inverse, Archimedes’ parameterization

𝜓(𝜃, ℎ) = (√1 − ℎ2 cos 𝜃, √1 − ℎ2 sin 𝜃, ℎ)

In cartography, this map is not named after Archimedes but rather the 17th century
mapmaker Lambert, and called the Lambery Cylindrical projection, or the Lambert
Equal-Area projection. Here’s an animation showing the construction of this projec-
tion, performing both the projection onto the cylinder and the unrolling onto the plane.

To get a better feel for the
Archimedes’ map, I suggest
clicking “tumble” in the
upper-right menu to get the
earth rotating around some
arbitrary axes, then use the
sliders to convert back and
forth from the sphere-view
to the map-view.

To understand what Archimedes map does to regions of the sphere, a useful spot to start
is to calculate its map-disks (Tissot’s Indicatrices) and see what shape they are!

Theorem 21.1 (Archimedes Map Disks). At the point 𝑝 = (𝜃, ℎ) on the Archimedes map,
the map disk of unit radius is given by the set of all vectors ⟨𝑎, 𝑏⟩ ∈ 𝑇𝑝𝑀 with

𝑎2(1 − ℎ2) + 𝑏2
1 − ℎ2 ≤ 1

Proof. We calculate this by just applying 𝐷𝜓𝑝 to the vector ⟨𝑎, 𝑏⟩, then finding the re-
sulting length-squared in 𝔼3, and simplifing alot.

Exercise 21.3. Do this calculation!

The map-disks are ellipses, meaning that angles in general are not preserved. However,
we can calculate the area of these map-disks to understand better the area distortion
(or lack thereof) on the map. The ellipses we found turn out to be lined up nicely along
the two axes of 𝔼2, much like the ellipses whose formulas we first uncovered in Defini-
tion 12.4. Thus, their areas are computable as in Exercise 14.4: its equal to 𝜋𝑎𝑏 where 𝑎
and 𝑏 are the ‘radii’ of the ellipse along the 𝑥 and 𝑦 direction.
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Theorem21.2 (ArchimedesMap is Area Preserving). At every point 𝑝 ∈ 𝑀 themap-disk
has area 𝜋 . Since the map disk represents the infiniteismal vector which map to the unit
disk tangent to the sphere (which also has area 𝜋 ), the parameterization does not distort
infinitesimal area.

Proof. If an ellipse has radii 𝑟1 along the 𝑥 axis and 𝑟2 along the 𝑦 axis, we saw its area
is 𝜋𝑟1𝑟2, which we could compute by strectching the unit circle in Exercise 14.4. The
formula for such an ellipse is

𝑥2
𝑟21

+ 𝑦2
𝑟22

≤ 1

So in our case we have 𝑟1 = 1
√1−ℎ2 and 𝑟2 = √1 − ℎ2. These are reciprocals of one

another, so 𝑟1𝑟2 = 1 and
𝐴 = 𝜋𝑟1𝑟2 = 𝜋

But this is the area of the unit disk! So, at each point 𝑝 of the map, the mapdisks
(Euclidean) area accurately reprsents its true area on the sphere. The map does not
distort infinitesimal areas.

Because we are still learning how to compute effectively with maps, we’ll give a second
proof of this fact, where we do not bother working out the details of our map disks, but
rather just directly look at infinitesimal lengths are areas, figuring out what happens to
an infinitesimal unit square.

Exercise 21.4. Give a second proof that Archimedes map is area-preserving, that looks
at infinitesimal squares instead of ellipses. Show that at each point 𝑝 ∈ 𝑀 the vectors
⟨1, 0⟩ and ⟨0, 1⟩ are sent by 𝜓 to orthogonal vectors on the sphere. Find their lengths on
the sphere (ie the map-lengths), and use this data to find the area of the infinitesimal
rectanlge they form.

Now only does this immediately imply archimedes overall result that the two areas are
equal (each area is by definition the integral of its infintiesimal areas, andwe just showed
all the infiniteismal areas are equal), but it also shows that the area of any region on the
map accurately portrays the true area of the region it represents on the sphere.

Theorem 21.3. Let 𝑅 ⊂ 2 be a region on the sphere, and 𝑀 = 𝜙(𝑅) ⊂ 𝔼2 its map under
Archimedes chart. Then

area(𝑅) = area(𝑀)
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21.3. Equirectangular Projection

Proof. Because the chart and parameterization are inverses, we could just as well call
𝜙(𝑅) = 𝑀 the map, and then the original region is 𝜓(𝑀) = 𝑅. We compute the area of
𝑅 as an integral, and use 𝜓 to write it as an integral over 𝑀 :

area(𝑅) = ∬𝑅
𝑑𝐴2 = ∬𝜓(𝑀)

𝑑𝐴2 = ∬𝑀
𝑑𝐴map

But now we know that 𝑑𝐴map = 𝑑𝐴𝔼2 , that’s what we’ve calculated! So we can sub this
out, and then realize the resulting integral is just the definition of the Euclidean area of
𝑀 in the plane:

= ∬𝑀
𝑑𝐴𝔼2 = area(𝑀)

However, its important not to forget what we learned along the way: the map-disks for
Archimedes map form extremely distorted ellipses as one approaches the poles: with
horizontal length stretching near infinite and vertical height crushing to zero. This map
massively distorts the shapes of regions, distances between points and angles between
curves in its attempt to preserve area. Like the orthographic map before it, this makes
Archimedes’ map unsuitable for navigational tasks, where figuring out accurately what
direction you must go to reach your desired destination is of utmost importance.

21.3. Equirectangular Projection

There is an entire collection of maps which are defined as modifications of Archimedes’
original idea, these days called cylindrical projections as they start by projecting onto a
cylinder. Perhaps the two most common of these are the Mercator projection (discussed
in the next chapter as a potential final project opportunity), and the Equirectangular pro-
jection, which I will only brielfy mention here (for anyone who is doing a final project
on Maps and would like another, easy-to-compute-with and yet still real-world exam-
ple).

The problem the Equirectangular projection tries to solve is the vertical distortion of
Archimedes’ map.

PICTURE
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Archimedes made the vertical height on the map equal the vertical height of the sphere at
that point: this clever move ensured area was preserved, but what if we wanted the ver-
tical height on the map to actually be related to the north-south distance? Archimedes’
map fails badly at this, as we see in the picture above.

What we want from our new map projection is that it

• Continues to be a cylindrical projection
• Distance along the (vertical) ℎ axis of the map accurately reflects the actual

geodesic distance along lines of longitude on the sphere.

Because we are still projecting onto a cylinder, the chart for such a map is still going to
have 𝜃 = arctan(𝑦/𝑥). But as arclength is angle, the height (distance from the equator)
will need to be the angle 𝜑 that a point on the sphere makes with the 𝑥𝑦 plane:

PICTURE

Definition 21.3. The chart for the equirectangular projection is defined on the region
𝑅 ⊂ 2 of the sphere containing all points except the north and south poles, and maps
onto the rectangle

𝑀 = {(𝜃, 𝜑) ∈ 𝔼2 ∣ −𝜋 ≤ 𝜃 ≤ 𝜋, −𝜋/2 ≤ 𝜑 ≤ 𝜋/2}

by the chart function

𝜙(𝑥, 𝑦 , 𝑧) = (arctan 𝑦
𝑥 , arcsin 𝑧)

Exercise 21.5. Derive the parameterization for the Equirectangular projection.

Exercise 21.6. Spherical coordinates in mathematics and physics are almost the same
as the equirectangular projection: the only difference being a convention on where to
measure the angle 𝜑 from. Here we’vemeasured it from the equator, so that it accurately
captures latitude on the earth. But in spherical coordiantes it is usually measured from
the north pole.

Write down the chart and parameterization for spherical coordiantes, and see that it is
what you are taught in multivariable calculus!

Because this map captures distance accurately along the equator, as well as north-south
distance along lines of longitude, it is an easy map to work with, and has become the
default map in many contexts.
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21.3. Equirectangular Projection

Exercise 21.7. Find the important map-quantities in the equirectangular projection:

• Find the map-length of a vector 𝑣 = ⟨𝑎, 𝑏⟩ based at (𝜃, 𝜑) ∈ 𝑀 .
• Find the equation for the map-disk at (𝜃, 𝜑). Show that it’s an ellipse: what do its

vertical radius and horizontal radius tell you about the map?
• Does this map preserve angle?
• Find the map-area: since horizontal and vertical lines in 𝑀 map to orthogonal
curves on 2 (latitude and longitude), infinitesimal squares on 𝑀 are taken to in-
finitesiaml rectangles on 2. Does this map preserve area?
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22. Mercator

The Mercator projection is the classic map

Figure 22.1.: The original Mercator map: check out California!

One means of building Mercator’s map is to begin with Archimedes’, and and perform
some modifications. We will follow this, and will attempt to change as little from the
previous map as possible: indeed we will attempt to construct this newmap also by first
projecting the sphere onto its bounding cylinder, and then unrolling that cylinder onto
the plane.

The only choice we made in the above derivation of Archimedes’s map was that the
projection was horizontal, or that the height ℎ on the map was equal to the original 𝑧
coordinate. Here, wemust do something else (lest we end up with the samemap!) so we
let ℎ be a function of 𝑧: this is equivalent to first doing Archimedes map, then stretching
the vertical axis of the cylinder by a function 𝐻 . Different choices of 𝐻(𝑧) will describe
different cylindrical projections, and our goal here is to find a good choice for 𝐻 .

Definition 22.1 (A General Cylindrical Projection). Let 𝐻(𝑧) be any height function
taking the latitudes of the unit sphere 𝑧 ∈ [−1, 1] to some height ℎ along the cylinder.
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22. Mercator

Figure 22.2.: The Mercator projection (an all cylindrical projections) are Archimedes
map followed by some sort of vertical stretch.

Then the cylindrical projection corresponding to 𝐻 is given by

(𝑥, 𝑦 , 𝑧) ↦ ( 𝑥
1 − 𝑥2 − 𝑦2 ,

𝑦
1 − 𝑥2 − 𝑦2 , 𝐻 (𝑧))

There are all sorts of maps you canmake by chosing different functions𝐻 here (and then
unrolling the resulting cylinder onto the plane). But most of them will distort angles:
they’ll take infinitesimal squares on the map to infinitesimal rectangles on the sphere,
and vice versa (like Archimedes’ example). Only one will take squares to squares at
every single point - and this is what Mercator was after!

Here was his idea: we know howmuch the circle starting at height 𝑧 has to get stretched
horizontally - because we are projecting it onto the cylinder of radius 1. At height 𝑧, the
radius of the circular slice of the sphere 𝑥2 + 𝑦2 + 𝑧2 = 1 must be

𝑟 = √𝑥2 + 𝑦2 = √1 − 𝑧2

Thus its circumference is 2𝜋√1 − 𝑧2, and it is going to get stretched to the unit circle,
with circumference 2𝜋 . So, we know that our map is scaling by a factor of 1

√1−𝑧2 hori-

zontally. This means that vertically, we must ensure it is also scaling by 1
√1−𝑧2 !
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But the vertical direction involves two stretches: first we need to think about the ef-
fect of horizontal projection onto the cylinder, and then second, we need to tack on the
vertical stretch induced by 𝐻 .

The first of these is something we can already compute using our knowledge of
Archimedes map! At a point 𝑝 on Archimedes’ map, the vertical vector ⟨0, 1⟩ points
along this cylinder. Its map-length is

‖⟨0, 1⟩‖map = ‖𝐷𝜓𝑝⟨0, 1⟩‖2 =
‖‖‖‖‖

⎛
⎜⎜
⎝

−ℎ cos 𝜃
√1−ℎ2−ℎ sin 𝜃
√1−ℎ21

⎞
⎟⎟
⎠

‖‖‖‖‖2

Where we found the vector as the second column of 𝐷𝜓 for Archimedes map. Comput-
ing this length with the 3D pythagorean theorem (which measures the truelength on
the sphere, as the tangent spaces to 2 use the Euclidean dot product), we see

‖⟨0, 1⟩‖map = √1 + ℎ2
1 − ℎ2 = 1

√1 − ℎ2

This means a vector of Euclidean Length 1 on the map gets sent to a vector of length
1/√1 − ℎ2 on the sphere, so when going from the map to the sphere the length of a
vector is divided by √1 − ℎ2. This means inversely, projecting from the sphere to the
map multiplies the true length of a vector by √1 − 𝑧2 (where we use 𝑧 on the sphere and
ℎ on the plane/cylinder, just to keep things separate).

Exercise 22.1. Check all this!

Figure 22.3.: At height 𝑧, the horizontal projection of a vector changes its length by a
factor of √1 − 𝑧2.
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22. Mercator

Now we’re ready to think about the stretch 𝐻 we need. Going from the sphere to the
cylinder stretched the vertical direction by √1 − ℎ2, and we want the end result to be

that the map gets stretched instead by 1/√1 − 𝑧2

That is, our function 𝐻(𝑧) must have the property that it stretches by 1
√1−𝑧2 to undo the

horizontal projection, and then stretches again by 1/√1 − 𝑧2 to get where we want. This
means

𝐻 ′(𝑧) = 1
√1 − 𝑧2

1
√1 − 𝑧2

= 1
1 − 𝑧2

This is a differential equation for our function 𝐻 which we can solve via integration!Hey, remember me?
Integration by Partial

Fractions?

𝐻(𝑧) = ∫
𝑧

0
1

1 − 𝑧2 𝑑𝑧 = log√
1 + 𝑧
1 − 𝑧

Definition 22.2 (Mercator’s Map). Let 𝑅 ⊂ 2 be all the points of the sphere except the
north and south poles, and let𝑀 ⊂ 𝔼2 be the entire vertical strip𝑀 = {(𝜃, ℎ) ∣ −𝜋 < 𝜃 ≤
𝜋, −∞ < ℎ > ∞}. Then Mercator’s map has chart

𝜙(𝑥, 𝑦 , 𝑧) = (tan 𝑦
𝑥 , log√

1 + 𝑧
1 − 𝑧 )

Exercise 22.2. Find the parameterization for the mercator map. Hint: first calculate the
inverse function of ℎ = log(√(1 + 𝑧)/(1 − 𝑧)) and show it is

𝑧 = 𝑒2ℎ − 𝑒−2ℎ
𝑒2ℎ + 𝑒−2ℎ

Now we know the 𝑧 component of the parameterization, and we know the 𝑥, 𝑦 compo-
nents together are going to be some multiple of (cos 𝜃, sin 𝜃). But which multiple? Well,
we do know that (𝑥, 𝑦 , 𝑧) must lie on the sphere! And that determines everything:

Exercise 22.3. Show that if the point

(𝑥, 𝑦 , 𝑧) = (𝑘 cos 𝜃, 𝑘 sin 𝜃, 𝑒
2ℎ − 𝑒−2ℎ
𝑒2ℎ + 𝑒−2ℎ )

lies on the unit sphere, then

𝑘 = 2
𝑒2ℎ + 𝑒−2ℎ
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Putting these two exercises together, we have successfully computed the parameteriza-
tion to the Mercator projection!

Theorem 22.1. The parameterization for the mercator projection is the map 𝜓 ∶ (−𝜋, 𝜋)×
(−∞,∞) → 2

𝜓(𝜃, ℎ) = ( 2 cos 𝜃
𝑒2ℎ + 𝑒−2ℎ ,

2 sin 𝜃
𝑒2ℎ + 𝑒−2ℎ ,

𝑒2ℎ − 𝑒−2ℎ
𝑒2ℎ + 𝑒−2ℎ )

= ( cos 𝜃
cosh ℎ ,

sin 𝜃
cos ℎ , tanh ℎ)

Where in the second line I have written these combinations of exponentials in their
equivalent form using hyperbolic trigonometric functions. We will meet these functions
in a different context very soon!

Here’s an animation showing the construction of Mercator’s projection, starting by pro-
jecting the sphere onto a cylinder and then unrolling the cylinder onto the plane. To get a better feel for the

Mercator projection, I
suggest clicking “tumble”
in the upper-right menu to
get the earth rotating
around some arbitrary
axes, then use the sliders to
convert back and forth
from the sphere-view to
the map-view.

The fact that Mercator’s map sends preserves angles is a huge advantage not only for
navigation, but also for calculation. Since it sends infinitesimal squares to infinitesimal
squares, it scales all lengths by the same scaling factor, which we can find by

Exercise 22.4. Show that at any point (𝜃, ℎ) in the mercator map, the map length of a
vector 𝑣 = ⟨𝑎, 𝑏⟩ is just its Euclidean length divided by cosh(ℎ):

‖𝑣‖map = 1
cosh ℎ‖𝑣‖𝔼2 = √𝑎2 + 𝑏2

cosh ℎ
Hint: since all vectors are scaled the same, can you find the map length of ⟨1, 0⟩?

Being able to measure the infinitesimal length of any vector lets us write down the
map-disks for the mercator projection, and also lets us compute the infinitesimal area
element:

Exercise 22.5. Explain why the map-area is can be calculated by

𝑑𝐴map = 1
cosh2(ℎ)

𝑑𝑥𝑑𝑦

Hint: think about what it does to an infinitesimal unit square
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Exercise 22.6. At a point 𝑝 = (𝜃, ℎ), write down an equation that determines when
a tangent vector 𝑣 = ⟨𝑎, 𝑏⟩ ∈ 𝑇𝑝𝔼2 is in the map-disk at that point. Explain why the
map-disk is a circle: what’s its Euclidean radius?

22.0.1. Application: Geodesics

There is one important result about the sphere that has eluded us this entire time. In
the plane, we saw that there were three different notions of line that defined the same
curves: distance minimizing, straight, and fixed by isometries. For the sphere, we wrote
down the same three conditions, and said we would prove them equivalent here as well.
But what did we actually do?

We first discovered great circles as they were fixed by isometries, and then we proved
that these curves were also straight, using the correct defintion of acceleration on the
sphere. Ever since, we’ve been using them to define our distance - but we never actually
proved they are distance minimizing! I promised we would do that at a future time (in
a non-circular way) when we had developed more tools to help us, so we could avoid
some nasty integrals in 3D space.

And now is that time! One of the superpowers of usingmaps is it lets us take the sphere
which was originally a curved surface in three dimensions, and accurately represent it
by regions in the 2-dimensional plane. And calculus on the plane is much easier than cal-
culus on a surface in three dimensions. This lets usmimic quite closely the original proof
we gave in Euclidean geometry that lines were distance-minimizing (Theorem 11.1).

Here using the Mercator map, we will focus on a line of longitude, which is a vertical
line on the map. We know these great circles are both straight and fixed by symmetries,
so our goal now is to show they are length minimizing (at least, when they go less than
half way around the sphere)

Theorem 22.2. Let 𝐿 ∈ ℝ. Then the curve 𝛾 (𝑡) = (0, 𝑡) for 𝑡 ∈ [0, 𝐿] in 𝔼2 is Mercator
map-length minimizing: it represents a curve of shortest length between its endpoints on
the sphere.

Proof. Let 𝛼(𝑡) = (𝑥(𝑡), 𝑡) be a curve between (0, 0) and (0, 𝐿) in the Mercator map, for
𝑡 ∈ [0, 𝐿]. We will show that the map-length of 𝛼 is greater than or equal to the map-
length of the straight line 𝛾 (𝑡) = (0, 𝑡).
PICTURE

First, let’s write down the infinitesimal length of 𝛼 : the tangent vector is 𝛼′ = ⟨𝑥′, 1⟩ so
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‖𝛼′‖map = 1
cosh(𝑡)√(𝑥

′)2 + 1

The integral of these infinitesimal lengths gives the overall length:

lengthmap(𝛼) = ∫
𝑏

𝑎
1

cosh 𝑡 √(𝑥
′)2 + 1 𝑑𝑡

Now lets do the same for 𝛾 ′ = ⟨0, 1⟩ at the point 𝛾 (𝑡) = (0, 𝑡): its infinitesimal length is

‖𝛾 ′‖map = 1
cosh 𝑡 √0

2 + 12 = 1
cosh 𝑡

And so its total length is

lengthmap(𝛾 ) = ∫
𝐿

0
1

cosh 𝑡 𝑑𝑡

Remembering that cosh(𝑡) = (𝑒𝑡 + 𝑒−𝑡)/2, its possible to actually do this integral! But
we will not need its value here. Instead, all we need to show is that our arbitrary curve
𝛼 is longer than this.

And this is clearly true! Since (𝑥′)2 is a nonnegative number, we know that for all 𝑡

(𝑥′)2 + 1 ≥ 1

The same equality remains true after taking the square root, and after dividing by
cosh(𝑡), so at each point of the map

‖𝛼′‖map ≥ ‖𝛾 ′‖map

Integrating this we see that

lengthmap(𝛼) ≥ lengthmap(𝛾 )

so 𝛾 , the great circle, is the shortest among all curves of this form!

The careful reader will
notice that this proof is not
quite technically complete:
we showed that the great
circle is the shortest of all
curves of the form (𝑥(𝑡), 𝑡):
but what about all general
curves (𝑥(𝑡), 𝑦(𝑡))? Can
you extend the argument to
this case? Hint: U-sub!
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Exercise 22.7. The careful reader will notice that this proof is not quite technically
complete: we showed that the great circle is the shortest of all curves of the form (𝑥(𝑡), 𝑡):
but what about all general curves? Can you extend the argument to this case, and show
if 𝛼(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) for 𝑡 ∈ [𝑎, 𝑏]with 𝛼(𝑎) = (0, 0) and 𝛼(𝑏) = (0, 𝐿), then lengthmap(𝛼) ≥
lengthmap(𝛾 )?
Hint: look back at the Euclidean proof where we did this: Theorem 11.1. Can you prove
that

lengthmap(𝛼) ≥ ∫
𝑏

𝑎
𝑦 ′

cosh 𝑦 𝑑𝑡

and then perform a 𝑢-sub to relate this to the length of the great circle 𝛾?

This finishes off the final fact we needed to complete our study of the geometry of the
sphere. Congratulations!

Exercise 22.8. Show that

∫ 1
cosh 𝑥 𝑑𝑥 = 2 arctan(𝑒𝑥 ) + 𝐶

Hint: write cosh 𝑥 in terms of its definition in exponentials, multiply the top and bottom
of the resulting fraction by 𝑒𝑥 and do a 𝑢-sub to get an integral related to arctan.

22.1. The Mapmaker's Dilemma

We’ve now gotten rather comfortable computing true quantities about spherical geom-
etry using a map and calculus. Since all of our maps have distorted the sphere in some
pretty serious ways, its pretty important to have these abilities as you cant just trust
your eyes!

Of coure somemaps did better than others: orthographic projectionmessed up basically
every quantity we could think of, whereas Archimedes map managed to accurately por-
tray area andMercators accurately represented angles. But none of our maps accurately
represented both area and angle at the same time.

Indeed - while we did not check it, all the maps in the Cartography chapter have this
property: some of them preserve area, some of them preserve angle, but none of them
do so simultaneously. But this doesn’t mean its impossible to make such a map - there’s
an infinite variety of things that we haven’t tried (and an infinite number of possible
maps that no human has ever drawn) - perhaps one of them is able to preserve two
quantities of the sphere at once? After all, some of the maps we did see in the previous
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chapter did a pretty good job of approximately preserving both (and shifting some of
the complexity to the shape of the mapping region 𝑀 ). Who is to say that someday
a supercomputer running AI mapping software wont discover an absolutely absurdy
complicated domain 𝑀 in the plane, and a map of 2 drawn in 𝑀 which manages to
accurately represent both?

Math, that’s who says this will never happen.

Theorem 22.3 (The Mapmaker’s Dilemma). It is impossible to make a map which simul-
taneoulsy accurately represents both angles and areas.

Proof. Assume for the sake of contradiction that there is such a map𝑀 , defined on some
region 𝑅 of the sphere, and let 𝜙 be its parameterization. If this map preserves angles
then 𝜓 sends infintiesimal squares of 𝑀 to infinitesmial squares on the sphere. But if it
also preserves area it must send a square with side length 𝑠 (and thus area 𝑠2) to another
infinitesimal square of area 𝑠2 (and thus side length 𝑠).
This means that our map must preserve all infinitesimal lengths! Choose any point
𝑝 ∈ 𝑀 and any vector 𝑣 ∈ 𝑇𝑝𝑀 , and build a square with 𝑣 as one side (if 𝑣 = ⟨𝑎, 𝑏⟩
we can use the orthogonal vector ⟨−𝑏, 𝑎⟩ of the same length as the other side defining
the square). Now 𝐷𝜓𝑝 maps this to another square whose side lengths are the same, so
‖𝐷𝜓𝑝𝑣‖ = ‖𝑣‖!
But a map that preserves infinitesimal distances is an isometry - and this is going to spell
trouble. In particular, we know that isometries send geodesics to geodesics, circles to
circles, and preserve the length of all curves. Because of this, as we saw in the chapter
on curvature, isometries preserve the value of all the terms showing up in the limit
that defines curvature: and any two points related by an isometry must have the same
curvature.

But 𝜓 relates points of the plane to points of the sphere! So this implies that the sphere
and the plane have the same curvature, which is a contraditiction: we know the plane’s
curvature is 0 and the sphere’s curvature is 1.

During the proof of this we noticed another, easier dilemma: its impossible to make a
map that preserves distances!

Theorem 22.4 (The Mapmaker’s Dilemma, Distance). It is impossible to make a map
which accurately shows the distance between any pair of points on the sphere.
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22. Mercator

Proof. Such a map would then preserve infinitesimal distances, and thus be an isomery.
But this would again preserve the curvature, which implies a contradiction: that the
sphere and the plane have the same curvature!

This is a pretty amazing result: proving nonexistence theorems are hard, as you have to
somehow rule out all of the possible examples, even the ones you can’t imagine. Proving
such a theorem often requires finding some deep mathematical property that can tell
things apart, some sort of invariant. And for us, that invariant is curvature.

You can see the mapmaker’s dilemma as in some sense a capstone of this entire sec-
tion of the course: if you dig deep enough almost everything we have done since the
introduction of calculus goes into its proof in some way or another.

From one perspective, it essentially finishes off the entire theory of mapmaking, answer-
ing the fundamental question. But from another, it tells us useful pragmatic information
about how to move on: dont worry about making your map look accurate, our theorem
warns us you dont’ need to look at it to compute, anyway! That’s what calculus is for. Just
make it easy to work with. There’s no best map, but there may be a good map for your
specific desires or purpose, just build that one.

And build such a map, we will!
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23. Stereographic

In the wake of our proof of the mapmaker’s dilemma, we rise once more to build a map:
this time no longer worried about trying to make it optimal in every regard, but just
mathematically simple, and easy to interpret.

One very natural contender for such a map is sterographic projection first invented by
the Greeks to make a star chart, representing the spherical sky on a flat piece of paper.
As we’ve come to expect of Greek mathematics, this map has a geometric definition

Definition 23.1 (Stereographic Projection). Given the unit sphere 2 in 𝔼3, the stereo-
graphic projection of a point 𝑝 ∈ 2 is the point 𝜎(𝑝) ∈ 𝔼2 such that the straight line in 𝔼3
connecting 𝑝 to the north pole 𝑁 = (0, 0, 1) intersects the 𝑥𝑦 plane in the point (𝜎(𝑝), 0).

Figure 23.1.: Stereographic projectionmaps the sphere to the plane as though therewere
a light source at the north pole, casting shadows.

This is much easier to see in three dimensions with an animation than a drawing-by-
hand, so here’s one to help (though, in both of these animations I have moved the sphere
above the plane: this doesn’t change the math in any essential way but makes things
easier to see what is going on)

Stereographic projection acts like finding a shadow, from a light source at the top of
the sphere. It can project any pattern on the sphere down onto the plane, like this cube
below.

From this picture, we can derive an algebraic formula describing this projection.
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23. Stereographic

Proposition 23.1 (Stereographic Projection Formula). Stereographic projection provides
a map of the sphere (except for the north pole), onto the entire Euclidean plane. Its chart is

𝜙(𝑥, 𝑦 , 𝑧) = (𝑋 , 𝑌 ) = ( 𝑥
1 − 𝑧 ,

𝑦
1 − 𝑧 )

and the parameterization

𝜓(𝑋 , 𝑌 ) = (𝑥, 𝑦 , 𝑧) = ( 2𝑋
𝑋 2 + 𝑌 2 + 1,

2𝑌
𝑋 2 + 𝑌 2 + 1,

𝑋 2 + 𝑌 2 − 1
𝑋 2 + 𝑌 2 + 1)

Proof. We compute the chart, and leave the process of finding its inverse as an exercise.
In fact, we can simplify things further by noting that the result must be some multiple
of (𝑥, 𝑦), as the line connecting (𝑥, 𝑦 , 𝑧) to (0, 0, 1) in 𝔼3 is (0, 0, 1) + 𝑡(𝑥, 𝑦 , 𝑧 − 1) which
projects to (𝑡𝑥, 𝑡𝑦) in the plane.

Thus, we can look at the 1D version of the problem, which is the projection of a circle
onto the real line through its center, to figure out the scaling factor.

Figure 23.2.: A 1D slice of stereographic projection.

And now we have a problem purely in Euclidean plane geometry, where two similar
triangles make an appearance. The result of the mapping takes our point (𝑥, 𝑧) to a
point distance 𝐿 along the real line, so the right triangle with sides 𝐿 and 1 is simialr to
the triangle with sides 𝐿 − 𝑥 and 𝑧:
Equating the ratios of the sides gives

𝐿 − 𝑥
𝑧 = 𝐿

1
which simplifies to 𝐿 = 𝑥

1−𝑧 . Thus, in general we have

𝜙(𝑥, 𝑦 , 𝑧) = ( 𝑥
1 − 𝑧 ,

𝑦
1 − 𝑧 )
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23.1. Geometry of the Map

Figure 23.3.: Finding the projection point amounts to a calculation with similar trian-
gles.

Exercise 23.1. Derive the formula for the parameterization associated to stereographic
projection, by (1) like above, first focusing on 1 dimension, and then (2) starting with a
point 𝑋 along the line, solving for the intersection of the line connecting it with 𝑁 and
the sphere.

Figure 23.4.: The parameterization of stereographic projection, in a slice.

This map is very simple algebraically: both the chart and parameterization are given
by rational functions (quotients of polynomials). But its also simple geometrically in
several particularly nice way, which we explore in the section below.

23.1. Geometry of the Map

Example 23.1 (Equator sent to Unit Circle). Stereographic projection sends the equator
of 2 to the unit circle of 𝔼2.

We can see this geometrically, as the unit circle already lies in the plane (𝑥, 𝑦 , 0) so
by definition stereographic projection doesn’t do anything to it! And, we can see it
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algebraically, by noting that the 𝑧 coordinate of points on the equator is already zero,
so

𝜙(𝑥, 𝑦 , 0) = ( 𝑥
1 − 0 ,

𝑦
1 − 0) = (𝑥, 𝑦)

But this behavior extends beyong the equator to all lines of latitude of the sphere: they
are all maped to circles about the origin in 𝔼2!

Example 23.2 (Latitudes sent to Circles). Let 𝐶 be a circle on 2, centered on the south
pole 𝑆. Then stereographic projection maps 𝐶 to a circle in 𝔼2 centered at the origin 𝑂.
To see this, note that the circles of 2 centered at one of the poles are contained within a
horizontal plane, so the 𝑧-coordinate of all points in 𝐶 is constant. Thus after applyign
𝜙 we get

𝜙(𝑥, 𝑦 , 𝑧) = ( 𝑥
1 − 𝑧 ,

𝑦
1 − 𝑧 ) = (𝑘𝑥, 𝑘𝑦)

Where 𝑘 = 1/(1 − 𝑧) is a constant for all points 𝑥, 𝑦 . Thus the result is just a similarity
applied to the original curve 𝐶 , whichwas a circle - and similarities take circles to circles!

Figure 23.5.: Stereographic projection sends circles about 𝑆 on 2 to circles about 𝑂 in 𝔼2.

If we want to be even more precise, we could figure out exactly which circles in the
plane they map to.

Exercise 23.2. Let 𝐶 be the circle of radius 𝑟 about the south pole 𝑆 of 2. Show that
under stereographic projection the circle this maps to in 𝔼2 has Euclidean radius

sin 𝑟
1 + cos 𝑟

Hint: Show the circle centered at 𝑆 of radius 𝑟 lies in the plane 𝑧 = − cos 𝑟…then apply
stereographic projection.
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The other curves we can understand well are the great circles through the poles.

Example 23.3 (Great Circles through Projection Map to Lines). Each great circle
through the poles of 2 projects to a line through the origin.

To see this, we recall that great circles are all contained in a plane through the origin,
and so a great circle through the poles is contained in a vertical plane. But the definition
of stereographic projeciton involves drawing lines between𝑁 and points, and for points
in a vertical plane, these lines also lie in that same vertical plane! Thus, the projection
of this vertical plane is just its intersection with the horizontal plane, which is a straight
line through the origin.

Figure 23.6.: Stereographic projection sends geodesics through the poles in 2 to
geodesics (lines) through 𝑂 in 𝔼2

This gives a nice grid on the plane

23.1.1. Generalized Circles

We saw already that great circles through the north pole get mapped to straight lines
through the origin int the plane. But this does not mean that all geodesics map to lines,
as the equator maps to the unit circle!

But its just just geodesics that map to circles either, we saw that circles around the north
and south pole also map to circles in the map. It seems that circles and lines (geodesics)
on the sphere are sent to circles and lines on the plane, but they might get mixed up.
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23. Stereographic

Figure 23.7.: The latitude/longitude grid on the sphere, stereographically projected onto
the plane.

What a weird property! And one that’s hard to state. So let’s introduce a nice piece of
terminology.

Figure 23.8.: Some circles project to circles, others to lines.

Definition 23.2 (Generalized Circle). A generalized circle on the plane is a curve that
is either (1) a Euclidean circle, or (2) a Euclidean straight line.

Theorem 23.1 (Stereographic Projection Preserves Generalized Circles). Stereographic
projection sends any circle on the sphere to a generalized circle on the plane.

Proof. A circle on 2 is the intersection of the sphere with a plane (when this plane is
through the origin, its a great circle, which is also a geodesic). So we are really interested
in showing that stereographic projection maps the spots where a plane intersects the
sphere to a circle in the plane.

This can be done geometrically, or by an algebraic computation. Here I’ll give the alge-
bra, and below I’ll link to a beautiful visualization of the geometric proof. A plane in 𝔼3
is described by an equation of the form
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Figure 23.9.: Generalized circles in the Euclidean plane are the collection of all circles
and lines.

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑

But we can use 𝜓 to express these 𝑥, 𝑦 , 𝑧 on the sphere in terms of (𝑋 , 𝑌 ) on the plane:

𝜓(𝑋 , 𝑌 ) = (𝑥, 𝑦 , 𝑧) = ( 2𝑋
𝑋 2 + 𝑌 2 + 1,

2𝑌
𝑋 2 + 𝑌 2 + 1,

𝑋 2 + 𝑌 2 − 1
𝑋 2 + 𝑌 2 + 1)

Plugging these in, we see

𝑎 2𝑋
𝑋 2 + 𝑌 2 + 1 + 𝑏 2𝑌

𝑋 2 + 𝑌 2 + 1 + 𝑐𝑋
2 + 𝑌 2 − 1

𝑋 2 + 𝑌 2 + 1 = 𝑑

This looks bad with all the fractions, but we can clear denominators to get

2𝑎𝑋 + 2𝑏𝑌 + 𝑐(𝑋 2 + 𝑌 2 − 1) = 𝑑(𝑋 2 + 𝑌 2 + 1)

This still looks pretty bad, but its not really! Let’s collect all the terms with 𝑥 ’s and 𝑦 ’s
on one side, and group things with similar constants together.

(𝑐 − 𝑑)(𝑋 2 + 𝑌 2) + 2𝑎𝑋 + 2𝑏𝑌 = 𝑑 + 𝑐

This is a quadratic equation where 𝑋 2 and 𝑌 2 have the same coefficient! That means,
this is a circle! (We just need to complete the square if we want to know its center and
radius….)
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Except…..when that coefficient is equal to zero (when 𝑐 = 𝑑). Then there are no 𝑋 2 or
𝑌 2 terms, and its a linear equation! So intersections of planes with the sphere either map
to circles in the plane or to lines in the plane, as required.

23.2. Infinitesimal Geometry

Our main goal of infinitesimal geometry is to show that stereographic projection is
conformal: that angles are preserved, and all infinitesimal quantities are controlled by
a single scaling factor.

Of course, one means of doing this is brute force calculus: just differentiate the
parametrization and compute its action on infinitesimal squares. But with a map as
nice as stereographic projection, one can avoid getting so messy wtih formulas and
instead reason more geometrically as well. We shall persue the geometric approach
in this section, though I recommend you work out the calculus-only argument for
practice.

The first thing we notice, from our dealings with lines of latitude and longitude above is
that these originally orthogonal curves on the sphere are sent to two families of orthog-
onal curves in the plane. This implies that infinitesimal squares lined up with latitude
and longitude to infinitesimal rectangles lined up wtih circles about 0 and lines through
0, and vice versa.

Figure 23.10.: Lines of longitude and latitude project to orthogonal curves on the plane.

To show that the overall map is conformal then, all we need to show is that such an
infintesimal square is stretched the same amount in each of these directions.
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Proposition 23.2 (Infinitesimal Angle Length). At a point distance 𝑟 from the south pole
on 2, the infinitesimal stretch along the circle of latitude containing this point is

1
1 + cos 𝑟

Proof. A circle of radius 𝑟 on the sphere has circumference 2𝜋 sin 𝑟 . This projects to a cir-
cle on the plane of Euclidean radius sin 𝑟

1+cos 𝑟 (CITE PROBLEM), and hence circumference

2𝜋 sin 𝑟
1+cos 𝑟 .

The ratio of lengths is the scaling factor: howmuch the length of the circlewas increased
or decreased by projection:

2𝜋 sin 𝑟
1+cos 𝑟

2𝜋 sin 𝑟 = 1
1 + cos 𝑟

Proposition 23.3 (Infinitesimal Radial Length). At a point distance 𝑟 from the south pole
on 2, the infinitesimal stretch along the line of longitude containing this point is

1
1 + cos 𝑟

Proof. Here we need only take the derivative along any geodesic through 𝑆. One such
geodesic is the great circle in the 𝑥𝑧 plane 𝛾 (𝑡) = (sin 𝑡 , 0, − cos 𝑡) which passes through
(0, 0, −1) = 𝑆 at 𝑡 = 0. This maps under sterographic projection to

𝜙(𝛾 (𝑡)) = sin 𝑡
1 + cos 𝑡

Whose derivative measures the expansion rate of the geodesic as it is mapped onto the
plane:

𝐷(𝜙 ∘ 𝛾 )𝑡 = cos 𝑡(1 + cos 𝑡) − sin 𝑡(− sin 𝑡)
(1 + cos 𝑡)2

= cos 𝑡 + cos2 𝑡 + sin2 𝑡
(1 + cos 𝑡)2

= 1 + cos 𝑡
(1 + cos 𝑡)2

= 1
1 + cos 𝑡
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Figure 23.11.: Derivative in the radial direction.

Thus at distance 𝑟 away from the center (so 𝑡 = 𝑟 as the unit cirlce is a unit-speed curve),
the rate of stretching rate is

1
1 + cos 𝑟

The two thereoms above tell us that at any point of the sphere, the latitude and longitude
directions are both stretched by the same factor! This means that infinitesimal squares
in 𝑇𝑝2 are mapped to infinitesimal squares

Theorem 23.2 (Stereographic Projection is Conformal). Stereographic projection pre-
serves angles: it sends infinitesimal squares to infinitesimal squares.

Proof. At any point 𝑝, the stereographic projection chart the curve of longitude and
latitude through 𝑝 to orthogonal curves on the plane. It stretches each of these curves
by the same factor, 1/(1 + cos 𝑟), meaning that it takes a unit square in 𝑇𝑝2 to a square
of side length 1/(1 + cos 𝑟) in 𝑇𝜙(𝑝)𝑀 .

Thus, 𝜙 takes infinitesimal squares to other infinitesimal squares! This means (by the
discussion in the angle chapter) that 𝜙 preserves all angles, so 𝜙 is a conformal map.

Now that we know that stereographic projection is conformal, we know it stretches
all vectors by the same amount at a given point. Our calculations above confirmed
this fact using the chart, but most interesting calculations we will want to do need the
parameterization.
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Figure 23.12.: Stereographic projection takes infinitesimal squares in the tangent space
to other infinitesimal squares: that is, it preserves angle.

Exercise 23.3 (StereographicMap-Coordinates). The fact that stereographic projection
is conformal means that at a given point 𝑝 = (𝑋 , 𝑌 ) in 𝔼2, the parameterization 𝜓
must stretch all vectors by the same amount. By applying 𝐷𝜓 to a vector, calculate this
amount and show it to be

2
1 + 𝑋 2 + 𝑌 2

Because all vectors are stretched in the same way, we can write down the map dot
product easily: after a little calculation we see it is just a multiple of the Euclidean dot
product on the plane!

Theorem 23.3 (Stereographic Dot Product). Let 𝑝 = (𝑋 , 𝑌 ) be a point in the plane, and
𝑣 = ⟨𝑣1, 𝑣2⟩, and 𝑤 = ⟨𝑤1, 𝑤2⟩ be two vectors in 𝑇𝑝𝔼2. Their map dot product is

(𝑣 ⋅ 𝑤)map = (𝐷𝜓𝑝𝑣) ⋅ (𝐷𝜓𝑝𝑤) = 4
(1 + 𝑋 2 + 𝑌 2)2 (𝑣 ⋅ 𝑤)

Proof. Let 𝑒1 = ⟨1, 0⟩ and 𝑒2 = ⟨0, 1⟩ to help with notation. Then we can write 𝑣 as a
linear combination of this basis:

𝑣 = ⟨𝑣1, 𝑣2⟩ = 𝑣1⟨1, 0⟩ + 𝑣2⟨0, 1⟩ = 𝑣1𝑒2 + 𝑣2𝑒2

and similarly for 𝑤 . Next, using the fact that the derivative is a linear map (its a matrix,
after all) we can distribute, and pull out the scalars 𝑣𝑖 and 𝑤𝑖:
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𝐷𝜓𝑝(𝑣) = 𝐷𝜓𝑝(𝑣1𝑒2 + 𝑣2𝑒2)
= 𝐷𝜓𝑝(𝑣1𝑒) + 𝐷𝜓𝑝(𝑣2𝑒2)
= 𝑣1𝐷𝜓𝑝(𝑒1) + 𝑣2𝐷𝜓𝑝(𝑒2)

and again, similarly for 𝑤 . Now we wish to compute the dot product, so we multiply it
all out:

(𝐷𝜓𝑝𝑣) ⋅ (𝐷𝜓𝑝𝑤) = (𝑣1𝐷𝜓𝑝𝑒1 + 𝑣2𝐷𝜓𝑝𝑒2) ⋅ (𝑤1𝐷𝜓𝑝𝑒1 + 𝑤2𝐷𝜓𝑝𝑒2)
= 𝑣1𝑤1(𝐷𝜓𝑝𝑒1) ⋅ (𝐷𝜓𝑝𝑒1) + 𝑣1𝑤2(𝐷𝜓𝑝𝑒1) ⋅ (𝐷𝜓𝑝𝑒2)
+ 𝑣2𝑤1(𝐷𝜓𝑝𝑒2) ⋅ (𝐷𝜓𝑝𝑒1) + 𝑤1𝑤2(𝐷𝜓𝑝𝑒2) ⋅ (𝐷𝜓𝑝𝑒2)

Now we have to think a bit about what we know! Since 𝜓 does not change angles, and
𝑒1 and 𝑒2 are orthogonal, we know that 𝐷𝜓𝑝𝑒1 and 𝐷𝜓𝑝𝑒2 are orthogonal to one another.
Thus, their dot produt is equal to zero! This gets rid completely of the two middle terms
in our big expression, and so we are only left with the first term and the last term.

But both of these are involve the dot product of a vector with itself: like (𝐷𝜓𝑝𝑒1)⋅(𝐷𝜓𝑝𝑒1).
This is the definition of the squared length of that vector, but we know exactly how
stereographic projection changes lengths! Thus for both 𝑒1 and 𝑒2 we know

(𝐷𝜓𝑝𝑒𝑖) ⋅ (𝐷𝜓𝑝𝑒𝑖) = ( 2
1 + 𝑋 2 + 𝑌 2 )

2
= 4

(1 + 𝑋 2 + 𝑌 2)2

Now we putting this all together, we find

(𝑣 ⋅ 𝑤)map = 4
(1 + 𝑋 2 + 𝑌 2)2 𝑣1𝑤2 + 0𝑣1𝑤2 + 0𝑣2𝑤1 + 4

(1 + 𝑥2 + 𝑦2)2 𝑣2𝑤2

= 4
(1 + 𝑋 2 + 𝑌 2)2 (𝑣1𝑤2 + 𝑣2𝑤2)

= 4
(1 + 𝑋 2 + 𝑌 2)2 (𝑣 ⋅ 𝑤)

356



23.2. Infinitesimal Geometry

Definition 23.3 (Stereographic Metric). The dot product on 𝔼2 given at the point 𝑝 =
(𝑋 , 𝑌 ) by

(𝑣 ⋅ 𝑤)map = 4
(1 + 𝑋 2 + 𝑌 2)2 (𝑣1𝑤1 + 𝑣2𝑤2)

Is called the stereographic metric.

Using this, we can compute any quantity we may care about on the sphere, using only
coordinates of the plane. For instance, the spherical length of a vector is just

‖𝑣‖map = √(𝑣 ⋅ 𝑣)map = 2
1 + 𝑋 2 + 𝑌 2 ‖𝑣‖

The area of an infinitesimal piece of the sphere is

𝑑𝐴 = (⟨1, 0⟩ ⋅ ⟨0, 1⟩)map 𝑑𝑋𝑑𝑌 = 4
(1 + 𝑋 2 + 𝑌 2)𝑑𝑋𝑑𝑌

etc.

23.2.1. The Disk and Half Plane

One use of stereographic projection is to write down a map of the sphere, as we’ve
seen above. But it is also used a lot in mathematics as a tool to help create new and
useful functions that would otherwise be difficult to guess. It shows up in this context
in applications across geometry, complex analysis, and other fields of math because its
conformal, and so we know when building things with stereographic projection as one
of the components, it is not going to mess up any angle measures.

Here, we will look at a fundamental example of this, and will use stereographic projec-
tion to write down a conformal map which takes points in the unit disk 𝑥2 + 𝑦2 < 1
to the upper half plane 𝑦 ≥ 0 in 𝔼2. This map becomes very important in the study of
hyperbolic geometry, where we can use it to help us relate two different maps of the
mysterious hyperbolic plane.

Here’s the idea: starting with the unit disk in the plane centered at 𝑂, we can use the
parameterization of stereographic projection to map this onto the sphere. Doing so
moves the region onto the entire southern hemisphere of 2 (since the unit circle maps
to the equator):

Now, we can rotate the sphere a quarter of a turn about the 𝑥-axis, so that the equator
becomes a line of longitude, now passing through the north and south pole, and what
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Figure 23.13.: Mapping the unit disk to the lower hemisphere of 2 via the parameteriza-
tion 𝜓 .

was the southern hemisphere is now the positive 𝑦 hemisphere: the south pole has been
moved to (0, 1, 0).How do we write down a

rotation about the 𝑥 axis?
Well, its going to fix the x
direction so we know the
first column. Then, the

second and third column
will be where the 𝑦 and 𝑧
basis vectors go under a

quarter turn

Figure 23.14.: Rotating the sphere about the 𝑥 axis by a quarter turn takes the lower
hemisphere to the hemisphere of positive 𝑦 .

And finally, we can use the chart of stereographic projeciton to re-project this down
onto the plane. Now, the great circle bounding it passes through the north pole, so it
projects to a line: the 𝑥-axis! This divided the sphere in two, and so its image divides
the plane in two, with our positive 𝑦 hemisphere becoming the positive 𝑦 half-plane.

Exercise 23.4 (Disk and Half Plane: Construction). Let 𝔻 be the unit disk 𝔻 = {(𝑥, 𝑦) ∣
𝑥2 + 𝑦2 < 1} and let 𝕌 be the upper half plane 𝕌 = {(𝑥, 𝑦) ∣ 𝑦 > 0}. Let 𝑇 ∶ 𝔻 → 𝕌 be
the map described above. Prove that $T can be expressed as

𝑇 (𝑥, 𝑦) = ( 2𝑥
1 + 𝑥2 + 𝑦2 − 2𝑦 ,

1 − 𝑥2 − 𝑦2
1 + 𝑥2 + 𝑦2 − 2𝑦 )

By building it step by step: applying 𝜓 to get the disk onto the sphere, rotating by the
correct quarter turn about the 𝑥-axis, and then applying 𝜙 to return to the plane.
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Figure 23.15.: Projecting the hemisphere of positive 𝑦 to the plane with 𝜙 gives the half
plane with positive 𝑦 .

This map is conformal - meaning that it preserves all angles! And even more than that,
it takes generalized circles to generalized circles.

Exercise 23.5 (Disk and Half Plane: Understanding). Prove that these claims are in fact
true: that our new function is conformal, and sends generalized circles to generalized
circles. Hint: what kinds of maps is it built out of? What do each of these maps to do
angles, or to generalized circles (on the plane) / circles (on the sphere)?

Use this to “transfer” this picture of polar coordinates in the unit disk onto the plane,
via our new map.

Figure 23.16.: What do these generalized circles look like when mapped to the half
plane?

23.3. The Sphere of Radius 𝑅
Throughout this chapter we have studied stereographic projection in detail, but on the
unit sphere. It is not too hard to generalize what we have done to spheres of other
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radii, and while this may not sound super exciting at first, it actually turns out to be
absoltuely fundamental to how we are going to discover hyperbolic space! So, it is a
rather important exercise to work this all out for yourself.

The good news is you have this entire chapter as a guide, where I’ve worked out many
of the details for the case of the unit sphere. The formulas will be quite similar, but
there’ll be 𝑅’s inserted in various places: so the second piece of good news is that I’ll
give you the formulas that you need to derive! That way, you can check your work.

Definition 23.4. Let 2
𝑅 be the sphere of radius 𝑅 in 𝔼3. Then the chart 𝜙 for stere-

ographic projection of this sphere is defined geometrically exactly as in the original
version: given a point 𝑝 ∈ 2

𝑅, 𝜙(𝑝) is where the line connecting 𝑝 to the north pole
𝑁 = (0, 0, 𝑅) intersects the 𝑥𝑦 plane.

Exercise 23.6. Show that the formulas for both the chart and the parameterization of
stereographic projection here are as follows:

𝜙(𝑥, 𝑦 , 𝑧) = (𝑋 , 𝑌 ) = ( 𝑅𝑥
𝑅 − 𝑧 ,

𝑅𝑦
𝑅 − 𝑧 )

𝜓(𝑋 , 𝑌 ) = (𝑥, 𝑦 , 𝑧) = ( 2𝑅2𝑋
𝑋 2 + 𝑌 2 + 𝑅2 ,

2𝑅2𝑌
𝑋 2 + 𝑌 2 + 𝑅2 , 𝑅

𝑋 2 + 𝑌 2 − 𝑅2
𝑋 2 + 𝑌 2 + 𝑅2 )

(It might help to look back at Proposition 23.1, and attempt Exercise 23.1).

Running through the same arguments as in the chapter above (which you don’t have to
write down), its straightforward to check that this newmap is a conformal map between
2
𝑅 minus 𝑁 , and the plane. This means its parameterization 𝜓 both preserves angles and
stretches all vectors by a uniform length: we can use this fact to compute the dot product
for this map.

Exercise 23.7. At a point 𝑝 = (𝑋 , 𝑌 ) on the plane, what is the factor by which a vector
𝑣 ∈ 𝑇𝑝𝔼2 is stretched when mapped onto 2

𝑅 by the parameterization of stereographic
projection? Hint: we know the factor is the same for all vectors: so pick an easy vector to
calculate with and find its length!

Once you know this, follow the argument style of Theorem 23.3 to compute the map-dot
product on the plane, and show that it is equal to

(𝑣 ⋅ 𝑤)map = 4𝑅4
(𝑅2 + 𝑋 2 + 𝑌 2)2 (𝑣 ⋅ 𝑤)
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24. Discovery

In this chapter we will embark on our final journey in the Foundations of Geometry, and
construct the third flavor of geometry: hyperbolic space.
To do so, we will draw on all of our knowledge from the course, from the Greeks,
through calculus, to spherical geometry and its expression in maps.

The discovery of hyperbolic geometry was one of the big mathematical achievements of
the previous millennium, as not only did it open our minds to the much richer geometric
world mathematicans nowwork in, but it also definitively answered the most important
oustanding quesiton of the Greeks. So, it is only fitting, that in this final chapter we look
back to where we began.

24.1. Prelude: The Legacy of the Greeks

The ancient Greeks were right to feel proud of their progress in geometry: after a couple
of centuries of deep thought they mastered the axiomatic method, and went forth to
prove hundreds upon hundreds of theorems answering almost every question they had
about the geometry of 2 and 3 dimensional space.

Almost.

The golden age of Greek mathematics closed wtih a few important open problems re-
maining, that they posed to the generations of the future. Three of these were questions
about the specifics of greek method of constructing geometric figures using a ruler and
compass:

• Doubling the cube: given a cube, use a ruler and compass to construct a new
cube with double the volume.

• Squaring the Circle: Given a circle, use a ruler and compass to construct a
square with the same area as the circle.

• Trisecting angles: Given an arbitrary angle, use a ruler and compass to draw
two new lines which divide it evenly in thirds.
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The deep knowledge of greek mathematicians becomes even more clear as we look
back at these problems as guiding lights for mathematics over the last two thousand
years. While today all have been solved, it took until the 1800’s, the answers required
an entirely new branch of mathematics, and they were all answers the greeks and their
successors never imagined:

• Doubling the cube with a ruler and compass is impossible.
• Squaring the circle with a ruler and compass is impossible.
• Trisecting an arbitrary angle with a ruler and compass is impossible.

Unfortunately: we will not answer these three in this course. It turns out the new idea
needed to answer all three of these questions came from abstract algebra - specifically,
from the theory of fields, and field extensions! So while the questions are pure geometry,
their resolutions are arguments in algebra! If you are currently in abstract algebra -
please feel free to come ask me about them!

We will instead focus our attention on the much larger problem the greeks left open:
not a problem about some particular method of drawing geometric figures, but about
the nature of geometry itself.

• Prove the fifth postulate from the remaining four (or show that this is impossible).

This question was worked on for approximately two thousand years by the greatest
mathematical minds, with essentially no success until its even tual resolution 200 years
ago (around 1823). It is one of the great joys of undergraudate mathematics to be able
to seriously engage with the mathematics of the intervening two thousand years, and
be able to fully understand the answers to these lasting questions, and this course has
essentially been designed to exposit this problem’s solution. So, lets begin!

24.1.1. Disproof by Counterxample

Perhaps, like the other questions of antiquity, the reason the greeks failed to prove the
fifth postulate from the other four is that this is also impossible. One way to show a
claim is impossible is by finding a counterexample, and that is the approach that we
will take here. But a counterexample to what? If the question is to “prove Postulate
V from postulates I-IV”, then a counterexample would be a geometry which satisfies
the first four axioms, but for which the fifth is false. The existence of such a geometry
would spell doom to any hope of proving the fifth in the same way that the number 4
spells doom to any hope to proving that all numbers greater than 1 are prime. It would
once and for all settle the question, and in the same style as the other greek resolutions:
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it seems that when it comes to geometry, the only things the greeks didn’t succeed at
were impossible!

But while the dream of producing a counterexample is clear, the actual process for doing
so is not. While its easy to write down a geometry in our modern definition (you just
need to giveme a set of points, and rules for doing calculus with infinitesimal arc lengths
and angles at each point), most everything you will write down will not satisfy all four
of the first axioms of the greeks.

The first and third axioms basically state that “space doesn’t have any holes, tears, rips
or edges in it”: you can always connect two points with a line segment and once you
have a line segment you can always sweep it around in a circle.

Figure 24.1.: Spaces with holes or edges violate postulates 1 or 3.

The second axioms says something about space being infinite: we already saw that this
fails on finite spaces like the sphere. But its more particular than that - it can also fail
on some infinite spaces like the cylinder, where geodesics can be extended indefinitely
in one direction, but not in others. For axioms 2 to be satisfied in the way the Greeks
originally stated it, space needs to be “infinite in all directions”. A more modern reading of

this axiom by Bernhard
Riemann in the 1800s
replaces it with a weaker
statement that only says
geodesics can’t come to an
“edge” you have to be able
to continue forwards
forever, but its OK if you
retrace your steps. This
allows the sphere to be
worked with more
naturally in the context of
axiomatic geometry.

The axiom that is hard to satisfy is the fourth: all right angles are equal. Remember that
when making this precise, we realized it implies that space is both homogeneous and
isotropic: you can move any point to any other, and you can rotate about any point, in
any direction. This axiom is the key to a lot of what we do when proving things: we
always move something t othe origin, or to the north pole to simplify our calculations,
and justify it by our proofs that the sphere and plane are homogeneous. But any little
change whatsoever to the sphere or plane generally produces something that is not
homogeneous:
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Figure 24.2.: Spaces with geodesics of finite total length violate Postulate 2, as originally
written.

Figure 24.3.: Spaces that are not homogeneous and isotropic violate Axiom 4. This is
the hardest one to satisfy: even a single little bump on the infinite plane
can mess it all up.
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Thus, its relatively easy to produce a geometry which satisfies axioms 1,2 and 3 but
fails 4, and its also possible (but harder) to produce a geometry which satisfies 1,3, and
4, but fails 2 (the sphere). Unfortunately neither of these help us in our quest for a
counterexample. Even though we proved on the sphere that the parallel postulate is
false (we found a triangle with three 90 degree angles: so the angles on one side added
up to 180 yet the lines still intersected!), this does nothing towards our goal, as it didn’t
satisfy the other four to begin with!

Figure 24.4.: The sphere violates the parallel postulate, but this does not solve the greeks
problem as it also violates postulate 2.

To build our counterexample, we want to take as much inspiration from the sphere and
the plane as possible - since these are the only two geometries that we know of that
satisfy Postulate 4. But we want our new creation to be infinite like Euclidean space,
and yet fail the parallel postulate like the sphere.

24.2. A Radical Idea

While we often speak as though we have studied two geometries so far - Euclidean and
spherical - this actually isnt quite right. Indeed, we proved along the way that there is
actually a different sphere geometry for each radius! Two spherical geometries of

different radii cannot be
the same as one another, as
they have different areas
for instance

More precisely, we’ve studied the
Euclidean plane, and a whole 1-parameter family of spherical geometries

The sphere geometries are all closely related to one another, (by a similarity that is
not an isometry) and so their geometric formulae are all closely related as well. This
allowed us to start with careful study of the unit sphere and then expand our knowledge
to spheres of any other radius: for example, deriving the formulas for circumference and
area of circles on a sphere of radius 𝑅:
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Figure 24.5.: A spherical geometry for each radius 𝑅 ∈ (0,∞).

𝐶(𝑟) = 2𝜋𝑅 sin ( 𝑟𝑅)

𝐴(𝑟) = 2𝜋𝑅 (1 − 𝑅 cos ( 𝑟𝑅)) = 4𝜋𝑅2 sin2 ( 𝑟
2𝑅)

Exercise 24.1. Derive this formula for the area of a circle on the sphere of radius 𝑅:
use the fact that you found the circumference on a previous homework, and that area
is teh integral of circumference

𝐴(𝑟) = ∫
𝑟

0
𝐶(𝑟) 𝑑𝑟

Then apply a trigonomeric identity to simplify things and get the second expression.

The same ideas apply to other important formulas in geometry like the spherical
pythagorean theorem: you found this on the homework to be cos(𝑐) = cos(𝑎) cos(𝑏) on
the unit sphere, which generalizes on the sphere of radius 𝑅 to

cos ( 𝑐𝑅) = cos ( 𝑎𝑅) cos (
𝑏
𝑅)

And the area of a spherical triangle, which is𝐴 = 𝛼 +𝛽 +𝛾 −𝜋 on the unit sphere, and

𝐴 = 𝑅2(𝛼 + 𝛽 + 𝛾 − 𝜋)

on the sphere of radius 𝑅. This continues for the spherical trigonometry of right trian-
gles. Consider the triangle with angles 𝛼, 𝛽 , opposite sides 𝑎, 𝑏 and hypotenuse 𝑐. On
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the unit sphere we had the relations sin 𝛼 = sin 𝑎
sin 𝑐 and cos 𝛼 = tan 𝑏

tan 𝑐 . Thus, on the sphere
of radius 𝑅 we have

sin 𝛼 =
sin 𝑎

𝑅
sin 𝑐

𝑅
cos 𝛼 =

tan 𝑏
𝑅

tan 𝑐
𝑅

Then rather separately, we had the geometry of the Euclidean plane, where we spent
the first half of the semester carefully confirming all of the results we knew from earlier
education:

𝐶𝔼2(𝑟) = 2𝜋𝑟 𝐴𝔼2(𝑟) = 2𝜋𝑟2

𝑐2 = 𝑎2 + 𝑏2

sin 𝛼 = 𝑎
𝑐 cos 𝛼 = 𝑏

𝑐
Here of course there’s no
analog of the formula
giving a triangles area in
terms of its angle sum, as
in Euclidean space the
angles do not determine the
size of a triangle at all!

These formulas are different than those of the sphere, but not wholly so. Indeed - we
saw earlier a hint at the connection, by recovering the Euclidean pythagorean theorem
from the spherical one, as the radius of the sphere goes to infinity. But this wasn’t an
accident: if you take lim𝑅→∞ in any of the spherical formulas above, you’ll recover the
Euclidean counterpart!

Exercise 24.2 (Circle Area and the Euclidean Limit:). Let 𝐶𝑅(𝑟) = 2𝜋(1−𝑅 cos(𝑟/𝑅)) be
the area of a circle of radius 𝑟 on 2

𝑅. Prove that as 𝑅 → ∞ this converges to the Euclidean
formula

lim𝑅→∞ 𝐶𝑅(𝑟) = 𝜋𝑟2

Exercise 24.3 (Trigonometry and the Euclidean Limit). Show that in the limit 𝑅 →
∞, the trigonometric formulas for spherical right triangles converge to their Euclidean
counterparts.

lim𝑅→∞
sin 𝑎

𝑅
sin 𝑐

𝑅
= 𝑎

𝑐

lim𝑅→∞
tan 𝑏

𝑅
tan 𝑐

𝑅
= 𝑏

𝑐
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This is even true for the maps we’ve studied! For example you’re calculating the scaling
factor for stereographic projection on the homework, and finding the map-dot product
on the plane:

(𝑣 ⋅ 𝑤)map = 4𝑅4
(𝑅2 + 𝑋 2 + 𝑌 2)2 (𝑣 ⋅ 𝑤)

Thus, this tells us how to rescale the Euclidean dot product 𝑣 ⋅ 𝑤 depending on our
location (𝑥, 𝑦) ∈ 𝔼2, so that the result accurately reflects teh true dot product on the
sphere. But when 𝑅 → ∞, this true dot product becomes the Euclidean plane!

Exercise 24.4 (Maps and the Euclidean Limit). Show that as 𝑅 → ∞, the scaling factor
of stereographic projection becomes a constant. Thus, the map now treats vectors based
at different points all the same - just like Euclidean geometry! (In fact, the result is
Euclidean geometry).

Because this all fits together so nicely, we might picture the geometries we have discov-
ered so far as forming a line (the spheres) with teh Euclidean plane off at infinity.

Figure 24.6.: Euclidean geometry is the limit of spherical geometry as 𝑅 → ∞.

This picture suggests a radical idea: as we increase the radius of the sphere, we keep
our geometry nice and homogeneous but make it larger: getting closer to satisfying
postulate 2. Once we go all the way to 𝑅 = ∞we reach Euclidean space, where Postulate
2 is satisfied! What if we kept going? Can we go beyond Euclidean space, pushing the
radius past ∞, and uncover new spaces, where Postulate 2 is true, but - like the spheres
- the parallel postulate is false?

24.2.1. To Infinity and Beyond

Theres one obvious problem with our grand plan however: what could it possibly mean
to go beyond infinity? We can’t even go to infinity rigorously - everything must be
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Figure 24.7.: If we can find a way to keep going, can we find a new geometry?

done in terms of limits. We want to use the formulas we’ve worked hard to develop this
semester as a guide for whatever new geometry lies on the other side, but the formuls
are no good if the first step is “plug in a number larger than ∞” when in fact there are
no such things.

What we need is a change in perspective. We would like to replace our discussion of
lim𝑅→∞ with something we can evaluate at a finite number. And, curvature provides the
key. When studying spherical geometry, we proved there was an inverse relationshiuip
between radius and curvature: the bigger a sphere the less it was curved, and the smaller
the sphere the larger its curvature. More precisely we showed that

𝜅 = 1
𝑅2

Thus, we can go to any of our formulas above, and directly replace any occurances of
𝑅2 with 𝜅 without changing any of the math. For example, the circumference 𝐶𝑅(𝑟) =
2𝜋𝑅 sin(𝑟/𝑅) becomes

𝐶𝜅(𝑟) = 2𝜋
√𝜅

sin(√𝜅𝑟)

where we’ve re-arranged the relationship of radius and curvaure above to be able to
substitute 𝑅 = 1

√𝜅 .

Exercise 24.5. Give the analogs of other spherical geometry formulas in terms of cur-
vature.
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The euclidean limit now is no longer 𝑅 → ∞, but rather 𝜅 → 0: and it nowmakes perfect
conceptual sense to ask what happens if we keep going? We should just get 𝜅 = 0, and
then - pushing onwards - get negative values of 𝜅!

Figure 24.8.: Expressing things in terms of curvature takes the 𝑅 = ∞ limit to 𝜅 = 0, and
the mysteries beyond infinity to the familiar world of negative numbers.

There’s just one problemwith this: it doesn’t seem toworkwhenwe look at our formula.
Indeed, when 𝜅 = 0 the circumference is an indeterminant form 0/0 (since sin(0) = 0),
and when 𝜅 < 0 we are trying to plug a negative number into a square root.For people who have taken

complex analysis and are
not scared of this: go ahead
and do it! This is actually a

totally valid means of
getting to the right answers

But this is
not as serious of a problem as it seems at first. We’ve expressed this function in one way,
using the function sin which we invented for the study of circles in Euclidean geometry.
But mathematics doesn’t care how we write things down in symbols - those are human
inventions. And we can write the exact same function using a series expansion, since
right after our definition of sin we derived its series $sin 𝑥 = 𝑥 − 𝑥3/3! + 𝑥5/5! − ⋯

𝐶𝜅(𝑟) = 2𝜋
√𝜅

(√𝜅𝑟 − 1
3!(√𝜅𝑟)

3 + 1
5!(√𝜅𝑟)

5 − ⋯)

= 2𝜋
√𝜅

(√𝜅𝑟 − 1
3!√𝜅

3𝑟3 + 1
5!√𝜅

5𝑟5 − ⋯)

We can simplify this by noting that every single term in the parentheses contains a √𝜅,
and so we can safely factor one out, cancelling its counterpart in the denominator of
2𝜋 :

= 2𝜋 (𝑟 − 1
3!𝜅𝑟

+ 1
5!𝜅

2𝑟5 − ⋯)

This formula is exactly equal to the formula we started wtih, just expressed in another
notation. BUt this other notation is much more suggestive wehn we are looking to be
bold, and think about what happens if we explore beyond the originak 𝜅 > 0 regime in
which we derived it. Indeed - this formula is completely well-defined for all 𝜅! So we
may take 𝜅 zero, and we recover directly 𝐶0(𝑟) = 2𝜋𝑟 - Euclidean geometry!
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What happens when 𝜅 is negative? Well, if we look at the formula, we see that each
term is multiplied by an

Half of the terms (those with odd powers of 𝜅) change sign! This makes ALL the signs
positive!! Here we’ve written 𝜅 = −|𝜅| and used |𝜅| in the formula to cancel these signs
and emphasize that everything is positive

𝐶𝜅(𝑟) = 2𝜋(𝑟 + 1
3! |𝜅|𝑟

3 + 1
5! |𝜅|

2𝑟5 + ⋯)

The case we will be most interested in is when we push 𝜅 all the way to negative 1. Here
the circumference function is just

𝐶(𝑟) = 2𝜋(𝑟 + 1
3! 𝑟

3 + 1
5! 𝑟

5 + ⋯)

What is this new function like, qualitatively? In making all the terms the same sign, we
prevent all the cancellation that happens in the series expansion for sin and cos that
keeps them bounded in size. Instead, this function gets larger with each term we add,
in the end growing faster than any polynomial! This means if there really is some
space for which this is the circumference formula, circles here would be very very large.
Since smaller-than-Euclidean circles signifies positive curvature, bigger-than-Euclidean
circles hints that the space will have negative curvature. But we can do better than that!
We have an exact, quantitative formula for curvature involving circle’s circumference,
after all.

Exercise 24.6. Let 𝑘 < 0. Prove that a space with the circumference function

2𝜋(𝑟 + 1
3! |𝜅|𝑟

3 + 1
5! |𝜅|

2𝑟5 + ⋯)

has curvature 𝜅, by computing the limit

lim
𝑟→0+

3
𝜋
2𝜋𝑟 − 𝐶(𝑟)

𝑟3

This tells us that if we construct a space whose circumference-to-radius-function is as
above, then this space necessairly has curvature 𝜅. Doing so will create for us a space
of every possible value of negative curvature, just as varying the radius of a sphere pro-
duces a space of every possilbe positive curvature. Such spaces are called hyperbolic
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Definition 24.1 (Hyperbolic Geometry). Given a negative number 𝜅, hyperbolic geom-
etry of curvature 𝜅 is denoted ℍ2𝜅 , and is the space where at every point, the circumference
of circles grows as 𝐶𝜅(𝑟). When 𝜅 = −1, we often shorten this to just hyperbolic geometry*
and denote it by ℍ2.

It’s reasonable to wonder if
this uniquely defines a

space: after all, all we have
done is say how the circles
(and thus, the curvature)
behaves. This is a good

thing to think about, and it
was resolved in 1839 by

Minding’s Theorem which
states that if two spaces
have the same constant
curvature, then they are
locally isometric to one

another.

To learn about this new hyperbolic space, we will push this technique as far as we possi-
bly can: starting with a formula on the sphere, and pushing it to its limit (infinite radius,
zero curvature) and beyond to the realm of negative curvature. In doing this we’ll see
the function we met above - like the sine but with all the terms positive, is actually just
the tip of the iceberg. There is a whole collection of paralllel universe trigonometry func-
tions out there, defined analogously. And since these functions will play a large role in
our further developement, now is a good time to pause and get ourselves acquainted.

24.3. Interlude: Hyperbolic Functions

The function name cosh is
prononuced as it is spelled,

but sinh is pronounced
sinch in the US and shine

in the UK.

Definition 24.2 (Hyperbolic Sine and Cosine). The hyperbolic sine and cosine function
are defined by their series expansions, which are identical to those for sin and cos, except
that the sign of all coefficients have been made positive:

sinh(𝑥) = 𝑥 + 𝑥3
3! +

𝑥5
5! +

𝑥7
7! ⋯

cosh(𝑥) = 1 + 𝑥2
2! +

𝑥4
4! +

𝑥6
6! ⋯

To begin to develop intuition for these functions, we should take a look at their graphs.
The first major revalation is that unlike the usual trigonometric functions, neither are
periodic!

Also, they seem to grow extreemly fast. How fast? We can actually quantify it by relating
these functions to exponentials. Since sinh contains all the odd terms of the series for
𝑒𝑥 and cosh contains all the even terms, we can see that

sinh(𝑥) + cosh(𝑥) = 𝑒𝑥

Exercise 24.7 (Hyperbolic Functions in terms of Exponentials). Show that we can ac-
taully express the hyperbolic trigonometric functions in terms of exponentials:

sinh(𝑥) = 𝑒𝑥 − 𝑒−𝑥
2 cosh(𝑥) = 𝑒𝑥 + 𝑒−𝑥

2
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24.3. Interlude: Hyperbolic Functions

Figure 24.9.: The Hyperbolic Sine

Figure 24.10.: The Hyperbolic Cosine

375
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Because 𝑒−𝑥 quickly becomes small, this gives us a very precise understanding of just
how quickly sinh and cosh grow. For 𝑥 >> 1 we have

cosh(𝑥) ≈ sinh(𝑥) ≈ 𝑒𝑥
2

In direct analogy with regular trigonometry, starting from sinh and cosh we can build
up a family of other hyperbolic trigonometric functions:

The first two of these are
often pronounced tanch

and coth. I am too scared
to attempt to pronounce the

second two
Definition 24.3 (Other Hyperbolic Functions).

tanh 𝑥 = 𝑠 sinh 𝑥
cosh 𝑥 coth 𝑥 = cosh 𝑥

sinh 𝑥
sech 𝑥 = 1

cosh 𝑥 cschs 𝑥 = 1
sinh 𝑥

Knowing what some of these look like as well will be important, so let’s take a minute
to think about their graphs. How should tanh behave? Well, both sinh and cosh are
growing exponentially at the same rate, so their ratio should be approximately 1 for
large inputs. And, sinh is odd whereas cosh is even, so the quotient is an odd function:
passing through 0 with horizontal asymptotes at ±1!

Figure 24.11.: The Hyperbolic Tangent

Thus, coth(𝑥) = 1/ tanh(𝑥) should also asymptote to±1, but always be larger in absolute
value, diverging to ±∞ at the origin.

The reciprocals sech and csch of cosh and sinh share similar behavior, both asymptoting
to 0, while the hyperbolic secant stays bounded in [0, 1] and the hyperbolic cosecant
diverges at the origin.

376



24.3. Interlude: Hyperbolic Functions

Figure 24.12.: The Hyperbolic Cotangent

Figure 24.13.: The Hyperbolic Secant

Figure 24.14.: The Hyperbolic Cosecant
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These functions satisfy many analogous identites to the standard trigonometric ones as
well, which can be proved directly from their definition:

Exercise 24.8 (Hyperbolic Trigonometric Identities). Prove that

cosh2(𝑥) − sinh2(𝑥) = 1

Use this to deduce that

sech2(𝑥) + tanh2(𝑥) = 1
These identites are the same as the Euclidean versions but with the sign switched! Hint:
the formula relating to exponentials!

Exercise 24.9. Derive this trigonometric identity:

sinh(2𝑥) = 2 sinh(𝑥) cosh(𝑥)

For the hyperbolic functions it turns out that calculus is even simpler than in the Eu-
clidean case:

Exercise 24.10 (Hyperboloic Trigonometric Derivatives). Prove that

𝑑
𝑑𝑥 cosh(𝑥) = sinh(𝑥) 𝑑

𝑑𝑥 sinh(𝑥) = cosh(𝑥)

No minus signs to remember in hyperbolic trigonometric calculus! Use these to find
the derivative of tanh(𝑥).

Wewill find these hyperbolic trigonometric functions to be extremely useful in giving us
a shortened way to write results, without carrying around infinite series. For example,
we can already simplify the circumference function:

Exercise 24.11 (Simplifying Circumference). If 𝑘 < 0, show that the circumference
formula 𝐶𝜅(𝑟) derived above can be rewritten in terms of hyperbolic trionometry as

𝐶𝜅(𝑟) = 2𝜋
√|𝜅|

sinh (√|𝜅|𝑟)
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24.4. Geometry with Curvature −1

24.4. Geometry with Curvature −1
To daydream of a world with curvature −1, we now have a rather concrete way forward
to make initial guesses about its properties:

• Derive a formula for spherical geometry on the unit sphere
• Generalize that formula to spheres of radius 𝑅
• Replace the radius with the curvature 𝜅
• Make sense of this formula for negative values of 𝜅: if necessary, use a series
expansion.

• Plug in 𝜅 = −1 to get our conjecture for how negatively curved geometry should
behave.

• Convert back from a series to a hyperbolic trigonometric function, for a compact
way to write things.

We saw this process play out in full for the circumference of circles above, where after
all this work we eneded up just going from 2𝜋 sin(𝑟) to 2𝜋 sinh(𝑟). Often, this process
does indeed just boil down to replacing the usual trigonometric functions with their
hyperbolic counterparts,

sin 𝑟 ↦ sinh 𝑟
cos 𝑟 ↦ cosh 𝑟
tan 𝑟 ↦ tanh 𝑟

But there can be other sign changes that occur as well, from factors of 𝜅, so its important
to actually run the arguments when you could be unsure.

24.4.1. Properties

We’ve already seen what happens to circumference of a circle in negative curvature: it
grows exponentially with radius. What else can we learn about this mysterious geome-
try?

Exercise 24.12. Show that when 𝜅 = −1 we expect a circle’s area to be related to the
radius by

𝐴(𝑟) = 2𝜋(cosh 𝑟 − 1) = 4𝜋 sinh2(𝑟/2)
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Here we had a switch in
the first term from

1 − cos 𝑟 to cosh 𝑟 − 1,
which you may have

missed if you just tried to
replace cos with cosh

This formula - like the one for circumference before it - tells us that circles areas also
increase exponetially with radius. There really is a lot of space in negative curvature!

Exercise 24.13. What are the areas of circles of radius 1, 10 and 50?
A 50 meter radius (so, 100 meter diameter) circle on earth is just large enough to fit a
football field inside: a football field is approximately 100m by 50m, so we can fit

𝜋 ⋅ 502
100 ⋅ 50 = 𝜋

2 = 1.57

football fields in our circle, in Euclidean space. How many football fields area fit inside
the same radius circle in negatively curved space?

Exercise 24.14 (Hyperbolic Pizza). Oneway to try and develop intuition for the strange
behavior of circles is to think about the type of circles we see in daily life: pizzas! One
major factor determining how good a pizza is is its crust percentage which we will define
as

CrustPercent = area(Crust)
area(Pizza)

In this probelm we will consider pizzas which have 1 inch crusts: meaning a 10 inch
(radius) pizza has a 9inch radius center of toppings, surrounded by a 1 inch thick circle
of crust.

• Show the CrustPercent for Euclidean pizza is $$$$. From this we see that as 𝑟 → ∞
the crust percent drops to zero: this makes sense, if you imagine an extremely
large pizza with only a 1inch thick crust, it’s totally reasonable that most of the
pizza is not crust!

• WHat is the CrustPercent for a hyperbolic pizza of radius 𝑟? Show that when 𝑟 is
large, this limits to the constant

CrustPercent → 1 − 1
𝑒 ≈ 63

Thus crust is an inevitable part of life in hyperbolic space: even if you try to make
the pizza huge it will still be well over half crust!

Exercise 24.15 (Hyperbolic Pizza II). In this problem, we will imagine our unit to be
inches (so, the radius appearing in formulas for space of curvature −1 is measured in
inches).
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24.4. Geometry with Curvature −1

You are at a pizzaria and are trying to decide if the 5 inch radius pizza they sell is large
enough for you and your friends. They also sell a six inch (radius) pizza, but it costs
twice as much. You think this is crazy! Is this a good deal, or not?

Your is feeling very hungry, and jokingly asks the pizzamaker how large of a pizza he
would need to order so that its areas is the same as an american football field (100 × 50
yards). The pizzamaker says “I think I have room for that in my oven, coming right up!”
How big of a pizza is he going to make?

Its OK to approach this question totally numerically: the goal is just to showcase how truly
strange this new world is.

One thing we’ve already learned here - as this area formula goes to∞ as the radius does,
we see that space is infinite! So, we have a good reason to believe that Postulate 2 will
end up being true about this geometry, unlike what we saw for the sphere.

We can learn more about this space by trying to take our other formulas across the
divide.

Example 24.1. For the area of a triangle, starting from

𝐴 = (𝛼 + 𝛽 + 𝛾) − 𝜋

we could scale lengths by a factor of 𝑅 to get onto a sphere of radius 𝑅. THis scales areas
by 𝑅2 so the result is

𝐴 = 𝑅2(𝛼 + 𝛽 + 𝛾 − 𝜋)

Rewriting this in terms of curvature, we see

𝐴 = 𝛼 + 𝛽 + 𝛾 − 𝜋
𝜅

And now, setting 𝜅 = −1, we get

𝐴 = 𝛼 + 𝛽 + 𝛾 − 𝜋
−1 = −(𝛼 + 𝛽 + 𝛾 − 𝜋)

= 𝜋 − (𝛼 + 𝛽 + 𝛾)
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This formula is very striking, and quite confusing at first. Whereas circles get extremely
large, here the area of a triangle (which must be a positive number) is equal to 𝜋 minus
some other number. This means it is at most 𝜋 ! So, triangles in this space seem to not be
allowed to ever have area greater than 3.14. How can this be? Once we actually build
the geometry, we will come to see.Remember - we don’t

actually know this crazy
space exists yet! We are

just playing around with
formulas to see what we

should expect, if there
really is a geometry on the
other side of 𝔼2. If I were

working 200+ years ago on
the problem of parallels

and I came across these two
facts, I would think surely I

should be able to quickly
find a contradiction: how

can circles areas grow
exponentially but all

triangles areas be less than
4?

Beyond this, we can continue by looking at the pythagorean theorem, and the trigonom-
etry of right triangles.

Exercise 24.16. If 𝜅 < 0, show that the pythagorean theorem for a right triangle with
legs 𝑎, 𝑏 and hypotenuse 𝑐 should be

cosh (𝑐√|𝜅|) = cosh (𝑎√|𝜅|) cosh (𝑏√|𝜅|)

Thus, when 𝜅 = −1 we get

cosh 𝑐 = cosh 𝑎 cosh 𝑏

Example 24.2. For a right triangle with angles 𝛼, 𝛽 , legs 𝑎, 𝑏 and hypotenuse 𝑐 contin-
uing the formula for spherical geometry to 𝜅 = −1 gives

sin 𝛼 = sinh 𝑎
sinh 𝑐 cos 𝛼 = tanh 𝑏

tanh 𝑐
and analogously for sin 𝛽, cos 𝛽

Exercise 24.17. Check this.

Exercise 24.18. Use these trigonometric rules and the pythagorean theorem for 𝜅 = −1
to discover a relationship between the tangent of an angle 𝛼 , its opposite side 𝑎, and
adjacent side 𝑏:

tan 𝛼 = tanh 𝑎
sinh 𝑏
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24.4. Geometry with Curvature −1

24.4.2. Parallels

Now that we’ve seen glimpses of the possible negatively curved world beyond the Eu-
clidean plane, we should spend some time thinking through their implications. In par-
ticualr, we are most interested in whether or not such a space of negative curvature will
truly be the counterexample we seek: will it fail the fifth postulate?

The 5th postulate gives a condition on when two geodesics will intersect: it says if you
can measure the angle of intersectoin they make with a third line, and its less than
two right angles, then the two lines intersect one another at some distance along that
direction.

Figure 24.15.: Postulate 5 gives a condition on when two lines will intersect, in terms of
the angles of intersection with a third line.

Our tool to analyze this situation will be trigonometry, where we’ll reason as follows.
Choose some line and pick a point at distance 𝑑 away from that line. Through this point,
any line we draw makes some angle with the vertical segment of length 𝑑 , which we
can call 𝜃 . Our goal will be to understand how to relate this angle to the point whre the
two lines intersect (if they do at all).

Let’s review first what happens in the Euclidean case. Here, we can use trigonometry
to express the relationship between the height 𝑑 , the angle 𝜃 , and the distance 𝐿 to the
point of intersection

tan 𝜃 = 𝐿
𝑑

We can then solve this for 𝐿, getting 𝐿 = 𝑑 tan 𝜃 . This formula gives us a value for 𝐿
any time that tan 𝜃 is defined, and so we get a point of interesection whenever 𝜃 ≠ 𝜋/2.
When 𝜃 = 𝜋/2 there is no solution for 𝐿, and so there is no point of interesection. Thus,
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Figure 24.16.: A setup for testing the truth or falsity of the parallel postulate in a special
case.

Figure 24.17.: Verifying the parallel postulate is satisfied in this special case in Euclidean
geometry, using trigonometry.
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24.4. Geometry with Curvature −1

our new line intersects the first except exactly when the sum of the two angles is 𝜋 (each
being 𝜋/2), as the parallel postulate states.

What happens to this reasoning if we want to translate it to negatively curved geome-
try? Well, we will need to figure out what the analogous relationship between 𝜃, 𝑑 and
𝐿 should be. While we don’t have any ready-made trigonometric relationship sitting
around (yet), we can derive one from what we already know, much like you have done
in spherical geometry before:

Exercise 24.19. Using the analogs of right triangle trigonometry in negative curvature,
show that

tan 𝜃 = tanh 𝐿
sinh 𝑑

Hint: write tan 𝜃 = sin 𝜃/𝑐𝑜𝑠𝜃 , use the fact that we do* know what the trigonometric
formulas for sine and cosine should look like (from Example 24.2), and then we also
know the pythagorean theorem in negative curvature (Exercise 24.16) to simplify.*

Like in the Euclidean case, we can solve this for 𝐿: but perhaps its easier to start by just
solving for tanh 𝐿:

tanh 𝐿 = sinh 𝑑 tan 𝜃

What does this equation tell us? Well, whenever we can find an 𝐿 that makes it true
that means we have found a point of intersection between our two lines. And, whenever
there is no 𝐿whichworks, we know the two lines do not intersect - theymust be parallel!
So, analyzing the solutions to this equation will tell us exactly when lines in negative
curvature would and would not intersect.

To analyze the possible soltuions here, we need to think a bit about the behavior of
the hyperbolic-trigonometric that arise. Most importantly, the function$ tanh 𝐿 has
horizontal asymptotes at ±1, so it is impossible to have any solution to tanh 𝐿 = 𝑥 if
|𝑥| ≥ 1.
But wait: it seems pretty easy to make the other side of the equation bigger than 1: both
tan 𝜃 and sinh 𝑑 are functions that can grow unboundedly! Let’s do an explicit example:
if we look at a point 𝑑 = 1 unit of distance away, our equation becomes

sinh(1) tan 𝜃 ≈ 1.175 tan 𝜃 > 1
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This happens anytime tan 𝜃 > 1/1.175 ≈ 0.85, which is pretty easy to arrange - if
𝜃 = 0.73 radians then tan 𝜃 = 0.9 which will do the trick.

Figure 24.18.: The parallel postulate will be false in hyperbolic geometry.

But what does this mean? This means that when 𝑑 = 1, the line making angle 0.73with
the vertical never manages to intersect the original horizontal line! We have an explicit
pair of lines making total angle less than two right angles, whcih nonetheless never
intersect one another! Thus, Euclids fifth postulate must be false in hyperbolic space!

We can use this same sort of reasoning quickly to see that the equivalent Playfairs axiom
is also violated here. Considering the same situation as above, we can take a line, and
a point on that line, and find many lines through that point which do not intersect the
original: any line making original angle greater than arctan(1/ sinh(1)) will do!

Figure 24.19.: Playfair’s axiom will be false in hyperbolic geometry.

Thus, our daydreams of pushing the radius past infinity - if they can be formalized - will
indeed solve the most important problem of the greeks.
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At this point we have a lot of ideas of what negatively curved, or hyperbolic space is like,
but we do not have a concrete way to work with it. This causes two major problems:

• We don’t have anymeans of discovering new facts about hyperbolic space
everything we’ve learned as come from our understanding of spherical geomtery,
passed along the transition as curvature goes to −1. This is a great approach
for learning facts about hyperbolic geometry that are analogous to the sphere,
but it leaves us blind to any potential differences. And we know there will be
differences! As a concrete case where this will be important: we know on the
sphere there’s just one type of (orientation preserving) isometry: rotations. But
in the Euclidean plane there are two types: translations and rotations! How many
types of isometries does hyperbolic space have?

• How do we really know that hyperbolic space even exists? For both the Eu-
clidean plane and the sphere, we started with a definition we specified the points
of the geometry, its tangent vectors, and its infiniteismal length / inner product.
Then we built up all other results as theorems. But so far we have no analogous
construction of hyperbolic space. We have a bunch of theorems about how dis-
tance should work, or area should work, but we don’t even have a clear notion of
what the points are we are measuring distance between! Because the implications
of this discovery are enormous (namely, it resolves the most important problem
of the greeks, which was open for more than two thousand years), we should not
be satisfied with this state of affairs. Its like the discovery of a new species deep
in the jungle: its useful to have a detailed description of the creature, but this isnt
enough. If you claim to have discovered Bigfoot, you’d better present a specimen!

In this chapter we aim to simultaneously remedy these two concerns, and produce an
explicit model of hyperbolic space.

25.1. Conceptual Troubles

Upon sitting down to try and rigorously define the hyperbolic geometry we’ve glimpsed
through the transition, we immediately hit a conceptual hurdle: how arewe supposed to
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find the right set of points and definition of infinitesimal length? For both the Euclidean
plane and the sphere, we didn’t have to confront this problem because we essentially al-
ready knew the right definitions to write down: we’ve all seen many planes and spheres
before in daily life. But negatively curved space? We do see around us spaces that have
some negative curvature, like a pringle chip

Figure 25.1.: A pringle chip has negative curvature

But this is not hyperbolic space. The curvature of a pringle chip is more negative at the
center and less negative (closer to flat) the farther out you go: here’s a zoomed out view
of the pringle chip function 𝑥2 + 𝑦2

Figure 25.2.: But the curvature of a hyperboloid is not constant: its much less curved far
away from the center.

But hyperbolic geometry is supposed to have curvature −1 everywhere: indeed, if we
really reach this space along a path including spheres and the Euclidean plane, it should
be both homogeneous and isotropic. A pringle chip is neither! Other shapes familiar
from the world around us are closer to having constant negative curvature, such as the
surface of a kale leaf, certain types of coral, or the wavy back of a nudibranch.

However these surfaces are all rather small: hyperbolic space is supposed to be infinite!
And its not quite clear upon looking at one of these surfaces how to continue it, and
make it bigger. As the surface grows exponentially fast it wrinkles more and more
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Figure 25.3.: A kale leaf is very negatively curved.

Figure 25.4.: Many corals also exhibit negative curvature.

Figure 25.5.: Anytime evolution tries to increase the area of something beyond Euclidean
constraints, it resorts to negative curvature.
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- it seems hard to believe one could continue this infinitely without the surface self-
intersecting, or worse - having a crease or points of non-differentiability (rendering all
of our calculus based tools useless).

In fact, this is a very resonable worry to have. This was though deeply about at the turn
of the 20th century, and it was actually proved that there is no way to do this.

Theorem 25.1 (Hilbert’s Theorem). There is no surface in 𝔼3 which has the geometry of
the hyperbolic plane.

In the technical statement
of the theorem, it is

important that the surface
is described by at least
second differentiable

functions for the proof to
go through. But this is no

serious restriction as we are
already working in a world

where calculus forms the
foundations of everything

we do, and you need second
derivatives to even define
curvature (meaning, if our
surface were not described
by such functions, then the

limit defining curvature
would not exist at some

points).

Thus, we must abandon hope of being able to work exactly as we did for the sphere,
where we found a subset 2 ⊂ 𝔼3 of points, found the tangent spaces, and then defined
all geometry using the euclidean dot product on these tangent spaces. Instead, we are
going to have to make use of our study of maps, and the flexibility they provide.

25.2. Making a Map

So, there is no surface in 𝔼3 which has the same geometry as the hyperbolic plane. But
that’s alright - there isn’t any region in 𝔼2 that has the same geometry as 2 (via The
Mapmaker’s Dilemma) but we are able to completely accurately do computations about
2 using regions of 𝔼2 via a map.

In the previous part, our construction of a map went like this: we started with the
‘actual’ sphere, and wrote down a chart onto a region of the plane, and its inverse, a
parameterization 𝜓 taking that region to the sphere. We then used this parameterization
𝜓 to make all geometric properties of the sphere computable on the map directly (map-
lengths, map-angles, map-dot-products, map-areas, etc). At the end of this procedure,
we are left with a region on the plane, and a new rule on how to compute geometric
quantiteis in that region (different from the original Euclidean way). But, if we follow
these new map-formulas correctly, it is precisely as good as if we worked directly on
the sphere itself.

Taking this observation to its logical (but shocking) conclusion was the subject of Rie-
mann’s Habilitationsschrift, or post-doctorate research assigned by Gauss. Riemann re-
alized that to do geometry, maps are all you need!

The Fundamental Insight of Riemannian Geometry: Any region of
the plane, together with a rule for how to perform the dot product at each
point (and thus, to compute infinitesimal lengths and angles) is a map of
some geometry - just perhaps a geometry that we have never before seen.
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Example 25.1. From Riemann’s perspective, if I were to write down the strip in the
plane |𝑦 | < 𝜋 and explain that at the point (𝑥, 𝑦) in this strip, the dot product of two
vectors 𝑣 = ⟨, 𝑣1, 𝑣2⟩ and 𝑤 = ⟨𝑤1, 𝑤2⟩ is

𝑣1𝑤2 + 𝑣2𝑤2
cosh2 𝑦

Then I am describing a true geometry. No matter what questions you asked me about
the geometry, with enough work I’d be able to do the calculations and answer them, so
this is truly indistiguishable from having the ‘real thing’ in front of me - whatever that
might mean! Indeed - Riemann’s whole point is that there is no real thing above and
beyond the map: the map is just as real as anything else!

Of course in this particular case if I sat down and started doing lots of calculations, I
would realize that this geometry has some familiar properties: all of its geodesics have
length 2𝜋 , triangles angles are determined by their angle sum, and so on. This is just
the dot product that we found for the Mercator projection of the sphere!

But Riemann’s genius is to go further, and take something like the below seriously

𝑣1𝑤2 + 𝑣2𝑤2
cos2 𝑦

or even

(𝑥2 + 1)𝑣1𝑤1 + 𝑒𝑥+sin 𝑦 𝑣2𝑤2
These dot products describe some geometric spaces we have not yet encountered. And
its up to us to do math, and figure it out!

In taking this bold step, Riemann reduced the set of things needed to do geometry down
to one: just a dot product on a region in the plane, or a region in some higher dimen-
sional (euclidean) space. Because this dot product is the main tool we use to find in-
finitesimal lengths, then lengths, then distances (and hence produce ametric), it’s called
the Riemannian metric.

The two middle terms both
have the same coefficient
𝐹(𝑥, 𝑦) because the order
we take the dot product in
shouldn’t matter: we want
𝑣 ⋅ 𝑤 = 𝑤 ⋅ 𝑣 .

Definition 25.1 (RiemannianMetric). Given a region𝑅 ⊂ 𝔼2 in the plane, a Riemannian
metric on 𝑅 is a choice of formula for the dot product at each point (𝑥, 𝑦) ∈ 𝑅. Any such
choice is specified by three functions, 𝐺(𝑥, 𝑦), 𝐸(𝑥, 𝑦) and 𝐹(𝑥, 𝑦) where we write

(𝑣 ⋅ 𝑤)(𝑥,𝑦) = 𝐺(𝑥, 𝑦)𝑣1𝑤1 + 𝐹(𝑥, 𝑦)(𝑣1𝑤2 + 𝑣2𝑤1) + 𝐹(𝑥, 𝑦)𝑣2𝑤2
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Thus, as we move around to different points (𝑥, 𝑦) the definition of the dot product is
allowed to vary, representing that our mapmight be distorting the underlying geometry
by different amounts at different points.

Exercise 25.1. Write the Riemannian metric (as a matrix) for the stereographic and
mercator projections of the sphere.

Riemann actually went
further than this: recalling
that it is not even possible

to cover the entire earth
wtih a single chart, it

would be shortsighted to
define geometry in

geneneral in terms of a
single map. Instead, a

space is called a manifold
if there is some atlas of

charts covering it, and a
Riemannian manifold if

each of these charts has a
Riemannian metric.

Alright, so how do we go about finding a map, or in mathematical terminology, a Rie-
mannian metric for hyperbolic space? We continue pushing spherical things beyond
infinity, of course! We can take any map we like for the spehre and run our hyperboliza-
tion procedure on it: write it for radius 𝑅, convert to curvature, then push to 𝜅 = −1.
Because out of all the maps we studied stereographic projection certainly had the (math-
ematically) nicest properties, we will start wtih this. We found the dot product for a
sphere of radius 𝑅 to be, at the point 𝑝 = (𝑥, 𝑦)

(𝑣 ⋅ 𝑤)map = 4𝑅4
(𝑅2 + |𝑝|2)2 (𝑣 ⋅ 𝑤)𝔼2

Writing this in terms of curvature is straightforward, as only even powers of 𝑅 show up
already

(𝑣 ⋅ 𝑤)map =
4 1
𝜅2

( 1𝜅
2 + |𝑝|2)2

(𝑣 ⋅ 𝑤)𝔼2 (25.1)

= 4
𝜅2( 1𝜅 + |𝑝|2)2

(𝑣 ⋅ 𝑤)𝔼2 (25.2)

= 4
( 𝜅𝜅 + 𝜅|𝑝|2)2 (𝑣 ⋅ 𝑤)𝔼2 (25.3)

= 4
(1 + 𝜅|𝑝|2)2

(𝑣 ⋅ 𝑤)𝔼2 (25.4)

This formula is exactly equivalent to what we already knew for the sphere when 𝜅 > 0,
but continues to make sense when 𝜅 ≤ 0. In the case that 𝜅 is negative, its easiest to
write things in terms of |𝜅| as usual, where we get

(𝑣 ⋅ 𝑤)map = 4
(1 − |𝜅||𝑝|2)2

(𝑣 ⋅ 𝑤)𝔼2
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This map has some interesting behavior! Its not defined on the whole plane, but only
on a subset of it: once |𝑝| reaches a size of 1/√|𝜅| then we get division by zero. In
particular, for the “unit sized” space 𝜅 = −1 the map is only defined inside the unit disk!
Nonethless as we will shortly seen, the geometry described by this map is infinite. This
is the so-called disk model of the hyperbolic plane.

25.3. The Disk Model

Definition 25.2 (Disk Model of ℍ2). The disk model (also called the Poincare Disk or
the Beltrami-Poincare Disk) is given by the unit disk in the plane

{(𝑥, 𝑦) ∈ 𝔼2 ∣ 𝑥2 + 𝑦2 < 1}

together with the Riemannian metric

(𝑣 ⋅ 𝑤)𝑃𝐷 = 4
(1 − |𝑝|2)2 (𝑣1𝑤1 + 𝑣2𝑤2)

Figure 25.6.: The defininition of the Disk Model

What does this model of the hyperbolic plane look like? Well, we see immediately
that it is conformal (no surprise, since stereographic projection was as well) since the
dot product is a multiple of its Euclidean counterpart. Thus, any angles we see in the
disk will represent the true angles on the plane. But the scaling factor has completely
the opposite behavior of stereographic projection. It approaches infinity as we head
towards the boundary of the disk, which means that objects there are much bigger than
they appear. Equivalently, if you move an object towards the boundary of the disk it
should appear to shrink in size!
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This is perhaps easiest to see via an animation, where in the program below you can
click and drag the map around by isometries: all the triangles in the image are the same
hyperbolic size at all times (verify this by dragging any one you like to the center).

These strange distortions of size aside, there are many positive qualities about this
model. In someways, having built our model of hyperbolic space inside of the Euclidean
plane is actually more useful than doing something else - as we can use things we know
about 𝔼2 to help us deduce facts about ℍ2: here’s a useful example, with almost no
knowledge we can deduce the circles in ℍ2 about the center of the disk model.

First, Euclidean rotations of the plane about the origin restrict to isometries of the Disk
Model of ℍ2: Rotation isometries of the plane do not change the distance of a point
from the origin, and they do not affect the Euclidean dot product of two tangent vectors.
Because the hyperbolic disk dot product is just the Euclidean one rescaled by a function
of distance from the origin, it is also unchanged by a rotation, so these rotations are
hyperbolic isometries!

Knowing this, we can see that hyperbolic circles about the origin of the disk model
are Euclidean circles. Euclidean rotations of ℍ2 about the origin are isometries of the
model, so every point on the same Euclidean circle as 𝑝 about 𝑂 is the same hyperbolic
distance from 𝑂: this is the definition of a hyperbolic circle!

Figure 25.7.: Circles about 𝑂 in the Disk model are Euclidean circles.

Note that this argument does not actually tell us the hyperbolic radius of this circle,
because we don’t yet know how to measure the hyperbolic distance in our model from
𝑂 to 𝑝. We will figure out how to do this in the next chapter, and confirm this space
really does have curvature −1.
The disk model is wonderful for depciting the hyperbolic plane, and for doing any sort
of calculations that involve rotational symmetry, as we saw above. But serveral other
computations are rather challenging in the disk model, due to the fact that the scaling
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factor in front of the dot product depends on the *euclidean distance from 𝑂. This makes
somework with 𝑥 and 𝑦 coordinates cumbersome, as they naturally describe affine lines
and not circles in the plane.

But there is nothing tying us down to exclusively use this disk we just discovered! Its
just one map, after all. And, just like for the sphere, different maps are best suited for
different purposes. In the next section below we derive the map perhaps most used for
computations, the Half Plane Model.

25.4. The Half Plane Model

The half plane, or upper half plane, or Poincare half plane model of the hyperbolic plane
is so named becasue it is a map which is drawn on the upper half space of the Euclidean
plane. In fact this upper half plane map is just a different perspective on the map we
already drew above, using stereographic projection!

We saw previously that stereographic projection lets us write down a conformal map
that takes the unit disk to the half plane by projecting to the sphere, rotating, and re-
projecting to the plane:

Figure 25.8.: Mapping the Disk to the Half Plane

Indeed, in Exercise 27.66 you actually derived the formula expressing this map, which
after a little simplification is These maps can be

described much shorter
using complex arithmetic:
if we write 𝑧 = 𝑥 + 𝑖𝑦 for a
point in the plane, then

𝜙(𝑧) = 𝑖 1 + 𝑧
1 − 𝑧

and its inverse 𝜓 is

𝜓(𝑧) = 𝑧 − 𝑖
𝑧 + 𝑖

𝜙(𝑥, 𝑦) = ( 2𝑥
𝑥2 + (𝑦 − 1)2 ,

1 − (𝑥2 + 𝑦2)
𝑥2 + (𝑦 − 1)2)

We can similarly derive its inverse (let’s call it 𝜓 ), which maps the upper half plane to
the disk.
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𝜓(𝑥, 𝑦) = ( 𝑥2 + 𝑦2 − 1
𝑥2 + (𝑦 + 1)2 ,

−2𝑥
𝑥2 + (𝑦 + 1)2)

We now use this to transfer the disk model itself onto the upper half plane. The result
is going to be a conformal model of Hyperbolic space as well (the original model was
conformal, and this new model is the result of applying a conformal map to it), so we
know the dot product is just going to be some mutliple of the Euclidean version. And
all that needs to be done is calculate that scaling factor!

Exercise 25.2 (The Scaling factor of the UHP). At a point (𝑥, 𝑦), show that the scaling
factor for the dot product is simply 1

𝑦2 , following the steps below:

• Start with a unit vector, say ⟨1, 0⟩ based at some point (𝑥, 𝑦) in the upper half
plane.

• Apply 𝐷𝜓 to this vector, to move it to the disk model, based at the point 𝜓(𝑥, 𝑦).
• Find the scaling vactor at this point, and simplify the result!

Figure 25.9.: The definition of the Half Plane Model

Definition 25.3 (Half Plane Model ofℍ2). The points of the half plane model of hyper-
bolic space are

{(𝑥, 𝑦) ∣ 𝑦 > 0}
together with the Riemannian metric

(𝑣 ⋅ 𝑤)𝐻𝑃 = 𝑣1𝑤1 + 𝑣2𝑤2
𝑦2
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Thinking again about what this map represents, we know that since its conformal we
can trust the angles we see to be accurate, but we should distrust lengths. Since the
scaling factor is going to infinity as we approach the 𝑥-axis, we know that the true size
of a shape ismuch larger than it appears down by the axis. This is analogous to the what
happens near the unit circle in the disk model.

As 𝑦 → ∞ the scaling factor approaches zero, which says that the half plane model
also distorts distances the other way as we move up, away from the line 𝑦 = 1 where
infinitesimal distances are correct. Objects high up in the half plane appear much larger
than they actually are, like Greenland on the Mercator map of the sphere.

This is easiest to see with a more interactive plot: dragging the image below applies
isometries, so all objects remain the same size as they move around (and, in fact, all are
images of the same triangle to begin with).

It will prove very useful to us to be able to go back and forth between the disk and half
plane models of hyperbolic space. Pre-empting this, we had a homework exercise to
think through this map when it was first derived (just in the context of stereographic
projection), which we will now go through together. Say we start with this grid of polar
coordinates in the disk:

Figure 25.10.: Polar Coordinates drawn in the Disk Model

When we map to the upper half plane, we know a couple things: - By direct calculation,
we can find the origin 𝑂 maps to (0, 1). - The map sends generalized circles to general-
ized circles, so circles about 𝑂 go to generalized circles.
- But, a circle only maps to a line if it passes through the projection point. None of these
do - they’re all inside the lower hemisphere, and then rotated to be inside the rightmost
hemisphere, and the projection point is the north pole. Thus, they project to circles:

• Similarly for the lines through the origin - these go to generalized circles.
• Themap is conforormal, so it preserves angles. The two original families of curves
intersected orthogonally, so the new curves must as well.
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Figure 25.11.: Circles about 𝑂 in the Disk and their images in the Half Plane

• In particular, the radial lines that intersected the unit circle orthogonally now
intersect the 𝑥-axis orthogonally.

This tells us that the radial lines must go to lines/segments of circles passing through
(0, 1) and hitting the 𝑥 axis orthogonally. The only line with both these properties is
the 𝑦 axis, so the rest must be half-circles, whose centers are on the real axis

Figure 25.12.: Diameters of the Disk and their images in teh Half Plane

We can run a similar argument in reverse, to think about what the standard 𝑥𝑦 grid
patttern on the half plane would look like in the disk. Here we find that both families
of curves must go to arcs of circles in the disk, like below:

25.5. Other Maps

We discoverd the disk model, and later the half plane model starting with the stereo-
graphic projection map. And this was a good choice - the niceness of stereographic
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Figure 25.13.: A grid in the Half Plane and its image in the Disk

projection led to two particularly nice maps of hyperbolic space! But these are far from
the only maps: its possible to apply this same procedure to many maps of the sphere,
and arrive at a map of hyperbolic space.

25.5.1. Mercator

What happens if we take theMercator projection and extrapolate to negative curvature?
TheMercator projection’s dot product is also conformal and given by a relatively simple
formula:

One may (correctly) guess the form this will take if we were to (1) write it out for a
sphere of radius 𝑅 (2) convert this to curvature (3) push the curvature to a negative
number, using the taylor series representation and (4) convert back to trigonometric
form at 𝜅 = −1: it will switch the denominator cosh(𝑦)2 for simply cos(𝑦)2!

Exercise 25.3. Check this.

The result is a map onto the plane of geometry with curvature−1: hyperbolic geometry!
This map’s dot product is

(𝑣 ⋅ 𝑤)(𝑥,𝑦) =
𝑣1𝑤1 + 𝑣2𝑤2

cos2 𝑦

Which becomes undefined when cos 𝑦 = 0, so the region where the map makes sense
around the origin is in the strip

{(𝑥, 𝑦) ∶ |𝑦 | < 𝜋
2 }
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The dot product on this strip has scaling factor diverging to infinity towards its bound-
ary. This tells us we should expect that objects appear very small near the boundary of
the strip, compared to thier actual size.

This is often called the band model, as it is defined in the interior of a band, or horizontal
strip in the Euclidean plane. You may recognize the band model from our book’s front
cover!

Exercise 25.4. Which isometries are easy to see must exist in the band model?

While we will wait until the next chapter for formal verification, we can already figure
out what some of the geodesics in the band model must be. In the Mercator porjection,
the equator geodesic was represented by the line 𝑦 = 0 in all curvatures - and so once
the curvature becomes negative this line is still a geodesic of our model! Other parallel
lines to it on the sphere wer not geodesics (they were lines of latitude, or circles around
the poles), and this also remains true in the Band model.

Figure 25.14.: The line 𝑦 = 0 is the Equator in the mercator projection, which is a
geodesic. All other horizontal lines are latitudes - not geodesics. The
same remains true in the Band Model.

Vertical lines in the Mercator projection are lines of longitude, which are geodesics for
spheres of every curvature. Thus, passing to negative curvature we find that all vertical
lines in the Band model still to be geodesics:

Its useful to pause here and think about what a vertical strip between two such curves
on our map actually represents. On the sphere, the scaling factor 1/ cosh(𝑦) shrank
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Figure 25.15.: Vertical lines in the Mercator projection represent lines of longitude,
which are geodesics. The same remains ture in the Band Model.

Figure 25.16.: Geodesics converge in positive curvature, and diverge in negative curva-
ture.
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towards zero as we moved away from the equator, meaning that the lines were actually
closer than they appear.

But once 𝜅 = −1 and the scaling factor becomes 1/ cos(𝑦) which gets extremely large
as 𝑦 grows, meaning that these geodesics actually become much farther apart than they
appear to be. Quantitatively: the distance along a horizontal line is 1/ cos(𝑦) times as
long as it appears! This is the first quantitative measurement where we can confirm
that geodesics indeed race away from one another in negative curvature.Note this isn’t precisely the

distance between points, as
we are measuring the
length of a horizontal
curve which is not a

geodesic. To find distance
we’ll have to do some more

computaitons in the next
chapter.

25.5.2. Archimedes?

Archimedes map of the earth was an equal area projection. So far, all of our maps of hy-
perbolic space have been conformal but have massively distorted area. Can you find an
analog of Archimedes map in negative curvature, to give an area-preserving option?
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Now that we have a concrete model of hyperbolic space (actually, many of them), its
time to put them to work, and prove some things about hyperbolic space. Of course we
already know alot - we followed many geometric formulas directly through the limiting
procedure! But these formulas speak of geodesics and circles, and we don’t know what
these things look like in ourmodels, so it’s hard to begin using these facts to do anything!
We will remedy that gap in this chapter, and in the end, prove that hyperbolic space
satisfies Euclid’s postulates 1-4 while failing the fifth.

26.1. Homogenity & Isotropy

As we have for both the plane and the sphere, we begin our journey by investigating the
symmetries of hyperbolic space. This will be our first foray into using the two models
to inform one another, and switching back and forth whenver is convenient, whether
than being tied down to a single way of calculating.

As we saw in defining the disk model, its easy to see that rotations about its center are
isometries (though its hard to see that there are any other symmetries at all, at first!)

Proposition 26.1 (Rotations of Disk are Isometries). Euclidean rotations of the plane
about the origin restrict to isometries of the Disk Model of ℍ2.

Proof. Rotation isometries of the plane do not change the distance of a point from the
origin, and they do not affect the Euclidean dot product of two tangent vectors. Be-
cause the hyperbolic disk dot product is just the Euclidean one rescaled by a function
of distance from the origin, it is also unchanged by a rotation, so these rotations are
hyperbolic isometries!

To find more isometries, we can switch our viewpoint and take a look in the Half Plane
model. Since isometries are maps which preserve the infinitesimal dot product, we can
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Figure 26.1.: Rotations about 𝑂 in the Disk, and the corresponding rotations about (0, 1)
in the Half Plane.

use the fact that the scaling factor here only depends on 𝑦 to find some new isometries
of hyperbolic space.

Proposition 26.2 (Horizontal Translation is an Isometry). Any euclidean horizontal
translation (𝑥, 𝑦) ↦ (𝑥 + 𝑎, 𝑦) is an isometry of the upper half plane model.

Proof. Translations are Euclidean isometries, so they preserve the Euclidean dot product.
But horizontal translations also preserve the 𝑦 coordinate, and hence the scaling factor.
Thus, they preserve the hyperbolic dot product as well.

These isometries are different than those that we discovered before, as they move
the point (0, 1) (which is where the origin of the disk was sent), whereas our
earlier-discovered isometries fixed the origin (and hence would would fix (0, 1) here).
We can see what these look like in both models, using the pictures we developed above.
Vertical lines in the Half Plane correspond to circles through (0, 1) on the boundary in
the Disk Model, and our new isometries move these curves to one another.

Other translations of the Half Plane are not isometries, as any map that changes the 𝑦
coordinate is going to change the scaling factor applied by the dot product:

Example 26.1. The map 𝜏 (𝑥, 𝑦) = (𝑥, 𝑦 +1) is not an isometry of the Half Plane model.
Let 𝑣 , 𝑤 be two vectors based at (𝑥, 𝑦) in the upper half plane: then their hyperbolic dot
product is
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Figure 26.2.: Horizontal translation in the Half Plane is an isometry of hyperbolic space.

(𝑣 ⋅ 𝑤)ℍ2 = 𝑣1𝑤1 + 𝑣2𝑤2
𝑦2

The derivative 𝐷𝜏 of any translation is the identity, so 𝐷𝜏𝑣 = 𝑣 and 𝐷𝜏𝑤 = 𝑤 , but now
based at (𝑥, 𝑦 + 1) which means their new dot product is

((𝐷𝜏𝑣) ⋅ (𝐷𝜏𝑤))ℍ2 = 𝑣1𝑤1 + 𝑣2𝑤2
(𝑦 + 1)2

This is a different number so the dot product was not preserved, and the map was not
an isometry.

We can see in this example what went wrong however: we moved vertically (increas-
ing the denominator) without changing the vectors (leaving the numerator the same).
Instead, when we

Proposition 26.3 (Homothety is an Isometry). Let 𝜆 > 0. Then the Euclidean similarity
𝑠(𝑥, 𝑦) = (𝜆𝑥, 𝜆𝑦) is an isometry of the Half Plane model of hyperbolic space.

Proof. Like the example, we just compute: here the derivative 𝐷𝑠 is just scaling by 𝜆, so
our vectors 𝑣 and 𝑤 at (𝑥, 𝑦) go to the vectors 𝜆𝑣 and 𝜆𝑤 at (𝜆𝑥, 𝜆𝑦). In the new dot prod-
uct, the numerator is multiplied by 𝜆2 (one 𝜆 from each vector), and the denominator is
multiplied by 𝜆2, so they cancel out:
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((𝐷𝑠𝑣) ⋅ (𝐷𝑠𝑤))ℍ2 = 𝜆𝑣1𝜆𝑤1 + 𝜆𝑣2𝜆𝑤2
(𝜆𝑦)2

= 𝜆2(𝑣1𝑤1 + 𝑣2𝑤2)
𝜆2𝑦2

= (𝑣 ⋅ 𝑤)ℍ2

What does this kind of isometry look like in our two models? We understand well
what it looks like through our euclidean eyes in the Half Plane: its just a similarity
of the plane! But while it looks like points are getting farther apart here, theyre not.
This is an isometry after all, so it preserves hyperbolic distances! The fact that it looks
to be expanding is just a consequence of the fact that distances are artificially short-
looking near the bottom, and artificially long towards the top. But what about in the
dsik model?

Figure 26.3.: Euclidean similarities (𝑥, 𝑦) ↦ (𝜆𝑥, 𝜆𝑦) are isometries of the Half Plane
model. These act like translations, as is easier to see in the Disk.

We’ve now discovered enough isometries to prove rigorously that hyperbolic geometry
is both homogeneous and isotorpic:

Exercise 26.1 (ℍ2 is Homogeneous). There is an isometry taking any point of hyper-
bolic space to any other.

Next, we want to use this to see that space is isotropic: that about any point, there is a
rotation by any amount. Here we may wish to switch over to the Disk Model, brining
with us the fact that we just proved space is isotropic (even though we haven’t bothered
to write down what those isometries look like in the disk). We know we can rotate by
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any angle we like about 𝑂, and now we also know that its possible to mvoe 𝑂 to any
arbitrary point 𝑝. So, what do we do? We translate 𝑝 to 𝑂 do any rotation we like, and
then translate back of course! Conjugation saves the day.

Corollary 26.1 (ℍ2 is Isotropic).

This is enough to see that Euclid’s Postulate 4 is true for hyperbolic space: remember
that Euclid’s phrasing all right angles are equal was the original way of saying homoge-
neous and isotropic.

26.2. Geodesics

We’ve been able to track down a couple curves in the various models that certainly must
be geodesics - reasoning from watching what happens to grear circles on the sphere un-
der our transition. But we are still lacking in two things: (1) a rigorous proof, done in
hyperbolic geometry itself, that these are in fact distance minimizing and more impor-
tantly (2) a classification of what all the geodesics are. We remedy this below, with com-
putations that should feel very analogous to both the Euclidean and spherical cases.

Proposition 26.4 (Vertical Lines are Geodesics). In the Half Plane model, the vertical
curve 𝛾 (𝑡) = (0, 𝑡) is minimizing between any two points.

Figure 26.4.: Vertical segments are length-minimizing in the Half Plane.

Proof. Consider the endpoints (0, 𝑎) and (0, 𝑏), and let 𝛼(𝑡) = (𝑥(𝑡), 𝑡) be any other curve
between these for 𝑡 ∈ [𝑎, 𝑏]. Then 𝛼′ = ⟨𝑥′, 1⟩ based at (𝑥, 𝑡) so its infinitesimal length is

‖𝛼′‖ = √(𝑥′)2 + 1
𝑡
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We can do our usual trick, and notice that whatever 𝑥′ is, we know its square is positive,
so we certainly have

‖𝛼′‖ ≤ 1
𝑡

But this is exactly the infinitesimal lenght of 𝛾 , since 𝛾 ′ = ⟨0, 1⟩. Thus we can integrate
this inequality to find

‖𝛾 ′‖ ≤ ‖𝛼′‖ ⟹ ∫
𝑏

𝑎
‖𝛾 ′‖𝑑𝑡 ≤ ∫

𝑏

𝑎
‖𝛼′‖𝑑𝑡

⟹ length(𝛾 ) ≤ length(𝛼)

Given that these curves are distance minimizers, we can directly find the distance func-
tion between vertically separated points:

Corollary 26.2 (Vertical Distance Formula). The distance between (0, 𝑎) and (0, 𝑏) is
log(𝑏/𝑎).

Proof. This is just an integral of the infinitesimal length of 𝛾 (𝑡) = (0, 𝑡) from 𝑡 = 𝑎 to
𝑡 = 𝑏:

length(𝛾 ) = ∫
𝑏

𝑎
1
𝑡 𝑑𝑡 = log(𝑡)|

𝑏
𝑎 = log(𝑏) − log(𝑎) = log (𝑏𝑎)

This tells us that all vertical lines are geodesics in the half plane model. And we can
transfer this information over to the Disk Model to learn about some of the geodesics
there. The vertical line through (0, 1) goes to a diameter of the unit disk as we can see
by direct computation, plugging in (0, 𝑡). Then, since we know the unit disk as rotations
as isometries, we can see that all diameters of the disk are geodesics.

Next, we can transfer this informaition back to theHalf Plane. Consider just a horizontal
diameter of the disk. After transfering back, we know thismust go to a generalized circle
through (0, 1), and that it must interset the vertical line at a right angle. This doesn’t
leave us many options: in fact, it uniquely specifies it! It must be the top half of the unit
circle.
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Figure 26.5.: Proving one vertical line in the Half Plane is a geodesic implies that all
diameters of the Disk are geodesics.

So, this half circle is a geodesic. But as soon as we know that, we can use the fact that
horizontal translations and similarities of the plane are isometries to get that all half
circles orthogonal to the real line are geodesics, and all vertical lines as well.

Figure 26.6.: Knowing that diameters of the Disk are geodesics implies all half circles
are geodesics of the Half Plane.

Theorem 26.1 (Geodesics in the Half Plane Model). The geodesics in the disk model are
arcs of generalized circles which are orthoonal to the 𝑥-axis boundary.

Here’s a program drawing some of these geodesics: you can click and drag them
around.

Finally we perform one more transfer, and move all this knowledge back to the Disk
Model. We know that the transfer map preserves generalized circles, and that it is con-
formal. Thus, it must take generalized circles orthogonal to the 𝑥−axis to generalized
circles orthogonal to the unit circle. These are the geodesics of the Disk.

Theorem 26.2 (Geodesics in the Disk Model). The geodesics in the disk model are arcs
of generalized circles which are orthoonal to the unit circle boundary.

Nowwe can transfer this information right back to the upper half plane: since the trans-
lation between the twomodels preserves angles and generalized circles, we immediately
conclude
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26. Geometry

Figure 26.7.: Using a classification of geodesics of the Half Plane to find the geodesics
of the Disk

26.2.1. Parallels

Now that we explicitly know the geodesics, it is easy to see that this geometry fails the
parallel postulate! While we can work with either version, its slightly simpler to con-
sider Playfair’s formulation, as it does not require us to actually measure any angles.

Theorem 26.3 (Playfairs Axiom is False in Hyperbolic Geometry).

Proof. This is a proof by counterexample we just need to find a a line, where at least two
other lines pass through a point not on it, and neither intersects the original line. This
is quick work now that we know the geodesics.

First, lets start with the point (0, 1). We are familiar with two geodesics through this
point: the vertical line, and the top half of the unit circle. So now, all we need is a third
geodesic that doesn’t intersect either of these! There are tons of possibilities: let’s just
take the vertical line at 𝑥 = 2.

Figure 26.8.: Playfair’s Axiom is False in Hyperbolic Geometry.
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If we want to work with angles, we can also see that Euclids original version is false
rather immediately:

Proposition 26.5. Euclid’s parallel postulate is false for hyperbolic geometry.

Proof. Let’s work in the half plane model, and consider the vertical geodesic at 𝑥 = 0.
We need only find two geodesics that cross it, and have angle sum less than 𝜋 , but
remain disjoint.

For one of them, take the top half of the unit circle. For the second, take a larger circle
with center slightly shifted horizontally, say, the circle of radius 3 centered at 𝑥 = −1.

Figure 26.9.: Euclids Fifth Postulate is False in hyperbolic geometry.

Now, because the model is conformal we can figure out what these angles are using
Euclidean geometry. But we don’t even need their exact value: the first is 𝜋/2 and
the second is less than 𝜋/2, so the sum is less than 𝜋 yet the geodesics are disjoint.
Contradiction.

These two examples, rather straightforward after our classification of geodesics, finish
off the Greek’s largest open problem. Hyperbolic geometry satisfies Postulates 1-4 with-
out satisfying 5, so there is no possible way to prove 5 from the first four (if so, the fact
that the first four are true in ℍ2 would logically imply the 5th must be true in ℍ2, and
its not).
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26. Geometry

26.3. Circles

A circle is the set of equidistant pts from a point. We begin our search for cirlces by
formalizing a discussion we previously had, in the Disk Model.

Note however that the
Euclidean radius is
probably not 𝑟 : the

Euclidean radius is always
< 1 since its inside the unit

disk, whereas the
hyperbolic radius could be

any positive number

Proposition 26.6. Hyperbolic circles in the Disk Model about 𝑂 are Euclidean circles.

Proof. Let 𝑝 be some point in the disk which lies at distance 𝑟 from the origin. Since
Euclidean rotations of the disk about 𝑂 are hyperbolic isometries, we know these rota-
tions do not change hyperbolic distances. Thus, any rotation of 𝑝 about 𝑂 is the same
distance away from 𝑂, and so (by definition) lies on the circle of radius 𝑟 about 𝑂.
But, Euclidean rotations of 𝑝 about 𝑂 trace out a Euclidean circle about 𝑂! Thus, the
hyperbolic circle is also a Euclidean circle.

Like with Geodesics, we will use this information, bouncing back and forth between
the two models, to learn about all circles. Carrying this over to the upper half plane
describes the circles about (0, 1). By the circle-preserving properties of our map, we
know these are taken to euclidean circles in the Half Plane. So this is nice! But also
confusing - these circles can’t have their Euclidean centers at (0, 1), because they have
to stay within the half plane.

Figure 26.10.: Circles about 𝑂 in the Disk and about (0, 1) in the Half Plane are both
Euclidean circles.

So, while hyperbolic circles appear as Euclidean circles in this model, their centers are
closet to the bottom than you think: this makes sense, as distances down low are longer
than they appear, and distances up high shorter than they appear, so the center - which
is at the actual middle - appears to be shifted down.
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What about circles based at other points? Luckily, we understand the isometries that
move one point to another in the Half Plane quite well: they are Euclidean translations
and similarities! Each of these types of map preserves Euclidean circles, so we see that
hyperbolic circles about other points in the plane are also all Euclidean circles, though
their centers may not be where they seem.

Figure 26.11.: Hyperbolic circles in the Half Plane Model.

Theorem 26.4 (Circles in the Half Plane Model). Hyperbolic circles in the Half Plane
model are represented by Euclidean circles, but their hyperbolic and Euclidean centers do
not coincide.

Exercise 26.2. If a circle’s (hyperbolic) center is at height ℎ in the half plane above the 𝑥-
axis and its radius is 𝑟 , what are the Euclidean lengths of the radius pointed downwards,
and the radius pointed upwards? What’s their ratio?

Now let’s transfer what we’ve learned back to the Disk Model. Since the transfer map
preserves generalized circles, we can completely understand what happens:

Corollary 26.3 (Circles in the Disk Model). Hyperbolic circles in the disk model are
Euclidean circles, though their hyperbolic center will not coincide with their Euclidean
center in general.

Let’s test your hyperbolic intuition at this point: can you tell (without doing computa-
tion) if the hyperbolic center should be more towards the center of the Disk model, or
more towards it’s boundary?
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26. Geometry

26.4. Curvature

Now that we know a bit about circles, distances, and lines we are in a good position
to be able to rigorously confirm that the curvature of our new hyperbolic world is −1.
To do so, we need to use the definition of curvature, which requires us to know the
cirucmference of circles, so that is where we begin.

We want to choose things to make our calculations as easy as possible: so let’s consider
the Disk model and look at circles centered at 𝑂. Conisder the circle of Euclidean radius
𝑎 about the center of the disk. Let’s try and find its hyperbolic circumference.

Figure 26.12.: A circle about 𝑂 in the disk, quantitatively.

We know its Euclidean circumference is 2𝜋𝑎, and we also know that at a distnace of 𝑎
from the origin the scaling factor of the Disk Model is 2/(1 − 𝑎2). Because this is the
same scaling factor at every point along the circle, we can just multiply the Euclidean
length by this to get its hyperbolic counterpart:

𝐶 = 2𝜋𝑎 4
1 − 𝑎2 = 4𝜋𝑎

1 − 𝑎2

However, this isn’t all that we need. Our formula is expressed in terms of the euclidean
radius 𝑎, which is a meaningless quantity in hyperbolic geometry. To find this, we need
to do some more calculus.
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26.4. Curvature

We do know that straight Euclidean lines through 𝑂 are geodesics of the model, so to
measure the length of the radius of our circle, all we need to do is find the hyperbolic
length of 𝛾 (𝑡) = (𝑡, 0) on [0, 𝑎]. Calculating infinitesimal length,

𝛾 ′ = 2
1 − 𝑡2 ‖⟨1, 0⟩𝔼2 = 2

1 − 𝑡2

Thus, the length we seek is

length(𝛾 ) = 2∫
𝑎

0
1

1 − 𝑡2 𝑑𝑡

In a calculus 2 course, you may have seen this integral and immediately thought ooh,
integration by partial fractions! and that’s totally do-able here: in fact it works out rather
nice! But another technique works out even nicer, now that we have put in the effort
to learn hyperbolic trigonometric functions: we can do a hyperbolic trig sub!

We know that sech2 + tanh2 = 1 so, 1 − tanh2 = sech2, and so substituting 𝑡 = tanh 𝑥
gives

∫ 1
1 − 𝑡2 𝑑𝑡 = ∫ 1

1 − tanh2 𝑥
𝑑(tanh 𝑥) = ∫ 1

sech2 𝑥
sech2 𝑥 𝑑𝑥

= ∫ 1 𝑑𝑥 = 𝑥

Converting back to 𝑡 , since 𝑡 = tanh 𝑥 we have that 𝑥 = arctanh 𝑡 , and so the hyperbolic
radius is

𝑟 = length(𝛾 ) = 2 arctanh 𝑥|
𝑎

0
= 2 arctanh(𝑎)

Now, we have the two pieces of information we need to figure out the relationship
between circumference and radius: we just need to eliminate mention of the Euclidean
𝑎:

Exercise 26.3. A hyperbolic circle of radius 𝑟 has circumference 2𝜋 sinh(𝑟).
Hint: use the fact that we know 𝐶(𝑎) and 𝑟(𝑎): solve for 𝑎 in terms of 𝑟 , substitute into the
circumference, and then use hyperbolic trigonometric identites to simplify.s
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26. Geometry

Now we already proved that if a space had this relationship between circumference
and radius, then its curvature was precisely −1. So, we’re done! These maps really do
describe the space humanity missed forthousand years!

Corollary 26.4 (ℍ2 has constant curvature −1.).

26.5. Polygons

We’ve seen that the area of a hyperbolic triangle is determined by its angle sum. And,
more surprisingly - that its bounded above by 𝜋 ! Can we come to an understanding of
this?

Let’s think in the Disk Model for a bit. Since space is infinitely large it seems absurd
that a triangle can’t get very big! But this all has to do with the way geodesics behave.
Imagining a large triangle means (in our Disk model) imagining a triangle whose three
verrties are all very far away from the center, and thus appear out by the unit circle.

Figure 26.13.: Three far away points make for a large triangle.

To form a triangle from these points, they must be connected together with geodesics.
And we know what the geodesics are - they’re arcs of circles which are orthogonal to
the boundary. Thus, the triangle has very skinny angles as the geodesics are almost
tangent to one another. And being so skinny, these arms of the triangle can’t contain
that much area.

In fact, the biggest triangle one could imagine making would have infinitely long sides,
and would consist of three geodesics going all the way out to infinity.Of course this isn’t actually

a triangle as it has no
vertices! Mathematicians
call it an ideal triangle
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26.5. Polygons

Figure 26.14.: Toward the boundary, geodesics are almost tangent. Thus large triangles
have very skinny ‘legs’, which do not contribute much to their area.

Figure 26.15.: An ideal triangle in the hyperbolic plane.
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26. Geometry

How big is an ideal triangle? To calculate, its easiest to hop over to the upper half plane.
We can choose our three points so that two of them are±1 and the other is the projection
point - off at infinity. This means our triangles geodesic sides are the unit circle, and
two parallel vertical lines

Figure 26.16.: An ideal triangle in the Half Plane model

Its area is given by a double integral of 𝑑𝐴: using the scaling factor,

𝑑𝐴 = 𝑑𝑥𝑑𝑦
𝑦2

Setting up the bounds (bottom bound = unit circle, top goes to infinity) we see

area = ∬𝑇
𝑑𝐴 = ∫

1

−1 ∫
∞

√1−𝑥2
𝑑𝑦𝑑𝑥
𝑦2

Doing the inner integral first:

∫
∞

√1−𝑥2
𝑑𝑦
𝑦2 = −1

𝑦 |
∞

√1−𝑥2
= 1

√1 − 𝑥2

Thus, the total area is
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area = ∫
1

−1
1

√1 − 𝑥2
𝑑𝑥

But this integral is quite familiar to us by this point in the course! Its the arclength of
the top half of the unit circle (the integral that defines arccosine).

area = 𝜋

Thus we have it: all triangles inℍ2 have area less than or equal to 𝜋 , because that’s the
area of the ideal triangle!
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27. Life in Curved Space

𝑟ℍ

Its one thing to do geometry, thewaywe do in a geometry course - deriving relationships
between triangles circle and geodesics. But its another thing to feel it: to try and imagine
yourself in theworld you are studying, and think hard aboutwhat that experiencewould
be like. This is a challenging but rewarding exercise, often not requiring much new
geometry but requiring a lot of deep thought, and a lot of actual calculation. In this
final chapter, we will attempt to give a tast of what hyperbolic space is like, relying on
the material we have developed in the course.

Just like spheres come in may different sizes, so do hyperbolic spaces: so, the first thing
we must do in asking ourselves what its like is to decide which hyperbolic space we are
talking about. This question is actually interesting at all different levels of curvature, as
different effects become important at different curvatures. But here in this short chapter
we will fix a curvature, and work out the consequences. A convenient way to fix the
curvature is to fix the units that we measure space in, we can specify a distance 𝑅 called
the radius of curvature, defined so that if we measure everything in units of 𝑅, we will
determine the curvature to be −1. (This is equivalent to instead fixing ahead of time
some units, and then considering the hyperbolic space of curvature −1/√𝑅 in those
units.)

27.1. The Size of San Francisco

Here we fix the radius of curvature to be approximately the radius of San Francisco,
𝑅 = 5𝑘𝑚. This will allow us to compare the behavior of small things (like humans) to
medium things (like cities) and large things (like planets), and see how in curved space,
these different regimes behave quite differently!

PICTURE

In our exploration, our goal will be to ask simple questions about how the world would
be, try to deduce what sort of geometry will be relevant to solving them, do the proper
computaions, and then try to interpret the result.
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27. Life in Curved Space

27.1.1. How Big is the Earth?

Theorem 27.1 (Volume and Surface Area). The surface area of a sphere of radius 𝑟 is

SA(𝑟) = 4𝜋 sinh2(𝑟)

(compare this to 4𝜋𝑟2 in flat space). The volume of a sphere is the integral of surface area:

𝑉 (𝑟) = ∫
𝑟

0
SA(𝑟)𝑑𝑟 = 𝜋(sinh(2𝑟) − 2𝑟)

To figure out how big the earth would be, we need to think a bit about what we mean
by this question. The earth formed from a collection of rocks in the early solar system,
so its volume is fixed by the volume of the rocks that was used to make it up. The earths
radius and surface area are geometric consequences of this: once we know the volume
of rock we simply find the sphere of that size, and that’s the earth!

Example 27.1 (Radius of the Earth). First, we look to find the true earths volume, from
its radius of 6300km, or 1250SF. The volume of the earth is

4
3𝜋𝑟

3 = 4
3𝜋(1250)

3 = 8, 181, 230, 868.7 𝑆𝐹 3

That is, the earth is a little over eight billion cubic San Franciscos! To find the radius
of the sphere which has this same volume in hyperbolic space, we need to solve the
following equation for 𝑟 :

𝜋(sinh(2𝑟) − 2𝑟) = 8, 181, 230, 868

This needs to be solved using numerical methods, but doing so yields a shockingly small
answer:

𝑟 = 11.11.1987, 𝑆𝐹

So, the earth is only 11 San Franciscos in radius! Remembering we took 𝑆𝐹 = 5𝑘𝑚 this
comes out to 55.98 kilometers, or 34.78 miles. In hyperbolic space, its closer to get from
𝑆𝐹 to the Earth’s core than it is to get to the south bay!
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27.1. The Size of San Francisco

PICTURE

Why is the earth so small? It all has to do with exponentials: since the volume of a
sphere grows exponentially with radius, whereas in flat space it grows quadratically.
This means there is just so much more volume as the radius grows in hyperbolic space,
that it doesn’t have to be that big to fit all the rocks that make up the earth! This
exponential property is also shared by the formula for hyperbolic surface area, which
has an amusing consequence:

Example 27.2 (Surface Area of the Earth). Given a radius of 11.19 units, we can find
the surface area of the earth by

𝑆𝐴 = 4𝜋 sinh2(11.19) = 16, 468, 700, 000 𝑆𝐹 2

To understnad what it means that the hyperbolic earth has surface area of 16 billion
San Franciscos, we should compare this to the actual surface area of the earth we live
on. This is (using the Euclidean radius 6300𝑘𝑚 = 1249𝑆𝐹 )

4𝜋(1249)2 = 19, 602, 972 𝑆𝐹 2

The real earth is only 19 million San Franciscos! So, in hyperbolic space the Earth has
838 times the surface area of our current planet!

This is a lot of extra real-estate! For me, one good way to conceptualize this number
is to think about what the depth of the ocean would be. Here, the average depth of
the ocean is 2300 meters; but spreading the same amount of water over 838 times more
surface area yeidls a depth of only 4.389 meters, or just under 15 feet!

What about the moon? In Euclidean space the moon’s radius is about 27 percent that
of the earth (a little over a quarter as big), which means its volume is 2 percent that of
the earth (since volume grows with the cube of radius).

Example 27.3. The volume of the moon is 0.02 that of the earth, which means in units
of San Franciscos,

0.02 × 8, 181, 230, 868.7 = 3624617 𝑆𝐹 3

Solving for the radius of the hyperbolic sphere with this volume, we find

𝑟moon = 9.8 𝑆𝐹
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So, the moon isn’t that much smaller than the earth at all! This gives us a very good
sense of just how quick the exponential growth of volume is. THe difference in radii
between the earth and moon is

11.19 − 9.8 = 1.39𝑆𝐹 = 4.3miles

Since the moon is only 2 percent the earth’s volume, this means that 98 percent of the
earths volume is contained in the outer shell of radius 4.3 miles, just the outer 38 percent
of the radius! But things only get weirder from here, if we look at larger spheres, since
everything is driven by exponential growth. What can we say about the sun?

Example 27.4 (Radius of the Sun). The volume of the sun is 1.3 million times that of
the earth, which means in units of San Franciscos, the Sun is

1, 300, 000 × 8, 181, 230, 868.7 = 1, 063, 560, 012, 934, 045 𝑆𝐹 3

Solving for the radius of a hyperbolic sphere that has this volume, we find that 𝑟 = 18.225
- that is, the sun is only eighteen San Franciscos, or 56 miles in radius! Remember, the
Earth is 11.19 San Franciscos in this world, meaning that the sun is only 18.225

11.19 = 1.62
times as big in radius.

PICTURE

27.1.2. How Much of the Earth is Visible?

We’ve already learned some rather interesting things about the Earth in negative curva-
ture: its simultaneoulsy much smaller (in radius) and much larger (in surface area) than
we are accustomed to. But what does it look like?

Theorem 27.2 (Distance to the Horizon). Standing at height ℎ above a sphere of radius
𝑅, the horizon in Euclidean space lies at a distance 𝑑 of

𝑑 = 𝑅 arccos ( 𝑅
𝑅 + ℎ)

and in hyperbolic space, the analogous formula is

𝑑 = sinh(𝑅) arccos ( tanh𝑅
tanh(𝑅 + ℎ))
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27.1. The Size of San Francisco

Proof.

As a warm-up, we can use this formula to find the distance to the horizon here in flat
space. At a height of 2 meters =0.002km above the ground the horizon is

6, 300 ⋅ arccos ( 6, 300
6, 300.002) = 5.019 𝑘𝑚

Thus, standing on the beach we can see a little over 5 kilometers, or around 3 miles out
to sea. As we know well from experience, moving up a little bit in height lets us see
much more: from our classroom on the fourth floor of Harney we can easily see many
miles out to sea. Quantitatively this is easy to confirm: if we were at the top of the
Salesforce tower (326 meters tall), we could see

6, 300 ⋅ arccos ( 6, 300
6, 300.326) = 64.09 𝑘𝑚

But, what about in hyperbolic space?

Example 27.5 (TheHorizon at Different Heights). Measuring in units of San Franciscos,
a 2 meter tall human is 2/5000 = 0.0004 San Francisco’s tall. Using the hyperbolic radius
𝑟 = 11.19𝑆𝐹 of earth, we find the horizon lies at a distance of

𝑑 = sinh(11.19)arccos ( tanh 11.19
tanh 11.1904) = 0.0282786𝑆𝐹

In more useful units, two percent of a San Francisco is 141.39meters. You can’t see very
far at all, only a couple hundred feet until the earth has curved enough out of the way
to be below the horizon! Moving upwards helps a bit: from the top of the sales force
tower (whose height is 0.0652 San Franciscos) the horizon lies at a distance of

𝑑 = sinh(11.19)arccos ( tanh 11.19
tanh 11.2552) = 0.349651𝑆𝐹

This is around 1.7 kilometers, or just a bit over a mile. From the top of the Salesforce
tower you wouldn’t be able to see all the way to USF, or even very far out into the bay!
But it gets weirder, as we continue to ascend. From the height of a commercial airliner
(30,000ft, or 1.828 San Francsicos) passengers can see

𝑑 = sinh(11.19)arccos ( tanh 11.19
tanh 13.018) = 0.9869𝑆𝐹
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Even from miles into the sky, we can only just almost see all of San Francisco. And in
fact, this is a fundamental limit: no matter how far above the sphere you are, you can
only see up to 5km in any direction before the horizon. Even from space, when you
look down at the earth, you would see the city stretch all the way across the earths’
disk (though seeing the earth from such a height is another challenge entirely, that we
will confront shortly).

Exercise 27.1. Prove this: that as the height limits to infinity you can only see 1 unit
of distance along the sphere.

What area of the sphere is this? This question is actually a bit more complicated than it
seems at first. We can’t just use the formula for the hyperbolic area of a disk, because
wer’re not looking at a disk - we’re looking at a region on a sphere!

Theorem 27.3 (Area of a Spherical Cap). Given a sphere of hyperbolic radius 𝑟 , the area
of a disk of radius 𝑑 drawn on its surface is given by

area = 2𝜋 sinh(𝑟)2 (1 − cos 𝑑
sinh 𝑟 )

Proof. A sphere in hyperbolic space is still a sphere - and we understand the intrinsic
geometry of spheres quite well! So, we’ll be able to put this to work here. Indeed, we
know that on the unit sphere the area of a disk is 2𝜋(1− 𝑐𝑜𝑠𝑑) and if the sphere’s Radius
is 𝜌, then the area of a disk of radius 𝑑 drawn on its surface is

2𝜋𝜌2 (1 − cos 𝑑𝜌 )

So, all we need to do is figure out the radius of our sphere. It’s tempting to say that
this is just 𝑟 : that’s the distance in hyperbolic space to its center after all - but this is
not the notion we are looking for here. The radius showing up in the formula above is
the radius the sphere would have, if it were embedded in Euclidean space, which is where
we derived this formula. Since the sphere’s area is 4𝜋 sinh2(𝑟), we see that in Euclidean
space the radius would be 𝜌 = sinh(𝑟) to have the same area giving

area = 2𝜋 sinh(𝑟)2 (1 − cos 𝑑
sinh 𝑟 )
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Exercise 27.2 (Spheres from a large distance). Explain why if you look at a sphere of
large radius from far away, you only see approximately 𝜋 square units of its surface
area.

Hint: Use a taylor series for cos and explain why its justified to only take the first terms
(why is the angle you are taking cos of small?)

The fact that a sphere’s horizon is so nearby has far reaching consequences: one of them
being the affordability of cell phones.

Example 27.6 (Price of Cell Phones). Cell phones work by using cell towers to col-
lect and re-broadcast signals from phones, but such a singal can’t propagate over the
horizon!

PICTURE

The tallest modern cell towers are around 100 meters tall (with most cell towers much
shorter). From the top of such a tower in flat space, the horizon is 35.4km away, meaning
the tower is accessible to approximately 3, 936𝑘𝑚2 of land area. But in hyperbolic space?
From 100𝑚 high the horizon is only

𝑑 = sinh(11.19) arccos( tanh 11.19
tanh (11.19 + 100

5000)
) = 0.198𝑆𝐹

or 0.99𝑘𝑚 away, and the area of such a disk is

area = 𝜋 sinh2(11.19) (1 − cos 0.198
sinh 11.19) = 0.1231𝑆𝐹 2

0.123 square units: equivalently 3.15𝑘𝑚2 or 1.21𝑚𝑖2. This is 3936
3.15 = 1249 times less

coverage. To get similar coverage, you need over a thousand times more towers, making
the cell network over a thousand times more expensive.

But its even worse than this: remember the earth’s surface area has grown by a factor
of 838! Thus cell companies are hit with a double whammy: they need 1249 times more
towers per fixed area, and they also have 838 timesmore area to cover! Overall them, the
cell network needs to be 1249 × 838 = 1, 047, 100 times larger to give the same coverage:
expect your cell plan to go up in cost by a factor of one million to pay for this increased
overhead!
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27.1.3. What does the Earth Look Like?

Theorem 27.4 (Visual Size of a Sphere). From height ℎ above a sphere of radius 𝑅, the
angle 𝛼 that the sphere takes up in your vision in Euclidean space is

𝛼 = 2 arcsin ( 𝑅
𝑅 + ℎ)

and in Hyperbolic space is

𝛼 = 2 arcsin ( sinh𝑅
sinh(𝑅 + ℎ))

Proof.

Again, its useful to do some calculations on the Earth in flat space to get our bearings.
From a standing height of 2 meters, the earth takes up

2 arcsin ( 6300
6300.002) = 3.1365rad ≈ 179.666∘

If the earth were a flat plane it would take up half of our field of view, or 180 degrees. So,
the earth is rather indistinguishable from an infinite plane at human-height (as search-
ing the uninformed corners of the internet show unfortunately all too well). From the
top of the sales force tower the earth takes up

2 arcsin ( 6300
6300.326) = 178.833∘

which is just slightly smaller. Even from the height of an airplane (30,000ft = 9.144
kilometers), earth takes up almost half our field of view.

2 arcsin ( 6300
6309.144) = 173.83∘

And from the international space station at 254mi = 408km high, the Earth still looms
large, taking up awider field of view than our eyes provide us (we can see approximately
114 degrees with binocular vision)

2 arcsin (63006708) = 139.8∘

Now, what happens in hyperbolic space?
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Example 27.7 (Size of Earth fromDifferent Heights). At 2meters above the ground, the
earth looks slightly smaller than its Euclidean counterpart, but perhaps not noticeably
so.

𝛼 = 2 arcsin ( sinh 11.19
sinh 11.1904) = 176.8∘

From the height of the the Salesforce tower,

𝛼 = 2 arcsin ( sinh 11.19
sinh 11.2552) = 139.1∘

That is - the earth looks slightly smaller from this skyscraper than it does in flat space
from the actual space station. And it only gets wilder, due to the exponential nature of
the hyperbolic sine. From the height of an airliner,

𝛼 = 2 arcsin ( sinh 11.19
sinh 13.018) = 18.5∘

The earth is only eighteen degrees across in your vision! This is about the size of your
hand held at arms length away. In hyperbolic space, your airplane flight is rather dark,
and you have to look almost straight down to even catch a glimpse of the tiny earth
below.

The height the space station orbits above the earth is quite unrealistic in hyperbolic
space (for some reasons we’ll encounter shortly), but its a good benchmark to evaluate
nonetheless, to really appreciate the unrelenting growth of the exponential. At a height
of 252 miles = 81 San Franciscos, the earth would appear to be

𝛼 = 2 arcsin (sinh 11.19
sinh 92.19) =

0.0000000000000000000000000000000007609∘

This is so fantastically small that not only would the earth be completely invisible to
the stations inhabitants, but it would not be detectable by any form of future super-
telescope. A ride to the space station would be quite terrifying as the earth rapidly
shrinks below you, fading forever from view into the black.

So, when we move away from a sphere of fixed radius, it shrinks rapidly in our vision.
But what happens if we stand at a fixed distance from a sphere of different radii?

PICTURE
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27. Life in Curved Space

In Euclidean space, if you were distance ℎ from the surface of a sphere of radius 𝑥 ,
the larger the sphere the more and more it would appear to take up half your vision.
Precisely, we can see this using our formula:

𝛼 = 2 arcsin ( 𝑥
𝑥 + ℎ)

As 𝑥 grows the argument of the arcsine approaches 1, and so the arcsin approaches 𝜋/2
and 𝛼 approaches 𝜋 , half your field of view. But what happens in hyperbolic space?

Example 27.8 (Visual Size of Growing Sphere). At a distance ℎ from its surface, the
visual size of a sphere of radius 𝑥 in hyperbolic space is

𝛼 = 2 arcsin ( sinh 𝑥
sinh(𝑥 + ℎ))

What is this behavior like when 𝑥 is sufficiently large? Well, sinh(𝑥) rapidly approaches
1
2 𝑒𝑥 for large inputs, so we can simplify the argument of arcsine in this approximation
as

sinh 𝑥
sinh(𝑥 + ℎ) ≈

1
2 𝑒𝑥

1
2 𝑒𝑥+ℎ

= 𝑒𝑥
𝑒𝑥 𝑒ℎ = 1

𝑒ℎ

Thus, for large spheres, how big they actually are is essentially irrelevant to how big
they appear in your field of view. Even if you know the distance to a sphere well, its
impossible to gauge its size visually: even spheres that differ in size by millions of times
still take up the same area in your field of view:

𝛼 ≈ 2 arcsin(𝑒−ℎ)

27.1.4. What's the Gravity Like?
There is a precise way to do

all of this, using the
formulation of gravity in
terms of a gravitational

potential: if 𝜌 is the mass
density in space, the

gravitational potential 𝑈
solves Δ𝑈 = 𝜌, where Δ is

the laplacian diffrential
operator (in Euclidean

space, this is 𝜕2𝑥 + 𝜕2𝑦 + 𝜕2𝑧 ).
In hyperbolic geometry,

gravity follows the same
equation, where we simply

replace Δ with the
hyperbolic laplacian.

Solving this for a point
mass gives the

gravitational potential,
whose (negative) gradient
is the gravitational force.
And finally finding the

magnitude of this recovers
the law stated below

𝐺𝑀/ sinh2 𝑟 .

Theorem 27.5 (Inverse Area Law of Gravity). Netwon’s law of gravity is usually referred
to as the inverse square law, but this is only true in flat space. In fact, a more careful
reading of the law might be read to say that gravity, like light, spreads out evenly in all
directions. Thus, a mass 𝑀 causes a gravitational acceleration on an object at distance 𝑟
away proportional to 𝑀 and inversely proportional to the surface area of the sphere.

𝑀
SA(𝑟)
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27.1. The Size of San Francisco

So for Euclidean space we would have 𝑎 = 𝑘𝑀
4𝜋𝑟2 where 𝑘 is the proportionality constant

giving the strength of gravity. Traditionally, the 4𝜋 in the surface area of the sphere is
absorbed into the constant which is then renamed 𝐺 = 𝑘/4𝜋 , or Newton’s constant, giving

𝑎 = 𝐺𝑀
𝑟2

In hyperbolic space, the area of a sphere 4𝜋 sinh2(𝑟) also contains a 4𝜋 so we can continue
to use Netwon’s constant, getting the adjusted formula

𝑎 = 𝐺𝑀
sinh2 𝑟

Conceptually it will be more helpful oftne to speak of the relative difference of this from
Euclidean gravity, than to speak of the absolute numbers. The ratio between these two
quantities is

𝑎ℍ
𝑎𝔼

=
𝐺𝑀𝑚

sinh2(𝑟)
𝐺𝑀𝑚
𝑟2

= 𝑟2
sinh(𝑟)2

To use this to understand the experience of gravity on the Earth’s surface, we will use
Newton’s other insight, that the gravity of a spherically symmetric body acts just like
a point mass located at its center. We will not prove this here,

but I am interested in
re-creating Newton’s
original argument in
Hyperbolic space! Let me
know if you are interested
in trying to do this together

Example 27.9 (Gravity on Earth’s Surface). On the surface of the earth in Hyperbolic
space (𝑟ℍ = 11.19 SF), the gravitational acceleration felt by people is

𝑎 = 𝐺𝑀earth

sinh(𝑟ℍ)2

But to actually get the numerical value here we need to think about $units*: we should
express Newtons constant not in meters, but in San - Franciscos! Instead of doing this,
its much easier to just compute the ratio with Euclidean gravity, which will automati-
cally measure our result in 𝑔-forces:

𝑟𝔼2

sinh(𝑟ℍ)2

Because the hyperbolic component requires us to work in units of San Franciscos, we
need to measure Euclidean radius in those units: 𝑟𝔼 = 6300𝑘𝑚 = 1249𝑆𝐹 . Thus
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27. Life in Curved Space

𝑟2𝔼
sinh(𝑟ℍ)2

= (1249)2
sinh(11.19) = 0.00119𝑔

Thus, gravity on the hyperbolic earth is only 0.1% as strong as on earth!

This means that we are only held very weakly to the surface of the earth: you can mul-
tiply your weight here by 0.00119 to find how much you’d weigh there! This has some
pretty scary consequences: since you are just as strong as you are here in Euclidean
space (nothing about you changed, just the gravitational pull of you to the earth), you
can imagine that it’s pretty easy to jump very high. Too high - I’d say, it turns out even
the feeblest jump will launch you into space, never to return again. To see this, we need
to calculate the escape velocity.

Theorem 27.6 (Escape Velocity). On the surface of a gravitating object, when you jump
you can either fall back to the ground, go into orbit, or escape forever into the void. The
dividing line between these bound states (falling back, or getting stuck in orbit) and the
unbound states (getting ejected to infinity) is the escape velocity, a speed where if you
jump any slower you’ll end up bound to the planet, but any faster will send you away
forever. Our goal here is to compute the escape velocity for a hyperbolic earth.

The first step is to figure out howmuch energy is required to escape. The gravitational field
tries to pull us back down all the way along our trajectory, and the total work it does on us
is the integral of its force along our path. Thus, if we have mass 𝑚 and were to escape all
the way to infinity, this would be

𝑊 = ∫
∞

𝑟ℍ
𝐺𝑀𝑚
sinh2 𝑟

𝑑𝑟

= 𝐺𝑀𝑚∫
∞

𝑟ℍ
csch2(𝑟)𝑑𝑟

= 𝐺𝑀𝑚 (− coth 𝑟 |
∞

𝑟ℍ
)

= 𝐺𝑀𝑚(coth(𝑟ℍ) − lim𝑟→∞ coth(𝑟))
= 𝐺𝑀𝑚(coth(𝑟ℍ) − 1)

This number (which we still have to compute in the appropriate units of San Franciscos)
tells us how much energy is needed to escape. But how fast to we need to go? The kinetic
energy of an object with mass 𝑚 is 1

2𝑚𝑣2. To escape to infinity, we need to give ourselves
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enough kinetic energy to be able to cancel out the pull of the gravitational field: thus, we
need

𝑊 = 1
2𝑚𝑣

2 ⟹ 𝑣 = √
2𝑊
𝑚

Putting these together, we find the escape velocity

𝑣escape = √2𝐺𝑀(coth(𝑟ℍ) − 1)

To actually compute this quantity we would need to be careful about units: convert
everything to San Franciscos, do the calculation, and then convert to something more
reasonable to interpret it in the end. However, like before, its easier to instead com-
pute the ratio of the hyperbolic to the Euclidean escape velocities, as all these annoying
constants cancel out.

Exercise 27.3 (Euclidean Escape Velocity). In Euclidean space with 𝐹 = 𝐺𝑀𝑚
𝑟2 , show

that the escape velocity is √
𝐺𝑀
𝑟

Example 27.10 (Ratio of Escape Velocities). Let 𝑣ℍ be the escape velocity from hyper-
bolic earth, and 𝑣𝔼 be the escape velocity from Euclidean earth. Then

𝑣ℍ
𝑣𝔼

= √2𝐺𝑀(coth 𝑟ℍ − 1)

√
2𝐺𝑀
𝑟𝔼

= √𝑟𝔼(coth 𝑟ℍ − 1)

Now we can plug in some actual numbers and get a value.

Example 27.11 (Escaping from Earth). Measuring all radii in San Franciscos, 𝑟𝔼 = 1249
and 𝑟ℍ = 11.19, we get the ratio

𝑣ℍ
𝑣𝔼

= √1249(coth(11.19) − 1) = 0.000000476

Thus, it takes less than one ten-millionth the speed to escape the hyperbolic earth as it
does its euclidean counterpart! Since the escape velocity here is 11.2km/s (or 6.95 miles
per second), in hyperbolic space this becomes

0.000000476 ∗ 11.2 = 0.0000053𝑘𝑚/𝑠 = 0.533𝑐𝑚/𝑠

Thus if you make any movement faster than half a centimeter per second, you’ll be
immediately ejected from the earth, never to return!
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27. Life in Curved Space

Life on such a world would be very perilous indeed: it’s impossible to walk as the mere
act of takign a step will launch you beyond orbit! Perhaps we would all live below
ground so there was a solid roof above our heads at all times, or put plungers on our
feet to hold ourselves fast to the ground.

27.1.5. Can we see the Sun or Moon?

As we live our strange lives on the hyperbolic earth, what do we see in the sky around
us? Is it blue? Is there a familiar sun and moon marking the times of day and month?
Or are we forever shrouded in blackness?

To answer this, we first need to think about how far the earth should be from the sun.
Just as the size of the earth and sun have shrank in negative curvature, the size of orbits
and solar systems would also shrink, as the suns gravity drops off much quicker. A
reasonable model to investigate then is what would life be like if we set the earth-sun
separation so the suns gravitational pull is equal to its true value in Euclidean space?
Since Euclidean gravity is inverse square and hyperbolic gravity is inverse sinh-square,
this amounts to finding the radius 𝑟 such that sinh(𝑟) equals the Euclidean distance of
93 million miles, or

sinh(𝑟) = 29933798.4𝑆𝐹

Taking arcsinh, we find 𝑟 = 17.907 - that is, the earth is less than 18 San Franciscos from
the sun! This is more wild when we realize that the Sun is also 18 San Franciscos across:
we are only one sun-diameter away from the sun!

PICTURE

So, at this distance, how big does the sun look in the sky? Calculating much as we did
for the earth-size previously, we find

𝛼 = 2 arcsin ( sinh 18.225
sinh(18.225 + 17.904)) = 0.0000192∘

This is absurdly small - the sun would appear star-like in the sky. This is too small to
be interesting, so let’s ask another question: how far away would the earth have to be
from the sun for it to be as big as we see it here in flat space?
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27.1. The Size of San Francisco

Example 27.12 (Distance to the Sun). The angular diameter of the sun in the sky is
about half a degree, so we are looking to solve for at which distance ℎ a sphere of radius
18.225 appears to be half a degree, or 0.00872665radians. This requires solving

2arcsin ( sinh 18.225
sinh(18.225 + ℎ)) = 0.0087

We can solve this with some algebra:

ℎ = arcsinh(sinh 18.225
sin 0.0087

2
) − 18.225 = 5.43758𝑆𝐹

This is pretty wild - the earth is 11 SFs in radius, and the sun is 18SFs, but for us to be
able to see the sun at normal size in our sky, we need to be just over 5 SFs away from
it!

PICTURE

But the story gets weirder: because the size of the earth is actually larger than the
distane between the earth and the sun, the size of the sun in the sky varies throughout
the day! At high noon, we are at the location on the earth closest to the sun, with only
18 San Franciscos separating us from its firey surface

PICTURE

But, at sunrise or sunset we have rotated away, and are actually much farther from the
sun

PICTURE

Of course, the same is technically true on the earth, where we are approximately
6,000km closer to the sun at noon than at sunset. But this is absolutley negligible in
comparison to the 93 million miles that separate us. In hyperbolic space these numbers
are 11 SFs and 18SFs however, which are of the same order of magnitude!

Example 27.13 (The Size of the Sun). At noon we are at a distance of 4.74 SFs from
the sun, which itself has radius 18.225, and appears in our sky to be half a degree across.
How far are we away from the sun at sunrise or sunset? Drawing ourselves a picture,
we see that this distance is the hypotenuse of a right triangle

PICTURE

And so we can use the hyperbolic pythagorean theorem:
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27. Life in Curved Space

𝑑 = arccosh (cosh(11.19) cosh(5.43)) = 15.9345𝑆𝐹

This is much farther from the sun (though, still less than a single sun-radius away from
its surface!). How big does the sun appear from here?

𝛼 = 2arcsin ( sinh 18.225
sinh(18.225 + 15.9345)) = 0.0000069∘

Over the course of the day, the sun has changed in size by a factor of 0.5
0.0000069 = 72, 306

times! It rises in the sky as an almost invisibly small star, and then midday quickly
grows by tens of thousands of times to briefly bathe the world in light, before fading
into the abyss once more.

Where’s the moon in this story? We calculated the size of the moon above to be 𝑟 =
9.8𝑆𝐹 , and we can play the same game and ask what distance it must be from the earth
so that it appears the same visual size in the sky (at least at some point in time). By sheer
coincidence the the moon and sun are both half a degree in our skies, so we are looking
to solve the same equation we did for the sun, just with a different input radius.

Example 27.14 (Distance to the Moon). The angular diameter of the moon in the sky
is about half a degree, so we are looking to solve for at which distance ℎ a sphere of
radius 9.8 appears to be half a degree, or 0.00872665radians. This requires solving

2arcsin ( sinh 9.8
sinh(9.8 + ℎ)) = 0.0087

We can solve this with some algebra:

ℎ = arcsinh( sinh 9.8
sin 0.0087

2
) − 9.8 = 5.43758𝑆𝐹

This is the same distance, to five figures after the decimal point!

This seems very, very strange at first: the sun and moon are very different sizes, why
should they orbit the earth at essentially the exact same distance to look the same in the
sky? But this goes back to something we already calculated: the size a sphere appears
in the sky is pretty much independent of its actual size (so long as it is large enough that
sinh 𝑟 ≈ 1

2 𝑒𝑟 ), it only depends on the distance to it. So, for the moon and sun to look the
same size they must be at the same distance!

436
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This of course has disasterous consequences, as if we orbit the sun, and the moon orbits
us, the moons orbit will pass directly through the center of the sun. Goodbye moon!

PICTURE

But, before the moon is burned - its reasonable to ask what we would see if we looked
at its surface from earth at “lunar noon” - when it is highest in the sky. The amount of
the moon thats visible would only be a disk of radius

𝑑 = sinh(9.8) arccos ( tanh 98
tanh(9.8 + 5.43)) = 0.999990𝑆𝐹

As we expect, we can see only 𝑑 ≈ 1𝑆𝐹 = 5𝑘𝑚 in radius across the moon - meaning
when we look up in the sky we will see the lunar disk with just a single crater or two
across its surface at a time!

27.1.6. How do we Travel?

We’ve developed some good (but unsettling) visuals of what it looks like around us in
hyperbolic space, so let’s move on to thinking about how we would get around. The
planet is large - there’s 838 times as much surface area, and the circumference is 838
times as big as the earth we live on, so we’d ideally like to be able to travel pretty quickly.
So, lets look first at air travel.
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Homework
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Assignment 1

These problems all come from the reading in sections Euclid, Parallels and Pythago-
ras.

Problems

Exercise 27.4 (Constructing an Isoceles Triangle). Start with a line segment of length
𝑎. Prove that you can construct a triangle with one side of length 𝑎, and two sides of
length 2𝑎.

Exercise 27.5 (Inscribing an Equilateral Triangle). Prove that inside of an equilateral
triangle, you can inscribe an upside down equilateral triangle of exactly half the side
length, shown

Figure 27.1.: An equilateral triangle inscribed within a larger one.

Exercise 27.6 (Angle Sums of Polygons). A polygon is convex if all of its angles are less
than 180∘, so that it has no “indents”. Equivalently, a convex polygon is one where any
line segment with endpoints on the boundary of the polygon lies inside the polygon.
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Figure 27.2.: A convex and non-convex octagon.

Prove that the angle sum of convex quadrilaterals is a constant, for all quadrilaterals.
Prove the angle sum of convex pentagons is also a constant. What are these constants?

What do you think the formula is for the sum of angles in a convex 𝑛-gon? (Optional:
If you have seen mathematical induction, prove your guess!)

Exercise 27.7 (Rectangles Exist). Prove that Rectangles exist using Euclids Postulates
(and also Playfair’s Axiom, if you like it), and the propositions proven in the sections
Euclid and Parallels.

Hint - we know how to make right angles now, and parallel lines through points. Start
making some!

Exercise 27.8 (Diagonal Bisectors). If the diagonals of a quadrilateral are bisect one
another, then that quadrilateral is a parallelogram.

Exercise 27.9 (Proving the Pythagorean Theorem). The following is an ingenious rear-
rangement proof of the Pythagorean theorem.

442



Solutions

Prove that the final shape shown here is a square, using what we have learned (the
Postulates and Propositions).

Solutions

### Constructing an Isoceles Triangle

We mimic Euclid’s original construction of the equilateral triangle as closely as possible
here. First begin with a line segment 𝐴𝐵 of length 𝑎.

This could be accomplished
by using Postulate 2 to
extend the line 𝐴𝐵
indefinitely, then drawing
a circle of radius 𝐴𝐵 at 𝐴
to mark a new point 𝑋 as
in the figure below, and
symmetrically drawing a
circle of radius 𝐴𝐵 based at
𝐵 to mark 𝑌 .

Alternatively, we could
extend and just use
Proposition 3, which allows
us to cut to any size we
know. In future problems, I
will not show steps that
involve extending or
cutting lines to length as
they can always be
accomplished in these
ways.
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Then, extend this line segment by another segment 𝑋𝐴 and 𝐵𝑌 of length 𝑎 on each
side.

Now, draw a (blue) circle with radius 𝐴𝑌 centered at 𝐴, and a (red) circle with radius
𝑋𝐵 centered at 𝐵. As each of these line segments are length 2𝑎, these circles have the
same radius. Mark a point of their intersection by 𝐶 , and connect 𝐶 to both 𝐴 and 𝐵.

Since 𝐴𝐶 is a radius of the blue circle, its length is 2𝑎. And since 𝐵𝐶 is a radius of the
red circle, its length is also 2𝑎. Thus the triangle 𝐴𝐵𝐶 has one side (𝐴𝐵) of length 𝑎 and
two sides of length 2𝑎, as desired.

Inscribing an Equilateral Triangle

This exercise is a bit challenging, but there are multiple ways to do it using only what
we know so far. I look forward to seeing your approaches, but I give two possibilities
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here, for extra practice! For both of them, I found I was using the same fact over and
over, so I have pulled it out as a quick lemma:

Lemma 27.1 (Equilateral if and only if Equiangular). A triangle is equilateral (all side
lengths equal) if and only if it is equiangular (all angles equal).

Proof. To prove this, we need to do both directions. First, we start by assuming we
have an equilateral triangle 𝐴𝐵𝐶 , and proving that its angles are the same. Since its
sides are all the same length, it is side-side-side congruent to any rotated copy of itself.
Concretely, we see that 𝐴𝐵𝐶 is congruent to 𝐵𝐶𝐴.

This sets up an equality between the angles, which when strung together shows they
are all equal to one another.

𝐴 = 𝐵 𝐵 = 𝐶 𝐶 = 𝐴

Now that we have completed that direction we do the reverse, and show if a triangle
𝐴𝐵𝐶 is equiangular, then its sides are also the same length. Choose one of the angles -
say 𝐵 - and bisect it with a line. This line divides the triangle into two smaller triangles,
which we see are congruent (they share a side: the new bisecting line, as well as two
angles since they each have one of the original angles, and one of the bisected halves).
Thus, the remaining pairs of sides of this triangle are also congruent, so 𝐵𝐴 equals 𝐵𝐶 .
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There was nothing special about the angle 𝐵, so we may also do the same construction
at another angle - say 𝐴. This again gives a pair of congruent triangles, from which we
can conclude that 𝐴𝐵 equals 𝐴𝐶 .

Stringing these equalities together, we see that 𝐴𝐵 = 𝐴𝐶 = 𝐵𝐶 so all three sides are
equal, and the triangle is equilateral.

Solution I: Chasing Angles

One way to find the
midpoint of an edge

explicitly would be to
construct an equilateral

triangle on that edge, and
connect its remainign

vertex to the remaining
vertex of the original.

Start with an equilateral triangle 𝐴𝐵𝐶 , and mark the midpoints of each of its edges 𝑋, 𝑌
and 𝑍 . Connect these midpoints to form a triangle 𝑋𝑌𝑍 . Our goal is to show this to be
equilateral, with half the side length of 𝐴𝐵𝐶 .

Triangle 𝑋𝑌𝑍 also determines three more triangles, each containing one of the original
vertices of 𝐴𝐵𝐶 . Each of these triangles are congruent by side-angle-side (they share
two side lengths equal to half of 𝐴𝐵𝐶’s, and one angle of 𝐴𝐵𝐶 - all of which were
equal as it is equilateral). Since they are congruent, their bases - the new segments 𝑋𝑌 ,
𝑌𝑍 and 𝑍𝑋 - must be equal. This means the central triangle is equilateral, and hence
equiangular!
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The angles of the inner triangle are each the same measure as the angles of the outer
triangle (hence they are all colored yellow) because every triangle has angle sum 𝜋 , so
their measure is 𝜋/3.

We can carry this reasoning further however: consider all of the angles based at the
point 𝑌 . The yellow one we know the value, and the other two must be equal: they
correspond to one another in two congruent triangles. Together they sum to a straight
line, so if 𝛽 is the measure of the blue angle we know 𝜋

3 +2𝛽 = 𝜋 so 𝛽 itself is 𝜋/3! Thus
all three angles at 𝑌 are equal.

This same reasoning can be carried out at 𝑋 and 𝑍 to see all the angles there are equal
as well. But now, we see that each of the three triangles cut off at the vertices have
all three angles equal: they’re equiangular! Thus, they’re equilateral, so all sides are of
equal length, and the three interior sides connecting 𝑋𝑌𝑍 are all half the length of the
sides of 𝐴𝐵𝐶 .
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Solution II: Parallels

Start by choosing one side of the triangle 𝐴𝐵𝐶 and marking a point 𝑋 half way along
it. From this point, use Playfair’s axiom to draw paralle lines to the other two sides,
intersecting the triangle at points 𝑌 , 𝑍 . Because corresponding angles are equal, this
tells the angles of intersection of each of the paralle lines with the triangle: they are the
same as the triangles’ vertex angles.

Because the original triangle is equilateral (and thus equiangular), all angles in the dia-
gram thus far are equal. Its helpful to put them all into one picture, where we now see
that we know all three angles of the two smaller triangles cut off in the top, and lower
left. Since these triangles have equal angles, they are equilateral as well, so we now
know all their side lengths.
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In addition we know one more piece of information from the diagram above. The angle
between the two lines we drew through 𝑋 must also be 𝜋/3, as it makes up a straight
angle with two other angles of measure 𝜋/3.
Now, draw a final line segment (green) connedting the points 𝑌 and 𝑍 . This cuts out
a triangle 𝑋𝑌𝑍 in the middle. But - this triangle now shares side-angle-side with an
equilateral triangle (its angle we just determined to be 𝜋/3, and the side lengths of the
blue and pink lines all match with the smaller triangle at the top, or in the lower left).
Thus, this triangle must also be euqilateral! And so, all of its side lengths are half the
larger triangles, as required.

Angle Sums of Polygons

Begin with a quadrilateral with angles 𝛼, 𝛽, 𝛾 , 𝛿 . We wish to calculuate the sum 𝛼 + 𝛽 +
𝛾 + 𝛿 . Choose two opposite vertices (here, those with angles 𝛼 and 𝛾 ) and connect them
by a diagonal. This divides angle 𝛼 into two new angles 𝑥, 𝑦 and 𝛾 into two angles 𝑢, 𝑣 .
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Since the quadrilateral is convex, this line segment lies wholly within the quadrilateral,
and divides its interior into two triangles. These triangles are likley not congruent, but
we do know that each of them has total angle sum 𝜋 or 180∘. Thus, we know 𝑦+𝛿+𝑣 = 𝜋
and 𝑢 + 𝛽 + 𝑥 = 𝜋 , so adding these two equations together

(𝑥 + 𝑦) + 𝛽 + (𝑢 + 𝑣) + 𝛿 = 2𝜋

Howver, by the angle axiomswe know that 𝑥+𝑦 = 𝛼 and 𝑢+𝑣 = 𝛾 (as we just subdivided
these into two angles). Thus, the total angle sum 𝛼 + 𝛽 + 𝛾 + 𝛿 = 2𝜋 .

A similar argument works for pentagons: draw an arbitrary convex pentagon and
choose some vertex. This vertex is already connected to two others (by edges of the
pentagon) - but connect it by new line segments to the remaining two. These segments
lie inside the pentagon (by convexity) and divide it into three triangles. Each triangle
has angle sum 𝜋 , so the pentagon has angle sum 3𝜋 .

Rectangles Exist
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Start with a line, and choose some point 𝑃 along the line. That line determines a straight
angle at 𝑃 , so bisect this into two right angles with another line. Choose a point 𝑄 along
this perpendicular, and using Playfair’s axiom draw the unique parallel through this
point.

Because the blue and black lines are parallel, they do not intersect to the right or left,
so the sum of the angles they make with the read line must be precisely 𝜋 . Because
the angle at 𝑃 is already a right angle, this imples the angle at 𝑄 must also be a right
angle. Now, choose some point 𝑅 along this blue line, and bisect the straight angle at 𝑅
to produce another right angle.

The sum of the angles this new green line makes with the two parallel lines must also
be precisely 𝜋 (since they’re parallel). And again we know the angle at 𝑅 is a right angle
by construction. So the angle at its other point of intersection - call it 𝑆- must also be
right.

Thus, we have constructed a quadrilateral 𝑃𝑄𝑅𝑆 with four right angles: a rectangle. So,
rectangles exist.
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Diagonal Bisectors

Begin with a quadrilateral whose diagonals bisect each other: in the picture below, this
means we are assuming the red segments are equal in length, as are the blue segments.

These diagonals cut the quadrilateral into four triangles. Becase opposite angles are
always equal to one another when two lines intersect, we see the two green angles here
have the same measure. Thus, the left and right triangles are congruent by side-angle-
side (they each have a red side, blue side, and green angle). But since they are congruent,
all their angles are the same. We depict this by coloring additional equal pairs of angles
teal and pink.

The same argument works for the top and bottom triangles, which are also congruent by
side-angle-side, and thus have all three pairs of angles congruent. The diagram below
color codes all pairs of angles we now know to be the same.
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Look at either the blue or red diagonal, and consider how it divides the quadrilateral into
two triangles. Since every triangle has angle sum 𝜋 , we know that (looking at either
triangle) that the sum of an orange, pink, blue, and teal angle together is exactly 𝜋 . We
will now use this fact to conclue the pairs of opposite sides are parallel.

Extend first the top and bottom sides, as well as the left side of the quadrilateral, and
denote the two angles here 𝐴 and 𝐵. Since between the two we have exatly one each of
an orange, pink, blue, and teal angle, the angle sum at 𝐴 and 𝐵 is 𝜋 . But this means (by
Euclid’s 5𝑡ℎ postulate) that the top and bottom lines must be parallel!

The same argument applies to the left and right sides, if we consider their intersections
with the bottom at 𝐴 and 𝐶 . Between these two there is also one angle of each color,
leading to an angle sum of 𝜋 , forcing them to be parallel.

The Pythagorean Theorem
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Problems

Square Roots

Exercise 27.10 (The Square Root of 3). Read carefully the geometric proof of Theo-
rem 3.2, which proves √2 is irrational by showing its impossible to make two integer
side-length squares where one has twice the area of the other.

Construct a similar argument showing that it is impossible to find two integer side-
length equilateral triangles where one has three times the area of the other.

Hint: try to mimic the argument in the book, but now use the diagram below for inspiration

Archimedes

In Measurement of the Circle, Archimedes measure the circumference of a circle by ap-
proximating it with a polygon, and taking th number of sides to infinity. He was right
to be careful in his argument: this does not always work!
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Exercise 27.11 (Convergence to the Diagonal). Consider a simpler analog of
Archimedes’ situation, where instead of trying to measure a curve using straight lines,
we are trying to measure a straight diagonal line using only horizontal and vertical
segments. The following sequence of paths converges pointwise to the diagonal of the
square, but what happens to the lengths?

If you believed that because this sequence of curves limits to the diagonal, its sequence
of lengths must limit to the length of the diagonal, what would you have conjectured
the pythagorean theorem to be?

Exercise 27.12. Use the result of last week’s problem Exercise 27.5 (that you can in-
scribe an equilateral triangle with half the side lengths) to produce an alternative proof
of Archimedes sum ∞

∑
𝑛=0

(14)
𝑛
= 4

3
By dividing up a triangle instead of a square. Draw some nice pictures (its pretty!)

Exercise 27.13. Construct an argument in the same spirit as Archimedes’ geometric
series to show the following equality:

∞
∑
𝑛=1

(13)
𝑛
= 1

2
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Can you cut something iteratively into thirds? It may not be as pretty as Archimedes’, but
thats ok!

Fractals

The final two problems involve the Koch Snowflake fractal. In these problems you
should still explain why things you are doing are valid geometrically, but you do not
need to prove every thing you do from the axioms. We are getting ourselves ready
for a calculus mindset!

This shape is the limit of an infinite process, starting at level 0 with a single equilateral
triangle. To go from one level to the next, every line segment of the previous level
is divided into thirds, and the middle third replaced with the other two sides of an
equilateral triangle built on that side.

Figure 27.3.: The Koch subdivision rule: replace the middle third of every line segment
with the other two sides of an equilateral triangle.

Doing this to every line segment quickly turns the triangle into a spiky snowflake like
shape, hence the name. Denote by 𝐾𝑛 the result of the 𝑛𝑡ℎ level of this procedure.

Say the initial triangle at level 0 has perimeter 𝑃 , and area 𝐴. Then we can define the
numbers 𝑃𝑛 to be the perimeter of the 𝑛𝑡ℎ level, and 𝐴𝑛 to be the area of the 𝑛𝑡ℎ level..

Exercise 27.14 (The Koch Snowflake Length). What are the perimeters 𝑃1, 𝑃2 and 𝑃3?
Conjecture (and prove by induction, if you’ve had an intro-to-proofs class) a formula
for the perimeter 𝑃𝑛.

Explain why as 𝑛 → ∞ this diverges (using the type of reasoning you would give in a
calculus course): thus, the Koch snowflake fractal cannot be assigned a length!

Before doing the next problem: ask yourself what happens to the area of an equilateral
triangle when you shrink its sides by a factor of 3? Can you draw a diagram (similar to
that from last week’s Exercise 27.5 but larger) to see what the ratio of areas must be?
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Figure 27.4.: The first six stages 𝐾0, 𝐾1, 𝐾2, 𝐾3, 𝐾4 and 𝐾5 of the Koch snowflake proce-
dure. 𝐾∞ is the fractal itself.
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Exercise 27.15 (The Koch Snowflake Area). What are the areas 𝐴1, 𝐴2 and 𝐴3 in terms
of the original area 𝐴?

Find an infinite series that represents the area of the 𝑛𝑡ℎ stage 𝐴𝑛 (if you’ve taken an
intro to proofs class or beyond - prove it by induction!). Use calculus reasoning to sum
this series and show that while the Koch snowflake does not have a perimeter, it drtoes
have a finite area!

Solutions

√3 (Katie Forrest)

Suppose for the sake of contradiction there exists an equilateral triangle with integer
side lengths that has an area equal to the sum of the area of 3 smaller equilateral triangles
with integer side lengths.

Note that since the total area of the 3 smaller triangles is equal to the area of the big
triangle, that means geometrically if we placed these 3 triangles on top of the big one
they should fill up all of the big triangle’s area. Unfortunately, only 4 triangles with one
fourth the area of the big one will fill up the big triangle with no overlap. (We proved
this fact in Homework 1.) Thus, the 3 triangles with one third the area of the big triangle
will have some overlapping areas and an empty section.
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But since the areas of the triangles equal the big one, that means that the overlapping
areas equal the empty area. The area of the purple triangle equals the sum of the orange
triangles.

Therefore, we can repeat this geometric process with our new big triangle and smaller
triangles. Note, that since an integer minus an integer must be another integer, these
new triangles also have integer side lengths.
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If we continuously repeat this geometric process, we will gather an infinite sequence of
smaller triangles. Due to this, the lengths of these triangles will limit to 0 as they grow
smaller and smaller. This means that at some point one of the triangles side lengths will
be smaller than 1. This is a contradiction as we have stated before that our triangle side
lengths are integers. Therefore, we can’t make an integer sized equilateral triangle with
3 times the area of another equilateral triangle with integer side lengths.
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2: Convergence to the Diagonal (Jade Cao)

3: The Series ∑∞
𝑛=0

1
4𝑛 (Quinn Shapiro)

If we let the area of the large triangle to be 1, then, since all of the inscribed triangles
have equal side length and therefore equal area, each inscribed triangle has an area of 1

4 .
If we continue inscribing triangles in the center triangle, we divide the center triangle
into four equal parts each time. Then, if we say our Level 0 triangle has area one and
our Level 1 triangles have area 1

4 , then our level n triangles have area 1
4𝑛 .

Then, if we sum a triangle at each level starting at level one, we get ∑∞
𝑛=1

1
4𝑛 .\

If we do this two more times, we see that ∑∞
𝑛=1

1
4𝑛 + ∑∞

𝑛=1
1
4𝑛 + ∑∞

𝑛=1
1
4𝑛 = 1 as this fills

the entire area of the Level 0 triangle, which is 1.

So 3∑∞
𝑛=1

1
4𝑛 = 1 which implies ∑∞

𝑛=1
1
4𝑛 = 1

3 . Adding the Level 0 Triangle (one whole

triangle), we have 1 + ∑∞
𝑛=1

1
4𝑛 = ∑∞

𝑛=0
1
4𝑛 = 4

3

462



Solutions

Figure 27.5.: Repeatedly dividing an equilateral triangle into fourths, infinitely many
times.

Figure 27.6.: The sum ∑ 1
4𝑛 realized by choosing one triangle from each level.

Figure 27.7.: Doing this three times fills the triangle, so the sum must be exactly 1/3 the
triangle
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Exercise 4: Freya
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Solutions

5: Koch Snowflake Length (Daniel)
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Problems

Linear Transformations

This excercise goes with similar examples in the text, on visualizing linear transforma-
tions action on the plane by what they do to the points of the unit square. For instance,
we saw that the transformation ( 2 00 1 ) scales the 𝑥 axis by a factor of 2 and leaves the 𝑦
axis invariant, so it performs the following stretch to our little smiley face

Exercise 27.16. Choose your own image on the plane (hand-drawn is great!), and draw
a reference image of it undistorted, inside the unit square. Then draw its image under
each of the following linear transformations:

(2 0
0 2) (1 1

0 1) (2 1
1 1) (0 −1

1 0 )

Determinants & Area

Recall the following definition: the determinant of a linear transformation𝑀 = ( 𝑎 𝑏𝑐 𝑑 )
is
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det𝑀 = |𝑎 𝑏
𝑐 𝑑| = 𝑎𝑑 − 𝑏𝑐

Figure 27.8.: The determinant measures the change in area under a linear map.

In class, said this measured the area change of the unit square under the linear trans-
formation 𝑀 , but now we will confirm it. We can actually find this area in a pretty
satisfying way using just what we’ve proven about Euclidean geometry so far. We
know the areas of squares, rectangles, and right triangles, so let’s try to write the area
we are after as a difference of things we know:

Figure 27.9.: A formula for the determinant can be found knowing only the area of
squares, rectangles, and right triangles. (I learned this awesome diagram
from Prof Daniel O’Connor!)
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Exercise 27.17. Show the area of the parallelogram spanned by ⟨𝑎, 𝑐⟩ and ⟨𝑏, 𝑑⟩ is 𝑎𝑑−𝑏𝑐,
using the Euclidean geometry we have done, and the diagram above.

Calculating Derivatives

Practice calculating the derivative of multivariable functions as matrices, and applying
them to vectors. No proofs, here, just some computations!

Exercise 27.18. Find the derivatives of the following functions, at the specified points.

• The function 𝑓 (𝑥, 𝑦) = (𝑥𝑦, 𝑥 + 𝑦) at the point 𝑝 = (1, 2).
• The function 𝜙(𝑥, 𝑦) = (𝑥𝑦2 − 3𝑥, 𝑥

𝑦2+1) at the point 𝑞 = (3, 0).

Now use these to compute the following quantities:

• 𝐷𝑓(1,2)⟨3, 4⟩
• 𝐷𝜙(3,0)⟨𝑎, 𝑏⟩

Differentiating Compositions

This is another problem which focuses on the new computational skills, using linear
algebra. No proofs here either!

Exercise 27.19. If 𝐹 , 𝐺, 𝐻 are the following multivariate functions

𝐹(𝑥, 𝑦) = (𝑥 − 𝑦, 𝑥𝑦)

𝐺(𝑥, 𝑦) = (−𝑦, 𝑥)
𝐻(𝑥, 𝑦) = (𝑥3, 𝑦3)

Differentiate the following compositions:

• 𝐹 ∘ 𝐺 at (1, 1)
• 𝐺 ∘ 𝐺 at (0, 2)
• 𝐹 ∘ 𝐺 ∘ 𝐻 at (−1, 3).
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When the Derivative is Constant

In class, we proved that if a function is linear, then its derivative is constant. But is
this the only time a function’s derivative is constant? Certainly no - the derivative of
(𝑥, 𝑦) ↦ (𝑥 + 1, 𝑦) is constant (equal to the identity matrix!), even though this function
is not linear.

We call a function affine if it is the composition of a linear function and addition of a
constant. For instance, 2𝑥 +3 or 5𝑥 +2𝑦 −7 are affine functions. We call a multivariable
function affine if each of its component functions is affine.

Exercise 27.20 (When the derivative is constant). Prove that a function 𝜙 ∶ ℝ2 → ℝ2
has a constant derivative if and only if the function is affine: that is, a linear map plus
constants.

Hint: if the derivative is a constant matrix, can you integrate each entry (with respect to
the right variable) to figure out what the original functions were?

OPTIONAL Problems

You do not need to turn these problems in. But they are all good things to know or
review, so I recommend you attempt them. The first is about arithmetic with infintiesi-
mals: there was more interest than I expected in class, so I wanted to showcase a little
more of the power of this approach here.

Infinitesimal Algebra

In class we said that we do not allow arithmetic between of infinitesimals that live in
different tangent spaces. And this is a good rule to follow! But in speical situations one
can actually define this arithmetic consistently, and the line ℝ and plane ℝ2 are two of
these situations. First, consider the line. If we choose two real numbers 𝑎, 𝑏 and infi-
titesimals 𝑢 ∈ 𝑇𝑎ℝ, 𝑣 ∈ 𝑇𝑏ℝ, we can multiply them using regular rules of multiplication,
with one new law: the product of two infinitesimals is zero

(𝑎 + 𝑢)(𝑏 + 𝑣) = 𝑎𝑏 + 𝑎𝑣 + 𝑏𝑢 + 𝑢𝑣 = 𝑎𝑏 + (𝑎𝑣 + 𝑏𝑢)

We then interpret this as saying that the point the product is based at is 𝑎𝑏 ∈ ℝ (which
makes sense, we multiplied 𝑎 and 𝑏) and the infinitesimal result in 𝑇𝑎𝑏ℝ is 𝑎𝑣 + 𝑏𝑢.

470



OPTIONAL Problems

The amazing thing about this multiplication is that when you use it, you can automat-
ically compute the derivative of a function, just by applying it to a point and tangent
vector at the same time! The “real part” of the answer is the function value, and the
“infinitesimal part” is the derivative.

Exercise 27.21 (Optional).

• Confirm this for yourself, by evaluating the function 𝑓 (𝑥) = 𝑥2 at the point 𝑥 + 𝜖,
where 𝜖 is an infinitesimal in 𝑇𝑥ℝ.

• This also works for multivariable functions! Consider the following map from
ℝ2 → ℝ2: can you find its derivative at (𝑥, 𝑦) as the infinitesimal part of applying
it to the point (𝑥 +𝑢, 𝑦 +𝑣) ∈ 𝑇(𝑥,𝑦)ℝ2? Then, take the derivative the “normal way”
(by differentiating each component function and forming a matrix) and apply to
the infinitesimal vector ⟨𝑢, 𝑣⟩ ∈ 𝑇(𝑥,𝑦)ℝ2 to see you get the same result.

𝐿(𝑥, 𝑦) = (𝑥2 − 𝑦2, 2𝑥𝑦)

Calculus Practice

Another good thing to be doing this week is some calculus review! So, you should
attempt the following calculus questions, and practice whichever skills you find yourself
rusty with. (U-sub, integration by parts, and power series).

Exercise 27.22 (Optional). Compute the following integrals, as a refresher of your cal-
culus skills:

∫ sin(2𝑞 − 3)𝑑𝑞 ∫ 𝑥
𝑥 + 1𝑑𝑥

∫ 𝑦2𝑒𝑦3𝑑𝑦 ∫ 𝑡2𝑒𝑡𝑑𝑡

Exercise 27.23 (Optional). Find Power series for the following functions

𝑥 cos(2𝑥2)

∫ 𝑒𝑥2𝑑𝑥

4
3 + 5𝑥2

471



Assignment 3

Solutions

1: Linear Transformations (Quinn)

(2 0
0 2)

(1 1
0 1)

(2 1
1 1)
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(0 −1
1 0 )
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2: Determinants & Area (Alana)
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3: Calculating Derivatives (Daniel)
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4: Differentiating Compositions (Andres)
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5: Constant Derivative (Frances)
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Problems

Parameterization Invariance

Below are four different curves which all trace out the same set of points in the plane:
the segment of the 𝑥 axis between 0 and 4.

𝛼(𝑡) = (𝑡, 0) 𝑡 ∈ [0, 4]
𝛽(𝑡) = (2𝑡, 0) 𝑡 ∈ [0, 2]
𝛾 (𝑡) = (𝑡2, 0) 𝑡 ∈ [0, 2]

Because these all describe the same set of points, we of course want them to have the
same length! But our definition of the length function involves integrating infinitesimal
arclengths (derivatives), and these curves don’t all have the same derivative! Thus, to
really make sure our definition makes sense, we need to check that it doesn’t matter
which parameterization we use, we will always get the same length.

Exercise 27.24. Check these three parameterizations of the segment of the 𝑥-axis from
0 to 4 all have the same length.

After doing this exercise, read the proof of Theorem 9.1 (which follows this exercises’
original location in the text): you don’t have to write anything here, but it’s good to see
how do to this in general with the chain rule!

Non-Isometries

Exercise 27.25. Write down a linear map that sends both ⟨1, 0⟩ and ⟨0, 1⟩ to unit vectors,
but is not an isometry.

This shows there’s not a shortcut to checking something is an isometry by just seeing
what happens to the basis vectors!
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Composition and Inversion of Isometries

Exercise 27.26. If 𝜙 and 𝜓 are two isometries of 𝔼2, prove that both the composition
𝜙 ∘ 𝜓 is an isometry, and the inverse 𝜙−1 is an isometry.

Remember, you will need to explain why at every point 𝑝 ∈ 𝔼2, these maps do not change
the lengths of tangent vectors. This will probably involve the multivariable chain rule,
whether you do it in words, or in equations!

Homogenity and Isotropy

In class we built a couple different sorts of isometries from the basic ones we construted
by hand (translations and rotations about 0). In this exercise, you are to prove the
existence of another very useful isometry. We will use this homework problem all the
time

Exercise 27.27 (Moving from 𝑝 to 𝑞.). Given any two pairs 𝑝, 𝑣𝑝 and 𝑞, 𝑤𝑞 of points 𝑝, 𝑞
in Euclidean space and unit tangent vectors 𝑣𝑝 ∈ 𝑇𝑝𝔼2, 𝑤𝑞 ∈ 𝑇𝑞𝔼2 based at them, prove
that there exists an isometry taking 𝑣𝑝 to 𝑤𝑞 .
Hint: try to combine pieces we know about, and prove the result does what you need by
applying it both to the point 𝑝, and applying its derivative to the vector 𝑣 .

Lines of Symmetry

In this exercise we will investigate the third potential definition of line, which involves
isometries.

Definition 27.1 (Line of Symmetry). A fixed point of an isometry 𝜙 ∶ 𝔼2 → 𝔼2 is a
point 𝑝 with 𝜙(𝑝) = 𝑝.
A curve 𝛾 is called a line of symmetry of 𝔼2 if there exists an isometry which fixes 𝛾 (𝑡)
for all 𝑡 .

In this exercise, you show that the curves which are lines of symmetry are exactly the
same as the curves which are lines under Archimedes’ definition!

Exercise 27.28 (Reflections in Any Line).
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• Show that map 𝜙(𝑥, 𝑦) = (𝑥, −𝑦) is an isometry of 𝔼2. Explain why this shows
that the 𝑥-axis is a line of symmetry of the plane.

• Show that every curve which is distance-minimizing in the plane is also a line
of symmetry. Hint: given an isometry that reflects in the 𝑥 axis, can you build
an isometry that reflects in any other line? Consider moving the line to the 𝑥 axis,
reflecting, and then moving back.

Equilateral Triangles Revisited

In this question wewill revisit two problems fromGreek geometry. That is we will be re-
proving things we knew before, so we know they are still true in our new foundations!

This problem requires the distance function on the Euclidean plane, which we did not
get to in class on Thursday, but will cover on Tuesday. However - you all areadly know
the distance function so you can absolutely complete the homework now if you like!

Definition 27.2. If 𝑝 = (𝑥, 𝑦) and 𝑞 = (𝑎, 𝑏) are two points in the Euclidean plane, the
distance from 𝑝 to 𝑞 is the length of the shortest curve connecting them. Working this
out, we find the familiar pythagorean theorem:

dist(𝑝, 𝑞) = √(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2

First, we re-prove the very first proposition of Euclid, the existence of an equilateral
triangle. Then we redo your earlier homework problem on finding a smaller equilat-
eral triangle inside of it, of half the side lengths (but this is much easier with our new
tools!).

Exercise 27.29.

• Beginning with the segment [0, ℓ] along the 𝑥-axis, construct an equilateral tri-
angle by finding the coordinates of a point 𝑝 = (𝑥, 𝑦) ∈ 𝔼2 which is equidistant
from both endpoints of the segment.

• Re-prove that inside of this equilateral triangle, you can inscribe a smaller one
with exactly half the side length. Hint: just find where the vertices should be, and
then measure the distances between them!
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OPTIONAL Problems

These problems are optional and you will not to turn them in. But - they are excellent
reviews of calculus, and applications of the material we are learning now!

Length of a Parabola

Arclength integrals give a good opportunity to practice a lot of Calculus II integration
techinques. Even for relatively simple curves like the parabola, the answers can be quite
nontrivial!

Exercise 27.30 (The Length of a Parabola). Find the length of the parabola 𝑦 = 𝑥2
between from 𝑥 = 0 to 𝑥 = 𝑎, following the steps below.

• Paramterize the curve as 𝑐(𝑡) = (𝑡, 𝑡2), show the arclength integral is 𝐿(𝑎) =
∫[0,𝑎] √1 + 4𝑡2

• Perform the trigonometric substitution 𝑥 = 1
2 tan 𝜃 to convert this to some multi-

ple of the integral of sec3(𝜃).
• Let 𝐼 = ∫ sec3(𝜃)𝑑𝜃 and do integration by parts with 𝑢 = sec 𝜃 and 𝑑𝑣 = sec2 𝜃 .
• After parts, use the trigonometric identity tan2 𝜃 = sec2 𝜃 − 1 in the resulting
integral to get another copy of 𝐼 = ∫ sec3 𝜃𝑑𝜃 to appear.

• Get both copies of 𝐼 to the same side of the equation and solve for it! To check
your work at this stage, you should have found that

∫ sec3 𝜃𝑑𝜃 = 1
2 sec 𝜃 tan 𝜃 + 1

2 ln |sec 𝜃 + tan 𝜃|

• Relate this back to your original integral, and undo the substitution 𝑥 = 1
2 tan 𝜃 :

can you use somet trigonometry to figure out what sec 𝜃 is?
• Finally, you have the antiderivative in terms of 𝑥! Now evaluate from 0 to 𝑎.

Minimizing a Function by Minimizing its Square

Here’s a problem that’s straight up single variable calculus, but turns out to be a quite
useful “trick” in geometry! Oftentimes we want to minimize a function in geometry
(like arclength, or distance) but this turns out to be technically hard because of the
square root. One might wonder - what happens if I square the function, and try to
minimize that instead? That will have an easier formula (no roots), but will I get the
right answer?
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This exercise shows, yes you will!

Exercise 27.31 (Minimizing the Square: A Very Useful Trick!). Let 𝑓 (𝑥) be a differen-
tiable positive function of one variable, and let 𝑠(𝑥) = 𝑓 (𝑥)2 be its square. Show that
the minima of 𝑠(𝑥) and 𝑓 (𝑥) occur at the same points, by following the steps below:

• First, assume 𝑥 = 𝑎 is the location of a minimum of 𝑓 . What does the first and sec-
ond derivative test tell you about the values 𝑓 ′(𝑎) and 𝑓 ′′(𝑎)? Use this, together
with the fact that 𝑓 (𝑎) > 0 to show that 𝑥 = 𝑎 is also the location of a minimum
of 𝑠 (using the second derivative test).

• Conversely, assume 𝑥 = 𝑎 is the location of a minimum of 𝑠(𝑥). Now, you know in-
formation about the derivatives 𝑠′(𝑎) and 𝑠′′(𝑎). Use this to conclude information
about 𝑓 ′(𝑎) and 𝑓 ′′(𝑎) to show that 𝑎 is a minimum for 𝑓 as well.

Solutions

2: Non-Isometries (Daniel)
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3: Composition and Inversion (Alana)

484



Solutions
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Problems

The Parallel Postulate

Recall that Playfair’s Axioms (already suggested by Proclus in the 400s) was a simpler re-
phrasing of Euclid’s original fifth postulate on parallel (that is, nonintersecting) lines.

Proposition 27.1. Given any line 𝐿 in 𝔼2, and any point 𝑝 ∈ 𝔼2 not lying on 𝐿, there
exists a unique line Λ through 𝑝 which does not intersect 𝑝.

Exercise 27.32. Prove Proposition 27.1.

Hint: use isometries to help you out!
First, use an isometry to move 𝐿 to the 𝑥-axis. Then, use another isometry to keep 𝐿 on the
𝑥 axis, but to move 𝑝 to some point along the 𝑦 axis. Then, prove that through any point
on the 𝑦 axis there is a unique line that does not intersect the 𝑥-axis.

Similarities and Lines

We saw in Theorem 11.2 that any isometry will carry a line to another line. The same
is true more generally of similarities:

Exercise 27.33 (Similarities Send Lines to Lines). Let 𝛾 ∶ ℝ → 𝔼2 be a line, and
𝜎 ∶ 𝔼2 → 𝔼2 be a similarity. Prove that 𝜎 ∘ 𝛾 is also a line.

*Hint-replicate the proof of Theorem 11.2 as closely as possible, replacing the isome-
try 𝜙 with the similarity 𝜎 , and keeping track of the scaling factors of 𝜎 versus 𝜎−1
(Proposition 10.4).
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Distance to a Line.

In this problem it’s probably helpful to use the ‘calculus trick’ offered as an optional
problem last week: that is, if you are looking to minimize a positive function 𝑓 (𝑥), you
can instead try tominimize the function 𝑓 (𝑥)2, and you’ll find the same 𝑥-value achieves
the minimum.

The reason this is useful to us is that the distance function in geometry has a square
root in it, and differentiating roots can be a lot of work. So this says instead we can
minimize the square of distance to find the right point.

An alternative approach to
this if you like working

with isometries: can you
use an isometry to bring 𝐿

to a nice line where the
calculation is easier? Then

undo the isometry to get
your final answer.

Exercise 27.34 (Closest Point on Line). Let 𝐿 be the line traced by the affine curve

𝛾 (𝑡) = (𝑎𝑡 + 𝑐
𝑏𝑡 + 𝑑), and 𝑂 be the origin.

Alternatively, do this for the line (2𝑡 + 1, 3𝑡 − 4), to save yourself a lot of 𝑎𝑏𝑐𝑑′𝑠.

• Find the point 𝑝 ∈ 𝐿 which is closest to 𝑂.
• Calculate dist(𝑂, 𝐿).
• What angle does the segment connecting 𝑝 to 𝑂 makewith the line 𝐿? (We haven’t

reviewed the definition of angle yet, so just use your knowledge of angles from pre-
calculus: pick a line an compute an example!)

This problem shows howwe can use calculus as a tool to discover a geometric fact: here
we learned something about where the closest point on a line is located (by finding it
with calculus, then calculating the angle formed).

Often calculus can provide the tools needed for discovery of a new fact, but once its
known, one can often go back and find a geometric (more in the style of Euclid) proof
that all of a sudden makes the conclusion feel inevitable.

Exercise 27.35 (Closest Point: Geometric Reasoning). Now that we know the answer,
formulate in your own words a geometric proposition that describes which point 𝑝 on
a line is closer to a given point 𝑞 not on that line.

Prove this propostion without just taking a derivative, try to reason more like the
Greeks, using other facts and theorems that we’ve proven.

Hint: if you pick some other point 𝑟 along 𝐿, can you draw a triangle using 𝑝, 𝑞, 𝑟? How
can we use the geometry of this triangle to show that 𝑟 is farther from 𝑞 than 𝑝 was? Does
the Pythagorean theorem say anything useful?

488



Problems

Intersecting Circles

Recall that in all of Euclid’s axioms, conditions for intersections with circles were never
specified! Indeed - Euclid intersected two circles in his construction of the equilateral
triangle. Now that we have a precise description of circles in our new foundations, we
can fix this gap:

Exercise 27.36. Prove that two circles intersect each other if the distance between their
centers is less than or equal to the sum of their radii.

Alternatively: do this for the specific case where the circles radii are 3 and 4,
and the distance between thier centers is 5.

Hint: start by applying an isometry to move one of the circles to have center (0, 0), and
then another isometry to roate everything so the second circle has center (𝑥, 0) along the
𝑥-axis. This will make computations easier!

Figure 27.10.: Two circles intersect if the distance between their centers is less than or
equal to the sum of their radii.

Parabolas

A parabola was one of few curves that the Greeks understood. However, while we often
think of a parabola algebraically that was not their original definition!
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Definition 27.3 (Parabola). Given a point 𝑓 (called the focus) and a line 𝐿 not contain-
ing 𝑓 (called the directrix), the parabola with focus 𝑓 and directrix 𝐿 is the curve 𝐶 of
points where for each 𝑝 ∈ 𝐶 the distance to the focus equals the distance to the line:

dist(𝑝, 𝑓 ) = dist(𝑝, 𝐿)

Figure 27.11.: A parabola is the set of points which are the same distance from a point
(the focus) and a line (the directrix). In this figure, line segments of the
same color are supposed to be the same length.

Exercise 27.37. In this problem we confirm that 𝑦 = 𝑥2 is indeed a parabola! Let 𝐿 be
a horizontal line intersecting the 𝑦−axis at some point (0, −ℓ), and 𝑓 = (0, ℎ) be a point
along the 𝑦-axis for ℓ, ℎ > 0.

• Write down an algebraic equation for the coorddinates of a point (𝑥, 𝑦) determin-
ing when it is on the parabola with focus 𝑓 and directrix 𝐿.

• Find which point 𝑓 and line 𝐿 make this parabola have the algebraic equation
𝑦 = 𝑥2.

Solutions

The Parallel Postulate

Let 𝐿 be any line in the plane, and 𝑝 a point not on that line. Choose some point 𝑞 on
the line 𝐿. Then, by a translation isometry we know we can move 𝑞 to the origin, so
now our line passes through 𝑂. Let 𝑣 be the tangent vector to our line at 𝑂. Now we
may use a rotation isometry fixing 𝑂 which takes 𝑣 to ⟨1, 0⟩𝑂 . We know the 𝑥 axis is
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a line through 𝑂 whose tangent vector is ⟨1, 0⟩, and we know that lines through any
point/direction are unique: thus our line must be the 𝑥-axis!
This colleciton of isometries has moved our point 𝑝 to some point not on the 𝑥 axis
(since it is not on the line!). Say 𝑝 has moved to the point with coordinates (ℎ, 𝑘). Now,
we may use a translation (𝑥, 𝑦) ↦ (𝑥 − ℎ, 𝑦) to translate this point onto the 𝑦 axis. This
horizontal translation preserves the 𝑥 axis, so after this whole sequence of isometries
we now have our line on the 𝑥 axis and our point on the 𝑦 axis at height ℎ.
It remains only to show that there is a unique line through (0, ℎ)which does not intersect
the 𝑥 axis. All lines are affine functions, so we may write an arbitrary line through (0, ℎ)
as

ℓ(𝑡) = (𝑣1𝑣2) 𝑡 + (0ℎ)

Every point on the 𝑥 axis has its 𝑦 coordinates equal to zero, so ℓ intersects the 𝑥 axis
whenever 𝑣2𝑡 + ℎ = 0. Solving this we get

𝑡 = −ℎ/𝑣2

Which requires 𝑣2 ≠ 0: thus every line with nonzero 𝑣2 intersects the 𝑥−axis! Whenever
𝑣2 = 0 the direction vector of the line is horizontal, and so these all describe the same
line - the horizontal line through (0, ℎ). Because this is the only case where we don’t
find an intersection with the 𝑥 axis, there is a unique line which doesn’t intersect the 𝑥
axis, just as Proclus and Playfair claimed!

Similarities and Lines

Wewish to show a similarity 𝜎 maps a line 𝐿 to another line, following the same strategy
as in the proof for isometries. Let 𝑘 be the scaling factor of the similarity, and consider
the curve 𝜎 ∘𝐿(𝑡). We wish to show that 𝐿 is a line, so we want to show its a minimizing
curve.

So, choose two points 𝑝, 𝑞 along 𝜎(𝐿) and consider the segment between them. If this
were not the shortest segment there’d be some shorter curve 𝛼 , so we’d have

length(𝛼) < length(𝜎(𝐿))
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But we know what 𝜎 does to lengths of curves: its scaling factor is 𝑘, so it scales the
length of everythign by 𝑘. That is

length(𝜎(𝐿)) = 𝑘 length(𝐿)

Where by the length of 𝐿 we mean the length of the segment of 𝐿 which 𝜎 maps to the
segment original from 𝑝 to 𝑞. Putting these two inequalities together we see

length(𝛼) < 𝑘 length(𝐿) ⟹ 1
𝑘 length(𝛼) < length(𝐿)

But, since 𝜎 is a similarity with scaling factor 𝑘, its inverse 𝜎−1 is a similarity with
scaling factor 1/𝑘, and so 1

𝑘 length(𝛼) is the length of the curve 𝜎−1(𝛼). But now we’ve
reached a contradiction! Because 𝐿 is a line, so its supposed to be the shortest curve
between any two points, and we just found a curve, 𝜎−1 ∘ 𝛼 , that’s shorter!
Thus this whole situation must be impossible, and there is in fact no curve 𝛼 shorter
than 𝜎 ∘𝐿. This makes 𝜎 ∘𝐿 the shortest, so its a line! Which is what we wanted to show
in the first place.

Distance To A Line I

We are given a line as an affine equation 𝛾 (𝑡) = (𝑎𝑡+𝑐, 𝑏𝑡+𝑑) andwewish tominimize the
distance to the origin. We know the distance formula so we can compute the distance
from 𝛾 (𝑡) to 𝑂 for any time:

dist(𝛾 (𝑡), 𝑂) = √(𝑎𝑡 + 𝑐)2 + (𝑏𝑡 + 𝑑)2

So, we want to find the value of 𝑡 that minimizes this function. The standard calculus
trick would be to take the derivative and set it equal to zero: and this works just fine!
Howver, if you did the optional problem last week, you remember that we can also
minmize its square, which makes the algebra easier since that gets rid of the square
root:

dist2 = (𝑎𝑡 + 𝑐)2 + (𝑏𝑡 + 𝑑)2

Minimizing this also requires differentiating and setting equal to zero. This results in
a lot of 𝑎, 𝑏, 𝑐 and 𝑑’s (thanks, chain rule!) so for readability we’ll switch to the more
specific version of the question, and look at the line 𝛾 (𝑡) = (2𝑡 + 1, 3𝑡 − 4). This means
we are minimizing dist2 = (2𝑡 + 1)2 + (3𝑡 − 4)2, which when differentiated yields
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𝑑
𝑑𝑡 ((2𝑡 + 1)2 + (3𝑡 + 4)2) = 2 ⋅ 2(2𝑡 + 1) + 2 ⋅ 3(3𝑡 − 4) = 0

This is a linear equation in 𝑡 , so we can just collect like terms and sovle!

8𝑡 + 4 + 18𝑡 − 24 = 0 ⟹ 26𝑡 = 20 ⟹ 𝑡 = 10/13

This tells us the time that we are at the location of the minimum, but not yet what the
point, or what the minimum value are! We need to plug back into 𝛾 to recover the point,
and then plug this into the distance formula:

𝛾 (𝑡min) = (21013 + 1, 31013 − 4) = (3313 ,
−22
13 )

dist (𝛾 (𝑡min), 𝑂) = √(3313)
2
+ (2213)

2
=
√
1573
132 = 11

√13
Now that we have the distance, we just want to understand the angle formed by connect-
ing this point to the origin, and the original line. The slope of the original line is given
by its derivative, and since 𝛾 (𝑡) = (2𝑡 + 1, 3𝑡 − 4) this means its direction is 𝛾 ′ = (2, 3).
To find the slope of the line connecting our new point to the origin, we can simplify
things a bit by multiplying our minimizing point by various scalars (multiplying by a
constant wont change a slope): so we multiply by 13 to get (33, −22) and then we divide
by 11 to get (3, −2).
But this represents an opposite reciprocal slope than the original! So the lines are per-
pendicular.

Distance To A line II

Intersecting Circles

Let 𝐶1 and 𝐶2 be two circles in the plane, where the distance between 𝑑 their centers is
less than or equal to the sum of their radii 𝑟1 + 𝑟2. We wish to prove these two circles
intersect.

First, lets use a translation isometery to move the plane until 𝐶1 is centered at the origin.
Because we know the equation of a circle given its center and radius (Theorem 12.1) we
can write down an equation for 𝐶1:
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𝑥2 + 𝑦2 = 𝑟21

Now 𝐶2 was moved to somewhere, and its center is located at some point 𝑝. Use another
isometry which fixes the origin 𝑂, and rotates 𝑝 onto the 𝑥-axis.
Rotations about the center of a circle don’t move that circle (Proposition 12.1), so this
second isometry doesn’t change 𝐶1. But now we know the center of 𝐶2 lies on the 𝑥-
axis, at distance 𝑑 from 𝑂. This means (by the distance formula Theorem 11.6, or the
fact that the x-axis is a line Corollary 11.1) that we know the center of 𝐶2 is at (𝑑, 0) in
the plane, and so we can write down its equation

(𝑥 − 𝑑)2 + 𝑦2 = 𝑟22

Again, to save ourselves some algebra, we’ll finish the problem by introducing the spe-
cific numbers suggested: we’ll say the first circle has radius 3, the second has radius 4,
and the distance between them is 5. Given the isometries we’ve used so far we end up
with circles with very nice equations:

𝑥2 + 𝑦2 = 32 (𝑥 − 5)2 + 𝑦2 = 42

To find a pair (𝑥, 𝑦) that lies on both circles we need a common solution to these equa-
tions. We can find this in many ways, but one of the easiest is to move all the terms of
each to one side, then set them equal.

𝑥2 + 𝑦2 − 9 = (𝑥 − 5)2 + 𝑦2 − 16

From here, its just the sort of algebra you’d see in a precalculus course: we expand it
out, cancel an 𝑥2 and 𝑦2 from both sides, and solve the resulting equation for 𝑥 :

−9 = −10𝑥 + 25 − 16
10𝑥 = 18 ⟹ 𝑥 = 18

10

But now, does this 𝑥 value really work? To find an actual point of intersection we need
that there is a 𝑦-value that goes with it! So, we need to see that we can find a common
value of 𝑦 such that (𝑥, 𝑦) lies on both of our circles
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To lie on 𝐶1 we need 𝑥2 + 𝑦2 = 𝑟21 , so 𝑦 = ±√𝑟21 − 𝑥2. Thus, we need that 𝑟21 − 𝑥2 is
positive: otherwise this 𝑦 wont exist! To lie on 𝐶2, similarly we need that 𝑟22 − (𝑥 − 𝑑)2
is positive, so we can take the square root and get a 𝑦 value.

Plugging in our 𝑥 value here, we see that

$𝑟21 − 𝑥2 = 9 − (18/10)2 = 144
25 = 122

52 > 0.
But, because we found our 𝑥-value by setting the two equations equal we know that
𝑟21 −𝑥2 = 𝑟22 −(𝑥 −𝑑)2 (just cancel the 𝑦2 from both sides). Thus, the quantity needed for
the other circle is also positive, and equal to the same value! This tells us the intersection
points explicitly:

(𝑥, 𝑦) = (1810 , ±
12
5 )

Parabolas

First, we can meausre the distance from a point 𝑝 = (𝑥, 𝑦) in the plane to a point 𝑓 =
(0, ℎ) using the distance formula:

dist((𝑥, 𝑦), 𝑓 ) = √(𝑥 − 0)2 + (𝑦 − ℎ)2

= √𝑥2 + (𝑦 − ℎ)2

If we have a horizontal line with 𝐿with 𝑦 coordinate −ℓ, we can measure the distance of
any point (𝑥, 𝑦) in the plane to 𝐿 using homework problems 3 and 4. There we learned
that the distance to a line is minimized if you reach it via a perpendicular. Since our line
is horizontal, perpendiculars are vertical segments, so the closest point to (𝑥, 𝑦) is (𝑥, −ℓ)
with distance

dist((𝑥, 𝑦), 𝐿) = √(𝑥 − 𝑥)2 + (𝑦 − (−ℓ))2
= |𝑦 + ℓ|

The point (𝑥, 𝑦) lies on the parabola defined by 𝑓 and 𝐿 if these distances are equal: that
is, if

√𝑥2 + (𝑦 − ℎ)2 = |𝑦 + ℓ|
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We wish to figure out for which values of ℓ, ℎ this describes the standard parabola. First,
we can simplify everything by squaring:

𝑥2 + (𝑦 − ℎ)2 = (𝑦 + ℓ)2

Expanding this out and collecting like terms, we find

𝑥2 = (𝑦2 + 2ℓ𝑦 + ℓ2) − (𝑦2 − 2ℎ𝑦 + ℎ2)
= 2(ℓ − ℎ)𝑦 + ℓ2 − ℎ2

To make this into 𝑦 = 𝑥2 we need that the coefficinet of 𝑦 is euqal to 1 and the constant
term is zero. That is

2(ℓ + ℎ) = 1 ℓ2 − ℎ2 = 0

The second equation requires that ℓ2 = ℎ2 so ℓ = ℎ (since both are positive). Plugging
this into the first we get 2(ℓ + ℓ) = 1 or 4ℓ = 1 so

ℓ = 1
4 = ℎ

Thus, 𝑦 = 𝑥2 is the parabola with focus 𝑓 = (0, 14 ) and directrix the horizontal line at

𝑦 = −1
4 .
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Study Guide 1

Before the first midterm, write a study guide focusing on the portions of the class that
you need the most help with.

• Go through the book and copy down all relevant definitions and theorems.
• Come up with simple examples and non-examples of each definiition
• Make sure you understand howwe use the tools we are developing; by re-reading
proofs in the book.

• Do the extra exercies scattered throughout the book that weren’t assigned as
homework, if you haven’t been already.

You will be able to turn in your study guide after the exam for “completion points”
towards the “hold-me-accountable” portion of the grade (if you choose that grading
scheme).

In addition, as you review you may choose one problem from each homework
assignment to re-do (even though the answers are posted; read them, then put them
aside, and re-write the problem in your own words for practice) you can earn half of
the points you missed on that problem back by doing this
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Exam Reflection

The goal of a college course is always learning - with homework, exams, and other
assignments all just vehicles (and motivation) to help learning occur. Thus, my main
goal from this exam is to help you all learnwhere you currently stand in the course, and
to set yourself up for success going forward.

• The first part of this process was the studying for the exam: where you reviewed
all the material on vectors and curves. Here you could earn extra points towards
your grade (if you want to use the hold-me-accountable-grading) by writing a
study guide for yourself.

• The second part of the process was taking the exam itself.
Here the goal is for both you and me to learn what you know so far in the course,
and gauge what needs to be done going forward.

Now, we are at the post-exam-period where we try to use the test to learn from our pasts.
To really get set up on the right path requires some work, and some hard thinking and
reflection when things did not go according to plan.

Prompt Questions

This reflection will be worth points, if you are trying to be graded on the hold-me-
accountable grading scale. Reflect on the the first part of the semester, focusing on
your studying techniques, your exam performance, and suggestions to your future self.
Your submission should be neatly hand written or typed and in full paragraphs with
complete sentences. It should not be a rough draft, or an outline (bullet-point list of
thoughts, etc). There are no wrong answers, but only submissions showing real work
at introspection will recieve credit: remember, this is an (optional) opportunity for you
to think about what works best for you

How did the exam go? While it is still fresh on your mind, think about the exam itself.
How did you do compared to how you expected to do (after studying, but before the
exam itself)? After getting feedback, how did the exam go relative to how you felt after
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taking it? Did you do better or worse than you felt you had (after leaving the exam, but
before getting feedback).
If you did well - what were the big contributions to that success for you? If you hoped
to have done better, what were some factors that may have affected your performance
(these include comfort level with the material, but also things like not sleeping enough
the day before, or time pressure etc).

What were your study strategies? How did you go about preparing for this exam?
Did you redo homework problems? Re-read lecture notes? Go back through the chap-
ters in the book? Did you study for the exam with friends, or alone? How did you
use the practice exam? Of the things you did do, what felt like it had the most payoff?
Did any of your studying feel unproductive for you (as in, you put a lot of time into a
particular concept or strategy, but in the end still struggled with that)?

How did you learn outside of class? Do you do practice problems beyond the home-
work? And if so, how do you decide what topics you need more problems for?
If not, how can you begin to use the homework to your advantage, as a means of help-
ing you identify what the most difficult points in a given week are? When reviewing a
new concept, do you spend time reading the book chapters that accompany lecture, or
watching internet videos on these topics (or both, or neither)? Does the amount of time
you spend on this class match its relative difficulty? (ie are you spending alot of time
because its one of your hardest classes, or little time because its easy? This would mean
it does match. If you are spending not much time but its one of your harder classes, this
would not match.) This is a four credit course - the university expects students to spend
eight hours outside of classtime studying for the course.
Reflect on what you can do each week going forward to ensure that you are using the
homework to your advantage: are you not finishing problems and so wish you could
find a bigger study group to work with? Are you relying too much on friends and com-
ing away from problems with an incomplete understanding (even though you get them
correct)?

What are some recommendations for your future self? If you could help your
past self set up a strategy to leverage your own strengths (and efficiently identify your
points of struggle) for the first third of this class, what would you do? What parts of
your current strategy will you keep, and what would you have changed? Be realistic
(ie don’t just say “I would study X hours more” if adding X hours to your current plan
leaves you with an unsustainable work balance across your classes), and take what you
have learned about yourself in the above questions to build a reasonable plan.
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Problems

Right Angles

In this set of two problems, we make use of the fact that we can finally measure angles
rigorously in our new geometry, to reprove an important fact we already know, and to
prove the one remaining postulate of Euclid: the 4th.

Exercise 27.38. Prove that rectangles exist, using all of our new tools! (Ie write down
what you know to be a rectangle, explain why each side is a line segment, parameterize
it to find the tangent vectors at the vertices, and use the dot product to confirm that
they are all right angles).

To prove Euclid’s 4th postulate, we need to first phrase it more precisely than Euclids
original all right angles are equal.

Proposition 27.2 (Euclids’ Postulate 4). Given the following two configurations:

• A point 𝑝, and two orthogonal unit vectors 𝑢𝑝 , 𝑣𝑝 based at 𝑝
• A point 𝑞, and two orthogonal unit vectors 𝑎𝑞 , 𝑏𝑞 based at 𝑞

There is an isometry 𝜙 of 𝔼2 which takes 𝑝 to 𝑞, takes 𝑢𝑝 to 𝑎𝑞 , and 𝑣𝑝 to 𝑏𝑞 .

Exercise 27.39. Prove Euclids’ forth postulate holds in the geometry we have built
founded on calculus.

Hint: there’s a couple natural approaches here.

• You could directly use Exercise 27.27 from a previous homework to move one point to
the other and line up one of the tangent vectors. Then deal with the second one: can
you explain why its either already lined up, or will be after one reflection?

• Alternatively, you could show that every right angle can be moved to the “standard
right angle” formed by ⟨1, 0⟩, ⟨0, 1⟩ at 𝑂. Then use this to move every angle to every
other, transiting through 𝑂
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Measurement of the Circle

The half angle identities played a crucial role in Archimedes’ ability to compute the
preimeter of 𝑛 gons in his paper The Measurement of the Circle. Indeed, to calculate the
circumference of an inscribed 𝑛-gon, its enough to be able to find sin 𝜏/(2𝑛):

Figure 27.12.: The side-length of an inscribed 𝑛-gon is 2 sin 𝜏
2𝑛 , found via bisecting the

side to form a right triangle. The perimeter of the 𝑛-gon is just 𝑛 times
this.

By repeatedly bisecting the sides, we can start with something we can directly compute
- like a triangle, and repeatedly bisect to compute larger and larger 𝑛 gons.

Figure 27.13.: Archimedes’ method: repeatedly doubling the number of sides of the 𝑛-
gon to get polygons approaching the circle.

In the book, I use the half-angle identities to compute the exact value of sin 𝜏/12. Follow
that example further, to retrace the steps of Archimedes.

Exercise 27.40. Continue to bisections until you can compute sin(𝜏/(2 ⋅ 96)). What
is the perimeter of the regular 96-gon (use a computer to get a decimal approximation,
after your exact answer).
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Explain how we know that this is provably an underestimate of the true length, using
the definition of line segments.

Optional: Be brave - and go beyond Archimedes! Compute the circumference of the 192-
gon.

Quadrature of the Parabola

This is also a two-problem seriess, where we complete Archimedes famous Quadrature
of the Parabaola using modern tools from calculus. Archimedes problem was about a
parabolic segment: that is, the region enclosed by a parabola and a line segment con-
necting two points on the parabola. Instead of working in complete generality like
Archimedes, we will be content to just study a special case in this problem. We will
look at the parabola 𝑦 = 𝑥2, and the parabolic segment cut out by this and the line
connecting (−1, 1) to (2, 4).

Figure 27.14.: The Parabolic Segment in this Problem

Recall Archimedes main result: the area of this parabolic segment is 4/3rds the area of
the largest inscribed triangle, which is the triangle whose base is the line segment, and
third vertex lies on the parabola at the point where the tangent line is parallel to the
base.

Exercise 27.41.
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Figure 27.15.: The overall segment’s are is 4/3rds that of this triangle.

• Write down a formula for the area of the triangle whose third vertex lies at (𝑥, 𝑥2)

Hint: instead of finding the height of the triangle to use 1
2𝑏ℎ, can you use the fact that the

determinant of a matrix calculates the area of a parallelogram whose sides are the column
vectors, and that the area of a the triangle you want is half a parallelogram?

• Use Calculus I to find the point 𝑥 where the inscribed triangle has maximal
area. Then show that Archimedes was right: the slope of the tangent line to the
parabola at this point is exactly the same as the slope of the line segment forming
the triangle’s base!

This gives us the starting point: the area for which archimedes wishes to compare the
parabolic segment. Next - we need to find the parabolic segment’s area. We could
of course follow Archimedes’ original method (and if you choose to, this can be your
class project!) But here, we will use our modern tools and confirm the answer with
calculus:

Exercise 27.42. Compute the area of the parabolic segment (via integration, as the area
between two curves). Show that its exactly 4/3rds the area of the triangle!
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The Area and Circumference Constants

A circle has a circumference constant: the ratio of its radius to its circumference, which
we’ve named 𝜏 . But it also has an *area constant: the ratio of its area to the square of
its radius, which we’ve named 𝜋 .
It was Archimedes who first showed that these two constants were intimately related,
by finding that 𝜏 = 2𝜋 . Here we will again use our modern tools to reprove Archimede’s
result.

Tau is the circumference of the unit circle 𝑥2+𝑦2 = 1. We can parameterize the top half
of this circle via

𝛾 (𝑡) = (𝑡, √1 − 𝑡2)

And then compute its arclength via the integral

𝜏
2 = ∫

1

−1
‖𝛾 ′(𝑡)‖𝑑𝑡 = ∫

1

−1
1

√1 − 𝑡2
𝑑𝑡

But we can also write down the area of the circle as an integral: the top half of the circle
is 𝑦 = √1 − 𝑥2 and the bottom half is 𝑦 = −√1 − 𝑥2 so the area is

𝜋 = ∫
1

−1 ∫
√1−𝑥2

−√1−𝑥2
𝑑𝑦𝑑𝑥 = ∫

1

−1
2√1 − 𝑥2𝑑𝑥

Your goal in this problem is to show these two integrals are equal to one aother!

Exercise 27.43. Prove that

∫
1

−1
1

√1 − 𝑡2
𝑑𝑡 = ∫

1

−1
2√1 − 𝑥2𝑑𝑥

Thus showing thtat 𝜏
2 = 𝜋 .

Hint: Do 𝑢-substitutions to the integrals to make them into the same integral. The goal
isn’t to evaluate them and get a number! This is just a Calc II problem - but a tricky one,
so here’s one outline you could follow:

(1) Rewrite the area integrand √1 − 𝑥2 as 1−𝑥2
√1−𝑥2 . Use properties of integrals to break

this into two integrals, and see

𝜋 = 𝜏 − ∫
1

−1
2𝑥2

√1 − 𝑥2
𝑑𝑥
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(2) Nowwe just have to evaluate this new integral: Do the 𝑢-substitution 𝑢 = √1 − 𝑥2
to this, to show that

∫
1

−1
2𝑥2

√1 − 𝑥2
𝑑𝑥 = ∫

1

−1
2√1 − 𝑢2𝑑𝑢 = 𝜋

(This 𝑢-sub requires some work: you’ll need at some point to solve for 𝑥 in terms
of 𝑢!)

(3) Now just assemble the pieces! You never completed a single integral, but you still
managed to prove that 𝜏 = 2𝜋 .
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Solutions

Right Angles

Rectangles: Freya
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1
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Quadrature of the Parabola:

Problem 4: Katie

We are asked to find the area of the maximal triangle between a parabola and line. We
don’t know yet what third point will maximize the area of our triangle so we will let
𝑝 ∶ (𝑥, 𝑥2) represent the point we want. Next we want to find the area of this triangle,
but how can we do this? One way, is to find two vectors that create a parallelogramwith
twice the area of our triangle. Let’s use the vectors: 𝑉 ∶< 3, 3 > and 𝑈 ∶< 𝑥+1, 𝑥2−1 >,
be those vectors. Thus visually we have:

Figure 27.16.: The desired triangle inscribed in the parabola.

These vectors create the following parallelogram:

Thus, the area of the triangle is 1
2𝑑𝑒𝑡 (

𝑥 + 1 3
𝑥2 − 1 3) = 1

2 (3(𝑥 + 1) − (3(𝑥2 − 1))) = 3
2 (−𝑥2 +

𝑥 + 2). So we found out that the area of our triangle is 3
2 (−𝑥2 + 𝑥 + 2). But we want this

to be the maximum triangle, and to maximize it we must take the derivative and sit it
equal to zero:

(32(−𝑥
2 + 𝑥 + 2))′ = (−3

2𝑥
2 + 3

2𝑥 + 3)′ = −3𝑥 + 3
2 = 0

Thus,
𝑥 = 1

2
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Figure 27.17.: A parallelogram, with twice the area of the desired triangle.

Therefore, we found that (12 ,
1
4 ) is the point where our triangle has maximum area!

Next, we want to show Archimedes was right and show that the tangent vector to (12 ,
1
4 )

has the same slope as 𝑉 =< 3, 3 >. We can do this by finding a tangent vector to our
curve:

(𝑥, 𝑥2)′ =< 1, 2𝑥 >

This vector at 𝑥 = 1
2 is < 1, 1 >. Notice that < 1, 1 > has the same slope as 𝑉 ! Therefore

we have shown what we need to!
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Problem 5: Daniel
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Assignment 7

Problems

Review

This assignment does not have many problems, and instead I want you to set aside the
time you would usually be reading and working on the homework for review. We just
finished Euclidean geometry! Go back through the book, and re-look over the sections
which defined all of our foundational concepts.

• Isometries
• Lines
• Shapes
• Angles
• Area

Make sure you know the definitions and understand the theorems. Bring questions to
me in office hours after the break! We will be starting the geometry of the sphere when
we return, and we will be rebuilding all of this for a new geometry - but at a much
quicker rate!

Trigonometric Identities:

The following exercise has you compute with some trigonometric identities, which we
needed to find the volume of spheres:

Exercise 27.44 (Integrating cos4(𝜃)). Start with the angle sum-identity we derived in
class some lectures back

cos(𝑎 + 𝑏) = cos(𝑎) cos(𝑏) − sin(𝑎) sin(𝑏)

Use this to derive an identity relating cos(2𝜃) to cos2(𝜃) (we did most of this in class -
but repeat it for yourselves). Now use this identity twice to show
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cos4(𝜃) = 3
8 + cos 2𝜃

2 + cos 4𝜃
8

by writing cos4 𝜃 = (cos2 𝜃)2. Then use this to confirm that

∫
𝜏
4

0
cos4 𝜃 = 3

8
𝜏
4

This result was crucial to our calculuation of the volume of the four dimensional sphere
in class, where we showed (via a trigonometric substitution)

vol = 8𝜋
3 ∫

𝜏/4

0
cos4(𝜃)𝑑𝜃

Using this result gave us the final answer:

vol = 8𝜋
3
3
8
𝜏
4

= 𝜋𝜏
4

= 𝜋2
2

The 5-Dimensional Sphere

The unit sphere in five dimensions is given by the set of points (𝑥, 𝑦 , 𝑧, 𝑤, 𝑢) satisfying
𝑥2 + 𝑦2 + 𝑧2 + 𝑤2 + 𝑢2 = 1

Exercise 27.45. Calculuate the volume of this space by slicing along the 𝑢 direction.
Show that the slices are four dimensional spheres: what’s the radius? Use the volume
formula in four dimensions we derived in class

vol(𝑟) = 𝜋2
2 𝑟4

to write down the volume of each slice, and then perform the integral to confirm that
the 5-dimensional volume is

8𝜋2
15
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High Dimensional Spheres and Cylinders

(This will not need any trigonometric substitution) Once you have this, find the “surface
area” of this 5-dimensional sphere by differentiation.

High Dimensional Spheres and Cylinders

Exercise 27.46. The discovery Archimedes was most proud of was that the surface
area of the sphere in 3-dimensions was the same as the area of the smallest cylinder
surrounding it.

Is the same true in four dimensions? (A four-dimensional cylinder has a sphere’s surface
as its “base”, just like a three dimensional cylinder has a circle’s length as its base!)
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Solutions

Trigonometric Identites: Freya
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The 5-Dimensional Sphere: Katie

We are asked to calculate the volume of the 5D unit sphere. The surface of the unit
sphere in 5-Dimensions is represented by the set of points where 𝑥2+𝑦2+𝑧2+𝑤2+𝑢2 = 1.
We can calculate the volume or our sphere by integrating cross sections across 𝑢. To do
this we must find the radii of these cross sections.

Figure 27.18.: The radius of a slice at a given height.s

Taking cross section at height 𝑢, we can find its radius utilizing the Pythagorean theorem.
We see that 𝑟 = √1 − 𝑢2. Therefore, 𝑥2 + 𝑦2 + 𝑧2 + 𝑤2 = √1 − 𝑢2 represent our cross
sections at height u. But this is the formula for a 4D sphere. So cross sections of our 5D
sphere are 4D spheres! Recall that 𝜋2

2 𝑟4 to be the volume of the 4D unit sphere, so the
volume of our cross section at height 𝑢 is:

𝜋2
2 𝑟4 = 𝜋2

2 (√1 − 𝑢2)4 = 𝜋2
2 (1 − 𝑢2)2
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.

Therefore, the volume of our 5D unit sphere is given by:

∫
1

−1
𝜋2
2 (1 − 𝑢2)2𝑑𝑢 = 𝜋2

2 ∫
1

−1
1 − 2𝑢2 + 𝑢4𝑑𝑢

= 𝜋2
2 [𝑢 − 2

3𝑢
3 + 1

5𝑢
5]1−1

= 𝜋2
2 [1 − 2

3 + 1
5 − (1 + 2

3 − 1
5)]

= 𝜋2
2 (2 − 4

3 + 2
5)

= 𝜋2
2 (3015 − 20

15 + 6
15)

= 𝜋2
2 ⋅ 1615

= 8𝜋2
15

Therefore, we have shown that the volume of the 5D unit sphere is 8𝜋2
15 !
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Problems

The Dot Product

One thing we used in our arguments building up the basics of spherical geometry was
the fact that the dot product has a nice derivative rule.

Exercise 27.47 (Product Rule for Dot Product). Let 𝑓 (𝑡) = ⟨𝑓1(𝑡), 𝑓2(𝑡), 𝑓3(𝑡)⟩ and 𝑔(𝑡) =
⟨𝑔1(𝑡), 𝑔2(𝑡), 𝑔3(𝑡)⟩ be two vector functions. Prove that the dot product satisifes the prod-
uct rule:

𝑑
𝑑𝑡 (𝑓 (𝑡) ⋅ 𝑔(𝑡)) = 𝑓 ′(𝑡) ⋅ 𝑔(𝑡) + 𝑓 (𝑡) ⋅ 𝑔′(𝑡)

Our use of the dot product overall is as a tool to give the sphere geometry it defines
what we mean by infinitesimal length and by angle. Often we will use this just as a
theoretical tool - but its good to get some hands-on practice at the beginning, measuring
some actual angles.

Exercise 27.48. Consider the curves 𝛼(𝑡) = (cos 𝑡 , sin 𝑡 , 0) (the equator of the sphere),
and 𝛽(𝑡) = (0, sin(𝑡), cos(𝑡)) (a line of longitude). Prove that they

• Intersect each other at the 𝑡 = 𝜋/2
• Form a right angle at their point of intersection.

Draw a picture of this situation in 3D on a sphere.
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Isometries

Recall the definition of an isomery of 2 is a function 𝜙 ∶ 2 → 2 which preserves the dot
product (or equivalently, preserves infinitesimal lengths).

Exercise 27.49. A permutation matrix is a square matrix where every row and column
has exactly one “1”, and the other entries are zero. Prove the following permuatation
matrix

𝐴 = (
0 1 0
1 0 0
0 0 1

)

can be used to define an isometry of 2 by the formula

𝜙(𝑥, 𝑦 , 𝑧) = 𝐴(
𝑥
𝑦
𝑧
)

directly from the definition of isometry.

In class we are working our way to prove some facts about isometries, mimicking what
we did in the Euclidean plane. In particular, on Tuesday we will prove the following
two important facts.

Theorem 27.7 (The Sphere is Homogeneous). Given any two points 𝑝 and 𝑞 on the
sphere, there is an isometry taking 𝑝 to 𝑞:

Proposition 27.3. Let 𝑁 be the north pole, and 𝑣 be any unit vector in 𝑇𝑁 2. Then there
exists an isometry 𝜙 of the sphere which fixes 𝑁 and takes ⟨1, 0, 0⟩ ∈ 𝑇𝑁 2 to 𝑣 .

The first is an analog of translations of the Euclidean plane: we can always find an
isometry of the sphere that takes any point to any other. And the second is similar to
when we proved that you could build rotations of 𝔼2 about the origin (we’ll actually
prove it, using that exact theorem!)

Your goal in these next problems is to use these theorems to prove even more: first,
prove that you can actually rotate the sphere fixing any point you wish (not just the
north pole!)
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Exercise 27.50. Use Proposition 27.3 and Theorem 27.7 to show the sphere is isotropic:
that given any point 𝑝 ∈ 2 and any two unit vectors 𝑣 , 𝑤 ∈ 𝑇𝑝2, there exists an isometry
of 2 fixing 𝑝 and taking 𝑣 to 𝑤 .

(Hint: first show you can do this when 𝑝 is the north pole! Then use homogenity and a
conjugation. Be inspired by the Euclidean proof!)

Next, just like in Euclidean space we often find it useful to combine homogenity and
isotropy into one condition: we can move any point and any tangent vector to any
other point and tangent vector that we like!

Exercise 27.51. Let 𝑝, 𝑞 be any two points on the sphere, and 𝑣 a unit tangent vector at
𝑝 and 𝑤 a unit tangent vector at 𝑞. Then there is an isomtery of 2 taking (𝑝, 𝑣) to (𝑞, 𝑤).
Hint: Look back at Ex 4 Homework 4!

Solutions

The Dot Product

The Product Rule

This problem is just an algebraic computation (but it was assigned since the result itself
is very useful, and we used it to derive that the tangent space 𝑇𝑝2 is orthogonal to 𝑝 in
𝔼3.)

Given 𝑓 (𝑡) = ⟨𝑓1(𝑡), 𝑓2(𝑡), 𝑓3(𝑡)⟩ and 𝑔(𝑡) = ⟨𝑔1(𝑡), 𝑔2(𝑡), 𝑔3(𝑡)⟩, we take their dot product
and get 𝑓 ⋅ 𝑔 = 𝑓1𝑔1 + 𝑓2𝑔2 + 𝑓3𝑔3. (I’ve left out the explicit time dependence (𝑡) in the
notation since everything is a function of 𝑡 , we will just remember that all symbols in
our expression are functions). Now we can take the derivative:

(𝑓 ⋅ 𝑔)′ = (𝑓1𝑔1 + 𝑓2𝑔2 + 𝑓3𝑔3)′
= (𝑓1𝑔1)′ + (𝑓2𝑔2)′ + (𝑓3𝑔3)′

By the product rule, we have (𝑓𝑖𝑔𝑖)′ = 𝑓 ′𝑖 𝑔𝑖 + 𝑓𝑖𝑔′𝑖 for each 𝑖 ∈ {1, 2, 3}. Plugging this in,
we can reorder the addition so that all terms with derivatives of 𝑓 come first:

(𝑓 ′1 𝑔1 + 𝑓1𝑔′1) + (𝑓 ′2 𝑔2 + 𝑓2𝑔′2) + (𝑓 ′3 𝑔3 + 𝑓3𝑔′3)
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= (𝑓 ′1 𝑔1 + 𝑓 ′2 𝑔2 + 𝑓 ′3 𝑔3) + (𝑓1𝑔′1 + 𝑓2𝑔′2 + 𝑓3𝑔′3)

Now by the definition of the dot product in 𝔼3 we see the terms in the first parentheses
are just an unpacking of 𝑓 ′ ⋅𝑔 and in the second set are 𝑓 ⋅𝑔′. Thus putting it all together,
we’ve shown whwat we needed to:

(𝑓 ⋅ 𝑔)′ = 𝑓 ′ ⋅ 𝑔 + 𝑓 ⋅ 𝑔′

Angles Beetween Curves

To prove 𝛼(𝑡) and 𝛽(𝑡) intersect at 𝑡 = 𝜋/2, we just need to plug in this value of 𝑡 to each
curve and observe that we get the same point.

𝛼(𝜋/2) = (cos 𝜋2 , sin
𝜋
2 , 0) = (0, 1, 0)

𝛽(𝜋/2) = (0, sin 𝜋
2 , cos

𝜋
2 ) = (0, 1, 0)

So, they meet the point 𝑝 = (0, 1, 0). Our next goal is to show that they intersect orthog-
onally there. For this, we need to find their tangent vectors in 𝑇𝑝2, which are the result
of differentiation:

𝛼′(𝑡) = ⟨− sin 𝑡 , cos 𝑡 , 0⟩
𝛽′(𝑡) = ⟨0, cos 𝑡 , − sin 𝑡⟩

At 𝑡 = 𝜋/2 we then have

𝛼′(𝜋/2) = ⟨−1, 0, 0⟩ ∈ 𝑇𝑝2

𝛽′(𝜋/2) = ⟨0, 0, −1⟩ ∈ 𝑇𝑝2

Because these two vectors live in the same tangent space, they define an angle on the
sphere. We can measure the angle using the sphere’s dot product: since they are unit
vectors,
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cos 𝜃 = 𝛼′(𝜋/2) ⋅ 𝛽′(𝜋/2)
= ⟨−1, 0, 0⟩ ⋅ ⟨0, 0, −1⟩
− = 0

Thus cos 𝜃 = 0, so 𝜃 = 𝜋/2, the vectors are indeed orthogonal as claimed.

Isometries

Permutation Matrix

Here we wish to show that the isometry 𝜙(𝑥, 𝑦 , 𝑧) = 𝐴(𝑥, 𝑦 , 𝑧) is an isometry, for the 𝐴
the permutation matrix

𝐴 = (
0 1 0
1 0 0
0 0 1

)

Recall that we have two equivalent notions for what it means to be an isometry, we can
either check that 𝜙 preseves all infinitesimal lengths, or that 𝜙 preserves the dot product.
Neither one is easier or harder than the other, so I’ll do the latter.

This means I need to start with an arbitrary point 𝑝 ∈ 2, and two arbitrary vectors
𝑣 , 𝑤 ∈ 𝑇𝑝2, and show that applying 𝜙 doesn’t change anything:

𝑣 ⋅ 𝑤 = (𝐷𝜙𝑝𝑣) ⋅ (𝐷𝜙𝑝𝑤)

First, we note that since 𝜙 is defined as a linear map, its easy to differentiate: its deriva-
tive is just itself! (This is what I call the cool lemma in class because its cool how fast it
makes it to take the derivative of isometries)

Thus for any point 𝑝, the map 𝐷𝜙𝑝 acts on vectors 𝑣 = ⟨𝑣1, 𝑣2, 𝑣3⟩ in 𝑇𝑝2 as

𝐷𝜙𝑝𝑣 = (
0 1 0
1 0 0
0 0 1

)(
𝑣1
𝑣2
𝑣3
) = (

𝑣2
𝑣1
𝑣3
)

Applying the same map to 𝑤 , we see that 𝐷𝜙𝑝𝑤 = ⟨𝑤2, 𝑤1, 𝑤3⟩.
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Now its just a matter of algebra. We need to compute the dot products before and after
applying 𝜙 and see they’re equal:

(𝐷𝜙𝑝𝑣) ⋅ (𝐷𝜙𝑝𝑤) = ⟨𝑣2, 𝑣1, 𝑣3⟩ ⋅ ⟨𝑤2, 𝑤1, 𝑤3⟩
= 𝑣2𝑤2 + 𝑣1𝑤1 + 𝑣3𝑤3
= 𝑣1𝑤1 + 𝑣2𝑤2 + 𝑣3𝑤3
= 𝑣 ⋅ 𝑤

Thus, 𝜙 preserves the dot product, so its an isometery!

The Sphere is Isotropic

Fix an arbitrary point 𝑝 ∈ 2: we want to show that if we have any two unit vectors
𝑣 , 𝑤 ∈ 𝑇𝑝2, we can build some isometry which takes 𝑣 to 𝑤 .

Using what we know, let’s first take an isometry that moves 𝑝 to the north pole. Call
this isometry 𝜙, so 𝜙(𝑝) = 𝑁 . Applying this to our two vectors 𝑣 and 𝑤 , we get two new
vectors now based at the north pole. So that we can remember where they came from,
I’ll name them using the capital letter vsion of their original name:

𝑉 = 𝐷𝜙𝑝𝑣 ∈ 𝑇𝑁 2 𝑊 = 𝐷𝜙𝑝𝑤 ∈ 𝑇𝑁 2

Now I will work to move 𝑉 to𝑊 . Unfortunately, we don’t have a pre-built tool for this!
Instead, the tool we have (the theorem the problem statement asks us to use) just says
that we can find an isomery fixing𝑁 which takes ⟨1, 0, 0⟩ to any vector in 𝑇𝑁 2. So, we’re
going to have to get creative, and use this twice!

Let 𝛼 be the isometry this theroem guarantees which takes ⟨1, 0, 0⟩ to 𝑉 , and let 𝛽 be the
similar isometry taking ⟨1, 0, 0⟩ to 𝑊 . The inverse 𝛼−1 is then an isometry which takes
𝑉 to ⟨1, 0, 0⟩, and following this with 𝛽 carries this to 𝑊 .

Thus, we have found an isometry 𝛽 ∘ 𝛼−1, which fixes 𝑁 and takes 𝑉 to𝑊 . Now there’s
only one step left: we used 𝜙 to get 𝑝 up to 𝑁 , and now we need to use its inverse to
get 𝑁 back down to 𝑝! That means overall, our isometry is

𝜙−1 ∘ 𝛽 ∘ 𝛼−1 ∘ 𝜙

And now, we check that this does what we want. First, note it fixes 𝑝: first 𝑝 is moved
to 𝑁 , then we fix 𝑁 , and finally we take 𝑁 back to 𝑝. Second, we need to see that this
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actually carries 𝑣 to 𝑤 . But this is exactly how we designed it! First 𝜙 takes 𝑣 to 𝑉 , then
𝛽𝛼−1 takes 𝑉 to 𝑊 , and finally 𝜙−1 takes 𝑊 to 𝑤 , becuase we know 𝜙 took 𝑤 to 𝑊 by
definition!

Homogenity & Isotropy

Finally we wish to show that given any two points 𝑝, 𝑞 ∈ 2 and any two unit vectors
𝑣 ∈ 𝑇𝑝2, 𝑤 ∈ 𝑇𝑞2, we can find a single isometry which simultaneously takes 𝑝 to 𝑞 and 𝑣
to 𝑤 . We essentially did all the hard work in the last problem, so here we just assemble
the pieces.

First, build any isometry we like that takes 𝑝 to 𝑞: we may remember one of these exists
from class, but if not we can put one together quickly: if 𝜙 takes 𝑝 to 𝑁 and 𝜓 takes 𝑞
to 𝑁 we can to 𝜙 then the inverse of 𝜓 to get 𝑝 to 𝑞.
Now, we have some isometry 𝑓 which takes 𝑝 to 𝑞, but unfortunately we have no idea
what it does to our tangent vector 𝑣 ∈ 𝑇𝑝2. But that’s OK - we know it must take it to
some vector in 𝑇𝑞2, so let’s just call that vector 𝑉 . Now all we need to do is get 𝑉 to 𝑤 ,
while holding 𝑞 fixed. But this is exactly what the above problem taught us how to do!
So, let 𝑔 be such an isometry. Then the composition 𝑔 ∘𝑓 is what we are after: this takes
𝑝 to 𝑞, and takes 𝑣 to 𝑤 !
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Problems

Acceleration

We saw in class that the acceleration of a curve on the unit sphere is the projection of its
𝔼3 acceleration vector onto the tangent plane. In terms of the curve 𝛾 (𝑡), that worked
out to

acc𝛾 (𝑡) = 𝛾 ′′(𝑡) − (𝛾 ′′(𝑡) ⋅ 𝛾 (𝑡)) 𝛾 (𝑡)

Exercise 27.52 (Geodesic Curvature). Themagnitude of the acceleration of a unit speed
curve is called its geodesic curvature: its a way to measure how much that curve differs
from a geodesic. This exercise, you will calculate the geodesic curvature of the circle of
radius 𝑟 on 2:

• Let 𝐶 be a circle on 2 of radius 𝑟 (to make calculations easy, let 𝐶 be centered at
the north pole if you like).

• Write down a parameterization of 𝐶 (hint: you know the plane that 𝐶 lies in, and
its Euclidean radius in that plane!)

• Find a parameterization of 𝐶 that has speed 1 (hint if you wrote down a parameter-
ization above, what speed does it travel at? Can you adjust it so the new curve has
speed 1?)

• What is the acceleration felt on 2 if you go around a circle of radius 𝑟 at unit speed?
What is it’s magnitude?

The idea of measuring acceleration along a surface in 𝔼3 as the projection of the second
derivative onto the tangent space is foundational to the study of surfaces beyond just
the sphere (it is one of the fundamental concepts in differential geometry). When the
acceleration of a curve 𝛾 is equal to zero on a surface, then we say that curve is a geodesic
on the surface. So, the equations we get by setting the acceleration equal to zero give
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us a set of differential equations that tell us what the geodesics are! These are called the
geodesic equations

In this next problem, we will get a small taste of what happens in differential geometry,
when our space is not nice and symmetric like the plane or the sphere, and we have
to resort to finding the geodesic equations and solving them (you won’t have to solve
them! Just find them….)

The surface we will look at is the paraboloid of revolution, or 𝑧 = 𝑥2 + 𝑦2. Here’s a
quick graph of this (using Desmos’ new 3D features!)

Exercise 27.53 (Geodesics on Surfaces). Let 𝑆 be the surface 𝑧 = 𝑥2 + 𝑦2, which is the
output of the function 𝐹 ∶ 𝔼2 → 𝔼3 given by

𝐹(𝑥, 𝑦) = (𝑥, 𝑦 , 𝑥2 + 𝑦2) ∈ 𝔼3

.
Let 𝑝 = 𝐹(𝑥, 𝑦) be a point on 𝑆.

• Use calculus to find two tangent vectors to the graph at a point 𝑝: Hint:
𝐷𝐹(𝑥,𝑦)⟨1, 0⟩ and…?

• Find a normal vector 𝑛 to the graph at 𝑝 using these and the cross product.
• Write down the projection of a vector 𝑣 = ⟨𝑎, 𝑏, 𝑐⟩ onto the normal vector 𝑛.
• Write down the projection of 𝑣 = ⟨𝑎, 𝑏, 𝑐⟩ onto the tangent plane 𝑇𝑝𝑆.

This is all the data we need to be able to compute acceleration along the surface 𝑆! Let
𝛾 (𝑡) be a curve that lies on the surface, so

𝛾 (𝑡) = 𝐹(𝑥(𝑡), 𝑦(𝑡)) = (𝑥(𝑡), 𝑦(𝑡), 𝑥(𝑡)2 + 𝑦(𝑡)2)

for some function 𝑥(𝑡) and 𝑦(𝑡).

• Find 𝛾 ′′
• Find the acceleration of 𝛾 on the surface 𝑆, in terms of 𝑥(𝑡) and 𝑦(𝑡).
• What are the geodesic equations for 𝑆?

Here’s a program that computes the geodesics on this surface, so you can see them!
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Curvature

We saw in class that the circumference of a circle of radius 𝑟 on 2 is given by

𝐶(𝑟) = 2𝜋 sin(𝑟)

Furthermore, we saw that the area is given by

𝐴(𝑟) = ∫
𝑟

0
𝐶(𝑟)𝑑𝑟 = 2𝜋(1 − cos(𝑟))

The idea of curvature is a

Exercise 27.54. Check this, that as 𝑟 → 0+ the following limits both exist, and are both
equal to zero:

lim𝑟→0
𝐶𝔼2(𝑟) − 𝐶2(𝑟)

𝑟 = 0

lim𝑟→0
𝐶𝔼2(𝑟) − 𝐶2(𝑟)

𝑟2 = 0

But

lim𝑟→0
𝐶𝔼2(𝑟) − 𝐶2(𝑟)

𝑟3 = 𝜋
3

Hint: L’Hospital’s rule.

Because the first two limits here are zero, they tell us that the difference between the
circumference of a Euclidean circle and a Spherical is very small indeed - they agree to
first and second order, and their difference is only revealed at the next (cubic) level.
We use this to define the curvature of any surface, where we normalize things so that
the curvature of the unit sphere comes out to be 1:

Definition 27.4. Let 𝑆 be any surface, and 𝐶 the circumference function for circles
drawn on that surace at a point 𝑝. Then the curvature of 𝑆 at 𝑝 is

𝜅 = 3
𝜋 lim𝑟→0

𝐶𝔼2(𝑟) − 𝐶(𝑟)
𝑟3

We dont need to work with circumference however; its possible to measure the curva-
ture of space using area as well!
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Exercise 27.55. Which power 𝑛 is the smallest such that

lim𝑟→0
𝐴𝔼2(𝑟) − 𝐴2(𝑟)

𝑟𝑛

has a nonzero value? For this 𝑛, what is the value of the limit? Use this to write down a
definition of curvature in terms of the area of circles, normalized so that the curavture
of the unit sphere is 1.

Spheres of Different Sizes

Unlike the Euclidean plane, spheres have no notrivial similarities: in fact, if you apply
a similarity of 𝔼3 to the sphere, it sends it to a larger or smaller sphere - not to itself!
Because of this there is not just one spherical geometry like there was for the plane, but
many. For each positive real number 𝑅 we can define spherical geometry of radius 𝑅,
denoted 2

𝑅, as follows.

Definition 27.5 (Spherical geometry of Radius 𝑅.). Let 2𝑅 denote the set of points which
are distance 𝑅 from the origin in𝔼3. For each point 𝑝 ∈ 2

𝑅, the tangent space 𝑇𝑝2𝑅 consists
of all points in𝔼3 which are orthogonal to 𝑝 (definition unchanged from the unit sphere),
and the dot product for measuring infintiesimal lengths and angles is the standard dot
product on 𝔼3 (also unchanged from the unit sphere).

The development of each of these spherical geometries is qualitatively very similar to
that for 2: we can see without any change that (𝑥, 𝑦 , 𝑧) ↦ (𝑥, 𝑦 , −𝑧) is an isomery so the
equator is a geodesic, and orthogonal transformations are still isometries so all great
circles are geodesics.

What changes is the quantitative details: the formulas for length area and curvature.
In the next two problems, your job is to redo the calculations that I did for 2, for the
geometry 2

𝑅:

Exercise 27.56 (Circumference and area.). What is the formula for the circumference
and radius of a circle of radius 𝑟 on 2

𝑅?

Hint: base your circles at 𝑁 = (0, 0, 𝑅) and look back at our arguments from class to see
what must change, and what stays the same.

Exercise 27.57. Using the definition of curvature as a limiting ratio of circumfereces
(Definition 27.4), compute the curvature of 2𝑅.
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Solutions

Acceleration

Geodesic Curvature

On the unit sphere, we derived in class that the circle of radius 𝑟 lies in the plane 𝑧 =
cos 𝑟 , and it followed from this that its Euclidean radius in that plane must be sin 𝑟 .
Since the standard parameterization of the unit circle in 𝔼2 is (cos 𝑡 , sin 𝑡)we can rescale
this by the radius to get (cos 𝑡 sin 𝑟 , sin 𝑡 sin 𝑟), and then place it at the right height in 𝔼3,
giving Look familiar? This is

spherical coordinates from
vector calculus!

𝛾 (𝑡) = (cos 𝑡 sin 𝑟 , sin 𝑡 sin 𝑟 , cos 𝑟)

This is one parameterization of this circle, but there are many others: we could go
around the circle twice as fast, one third as fast, or even backwards by changing how
we parameterize it. The problem asks us to modify this to make a unit speed parameter-
ization, so a first step is to find out what the speed of the parameterization we have is!
This is found by differentiating, and then taking the norm of the tangent vector:

𝑐′(𝑡) = (− sin 𝑡 sin 𝑟 , cos 𝑡 sin 𝑟 , 0)

‖𝑐′(𝑡)‖ = √sin2(𝑟)(sin2 𝑡 + cos2 𝑡) = | sin 𝑟 |

Thus, our parameterization isn’t unit speed - which makes sense: (cos 𝑡 , sin 𝑡) was unit
speed on the unit circle, but then we changed the circles radius! How do we make this
unit speed? If our curve was going 2 times too fast, we could divide 𝑡 by 2, and this
would half its speed (to confirm, think about the chain rule). Since our curve is actually
going sin 𝑟 times too fast, we can divide by this:

𝛾 (𝑡) = (cos ( 𝑡
sin 𝑟 ) sin 𝑟 , sin (

𝑡
sin 𝑟 ) sin 𝑟 , cos 𝑟)

Now, if we were to take the derivative, a factor of 1
sin 𝑟 will pop out of each term, and

cancel the sin 𝑟 from before - its unit speed!

Finally, the question asks us to find the acceleration of this unit speed curve, by plugging
into the acceleration formula. This means we need the curves second derivative:
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𝛾 ′′(𝑡) = ( −1
sin2 𝑟

cos ( 𝑡
sin 𝑟 ) sin 𝑟 ,

−1
sin2 𝑟

sin ( 𝑡
sin 𝑟 ) sin 𝑟 , 0)

= ( −1
sin 𝑟 cos (

𝑡
sin 𝑟 ) ,

−1
sin 𝑟 sin (

𝑡
sin 𝑟 ) , 0)

The rest is just more direct computation, using the identity on cos2 + sin2 gives (after
some algebra) 𝛾 ′′ ⋅ 𝛾 = −1, so that

acc = 𝛾 ′′ − (𝛾 ′′ ⋅ 𝛾 )𝛾 = 𝛾 ′′ + 𝛾

= ((sin 𝑟 − 1
sin 𝑟 ) cos (

𝑡
sin 𝑟 ) , (sin 𝑟 −

1
sin 𝑟 ) sin (

𝑡
sin 𝑟 ) , cos 𝑟)

This is the acceleration you feel when going around a circle of radius 𝑟 on the sphere!
The last thing we want to find is its magnitude, which is the geodesic curvature. Again
using that cos2 + sin2 = 1 we can simplify this to

𝜅 = √(sin 𝑟 − 1
sin 𝑟 )

2
+ cos2 𝑟

=
√
sin2 𝑟 − 2 + 1

sin2 𝑟
+ cos2 𝑟

=
√

1
sin2 𝑟

− 1

Phew! Now we just need a little good old fashioned trigonometry to simplify it all the
way down:

1
sin2 𝑟

− 1 = 1 − sin2 𝑟
sin2 𝑟

= cos2 𝑟
sin2 𝑟

= cot2 𝑟

So, taking the square root, we find

𝜅 = cot 𝑟 = 1
tan 𝑟
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Geodesics on Surfaces

Following the instructions laid out in the problem, we first compute the derivative,
which is a map from 𝔼2 into 𝔼3:

𝐷𝐹 = (
1 0
0 1

−2𝑥 −2𝑦
)

If we apply this to vectors in the plane at a point 𝑝 = (𝑥, 𝑦), the result will be vectors
tangent to the surface of the graph in 𝔼3 above that point. In particular we can get two
tangent vectors by multiplying by the unit basis vectors ⟨1, 0⟩ and ⟨0, 1⟩, which simply
return the first and second columns of the matrix:

𝐷𝐹𝑝⟨1, 0⟩ = ⟨1, 0 − 2𝑥⟩
𝐷𝐹𝑝⟨0, 1⟩ = ⟨0, 1, −2𝑦⟩

What we are after is a normal vector to the surface. So we can take the cross product of
these two tangent vectors:

𝑛 = |(
𝑖 𝑗 𝑘
1 0 −2𝑥
0 1 −2𝑦

)| = ⟨2𝑥, 2𝑦, 1⟩

Projecting a vector 𝑣 = ⟨𝑎, 𝑏, 𝑐⟩ onto 𝑛 is accomplished via the formula we derived in
class:

proj𝑛(𝑣) = 𝑣 ⋅ 𝑛
𝑛 ⋅ 𝑛 𝑛

= 2𝑥𝑎 + 2𝑦𝑏 + 𝑐
4𝑥2 + 4𝑦2 + 1⟨2𝑥, 2𝑦, 1⟩

Finally, to project a vector 𝑣 onto the tangent space 𝑇𝑝𝑆, we need to subtract its projec-
tion onto the normal direction. This leaves us with

⟨𝑎, 𝑏, 𝑐⟩ − 2𝑥𝑎 + 2𝑦𝑏 + 𝑐
4𝑥2 + 4𝑦2 + 1⟨2𝑥, 2𝑦, 1⟩
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The second half of this question asks us to use this projection that we just derived on
the curve 𝛾 (𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑥(𝑡)2+𝑦(𝑡)2), to find a system of equations that 𝑥(𝑡) and 𝑦(𝑡)
must satisfy for 𝛾 to be a geodesic on the surface.These are called the

geodesic equations for 𝑆,
and are one of the

fundamental things people
study in Riemannian

geometry

The first rule of being a geodesic
is that the acceleration must be zero: that means, our equation above will be equal to
zero, or after moving one term to the other side, we will have

(
𝑎
𝑏
𝑐
) = 2𝑥𝑎 + 2𝑦𝑏 + 𝑐

4𝑥2 + 4𝑦2 + 1 (
2𝑥
2𝑦
1
)

The second rule of being a geodesic is that the vector 𝑣 we are projecting onto the
tangent space isn’t arbitrary: its the *acceleration of our curve, 𝑣 = 𝛾 ′′. So all we need
to do is compute this, and find 𝑎, 𝑏, 𝑐. To lighten the notation, I will write 𝑥 for 𝑥(𝑡) and
𝑦 for 𝑦(𝑡) throughout - just remember that both 𝑥 and 𝑦 depend on 𝑡! Using the chain
and product rules,

𝛾 ′ = ⟨𝑥′, 𝑦 ′, 2𝑥𝑥′ + 2𝑦𝑦 ′⟩

𝛾 ′′ = ⟨𝑥′′, 𝑦 ′′, 2(𝑥′𝑥′ + 𝑥𝑥′′ + 𝑦 ′𝑦 ′ + 𝑦𝑦 ′′)⟩

So, replacing 𝑣 with 𝛾 ′′ just means setting 𝑎 = 𝑥′′, 𝑏 = 𝑦 ′′ and 𝑐 = 2(𝑥′𝑥′+𝑥𝑥′′+𝑦 ′𝑦 ′+
𝑦𝑦 ′′).
Because 𝑥𝑎 = 𝑥𝑥′′ and 𝑦𝑏 = 𝑦𝑦 ′′ both show up inside of our expression for 𝑐, we
can simplify the numerator of the big fractioN 2𝑥𝑎 + 2𝑦𝑏 + 𝑐 a bit to get 4𝑥𝑥′′ + 4𝑦𝑦 ′′ +
2𝑥′𝑥′+2𝑦 ′′, and then writing out each of the three equations in our system of equations
gives

𝑥′′ = 2𝑥 4𝑥𝑥
′′ + 4𝑦𝑦 ′′ + 2𝑥′𝑥′ + 2𝑦 ′𝑦 ′

4𝑥2 + 4𝑦2 + 1

𝑦 ′′ = 2𝑦 4𝑥𝑥
′′ + 4𝑦𝑦 ′′ + 2𝑥′𝑥′ + 2𝑦 ′𝑦 ′

4𝑥2 + 4𝑦2 + 1

2(𝑥′𝑥′ + 𝑥𝑥′′ + 𝑦 ′𝑦 ′ + 𝑦𝑦 ′′) = 4𝑥𝑥′′ + 4𝑦𝑦 ′′ + 2𝑥′𝑥′ + 2𝑦 ′𝑦 ′
4𝑥2 + 4𝑦2 + 1

Solving these differential equations is a hard process! But if you can find the solutions,
you’ll have found the geodesics to the paraboloid.
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Curvature

Circumference Limits

The numerator of all limits we are considering here is the difference from Euclidean to
spherical circumference, or

𝐶𝔼2(𝑟) − 𝐶2(𝑟) = 2𝜋𝑟 − 2𝜋 sin 𝑟 = 2𝜋(𝑟 − sin 𝑟)

In the first case we are looking at the limit of

lim
𝑟→0+

2𝜋 𝑟 − sin 𝑟
𝑟

Evaluating the numerator and denominator separately gives the indeterminate form
0/0, so we apply L’Hospital’s rule to get

= lim
𝑟→0+

2𝜋 (𝑟 − sin 𝑟)′
𝑟 ′ = lim

𝑟→0+
2𝜋 1 − cos 𝑟

1
Here we see the denominator is 1 and the numerator goes to zero, so this limit exists,
and equals zero, as we were asked to confirm.

Following the same procedure, we may look at the difference quotient

lim
𝑟→0+

2𝜋 𝑟 − sin 𝑟
𝑟2

Again this is an indeterminate form, and we have to apply L’Hospitals twice before it
gives us anything:

(𝑟 − sin 𝑟)′
(𝑟2)′ = 1 − cos 𝑟

2𝑟 → 0
0

(1 − cos 𝑟)′
(2𝑟)′ = sin 𝑟

2 → 0
2 = 0

This limit also equals zero, as was claimed. Finally we check the third limit,

lim
𝑟→0+

2𝜋 𝑟 − sin 𝑟
𝑟3

which we expect to come out to a nonzero value, but only after three applications of
L’Hosiptals rule:
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(𝑟 − sin 𝑟)′
(𝑟3)′ = 1 − cos 𝑟

3𝑟2 → 0
0

(1 − cos 𝑟)′
(3𝑟2)′ = sin 𝑟

6𝑟 → 0
0

(sin 𝑟)′
(6𝑟)′ = cos 𝑟

6 → 1
6

Thus, we know the value of our limit!

lim
𝑟→0+

2𝜋 𝑟 − sin 𝑟
𝑟3 = 2𝜋 16 = 𝜋

3

Area Limits

This next question asks us to do the same thing, but for areas, looking at the limit

lim
𝑟→0+

𝐴𝔼2(𝑟) − 𝐴2(𝑟)
𝑟𝑛

for the first 𝑛 where this is nonzero. One way to approach this problem is to mimic
exactly the calculations we did above, but with the area functions 𝐴𝔼2(𝑟) = 𝜋𝑟2 and
𝐴2(𝑟) = 2𝜋(1− cos 𝑟) that we derived in class. This will require lots of L’Hospitals rules,
as we try bigger and bigger values of 𝑛, doing L’Hospitals more and more times, but is
not technically challenging.

However - there’s also a shortcut! We know that area is the integral of circumference!
Thus, our numerator is really of the form

𝐴𝔼2(𝑟) − 𝐴2(𝑟) = ∫
𝑟

0
𝐶𝔼2(𝑟)𝑑𝑟 − ∫

𝑟

0
𝐶2(𝑟)𝑑𝑟

If we differentiate this once, by the fundamenatl theroem of calculus we are back to
the numerator from the previous problem! And there we know what limit works; the
denominator needs to be 𝑟3. So…in this case, we need the denominator to be 𝑟4 so that
after one differentiation, we have reached the same situation as the last problem. But
what’s the value? Well, doing that first application of L’Hospitals we see

(𝐴𝔼2(𝑟) − 𝐴2(𝑟))′
(𝑟4)′ = 𝐶𝔼2(𝑟) − 𝐶2(𝑟)

4𝑟3
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We have an extra factor of four in the denominator! Thus, since we know the limit
without this four is 𝜋/3, the new answer will be

1
4
𝜋
3 = 𝜋

12

This gives us the normalizing constant we need if we want to define curvature using
area:

𝜅 = 12
𝜋 lim

𝑟→0+
𝐴𝔼2(𝑟) − 𝐴2(𝑟)

𝑟4

Spheres of Different Sizes

Circumference

On a sphere of radius 𝑅, distance is not equal to angle (that two points on the sphere
make, thought of as vectors from the center) but rather 𝑅 times angle, since we have
scaled up the unit sphere with a similarity, and these scale distances uniformly by their
scaling factor.

dist = 𝑅𝜃

So, if we can find 𝜃 , all we need to do is multiply by 𝑅. Our goal here is to describe the
circles of radius 𝑟 about the north pole 𝑁 = (0, 0, 𝑅), so these are the points 𝑝 = (𝑥, 𝑦 , 𝑧)
on the sphere where we have 𝑟 = 𝑅𝜃 , or equivalently, 𝜃 = 𝑟/𝑅.
Given a point 𝑝 = (𝑥, 𝑦 , 𝑧), we can find the angle it makes with 𝑁 = (0, 0, 𝑅) in 𝔼3 using
the dot product:

cos 𝜃 = 𝑝 ⋅ 𝑁
‖𝑝‖‖𝑁 ‖

Since both 𝑝 and 𝑁 lie on the sphere of radius 𝑅, the denominator here is 𝑅𝑅 = 𝑅2, and
the numerator is (𝑥, 𝑦 , 𝑧) ⋅ (0, 0, 𝑅) = 𝑅𝑧. Thus

cos 𝜃 = cos ( 𝑟𝑅) = 𝑅𝑧
𝑅2 = 𝑧

𝑅
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Multiplying by 𝑅 we can solve this for 𝑧, and see that on the sphere of radius 𝑅, a circle
of radius 𝑟 lies in the horizontal plane 𝑧 = 𝑅 cos(𝑟/𝑅).
This is useful information to us becasue now we can find it’s Euclidean circumference
in this horizontal plane, which we know to be 2𝜋 times its Euclidean radius.

This Euclidean radius is just the distance that a point 𝑝 on the circle lies from the 𝑧
axis: we know that 𝑝 lies distance 𝑅 from the origin, and we also know its 𝑧-coordinate
is 𝑅 cos(𝑟/𝑅). By trigonometry, this means it lies at a distance of 𝑅 sin(𝑟/𝑅) from the
𝑧−axis, and so its circumference must be

𝐶(𝑟) = 2𝜋𝑅 sin ( 𝑟𝑅)

Curvature

Now that we have found the circumference as a function of radius for circles on the
sphere of radius 𝑅, we can calculate its curvature! We just need to plug this function
into our limit calculation, and plug away at L’Hospital! We know we need three differ-
entiations to get rid of the 𝑟3 in the denominator, so differentiating our numerator three
times:

(𝐶𝔼2(𝑟) − 𝐶(𝑟))′′′ = (2𝜋𝑟 − 2𝜋𝑅 sin ( 𝑟𝑅))
′′′

= (2𝜋 − 2𝜋𝑅 1
𝑅 cos ( 𝑟𝑅))

′′

= (0 + 2𝜋𝑅 1
𝑅2 sin ( 𝑟𝑅))

′

= 2𝜋𝑅 1
𝑅3 cos ( 𝑟𝑅)

This gets divided by (𝑟3)′′′ = 6 andmultiplied by the normalizing factor of 3/𝜋 to give

𝜅 = 3
𝜋 lim

𝑟→0+
2𝜋 1

𝑅2 cos ( 𝑟
𝑅)

6

= 3
𝜋
2𝜋 1

𝑅2

6
= 1

𝑅2
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Thus, the curvature of a sphere of radius 𝑅 is equal to 1/𝑅2.
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Problems

Platonic Solids

In these problems we will investigate regular polygons on the sphere. Recall we call
a polygon regular if it has rotational symmetries about its center: in particular this
implies that all its sides are the same length, and all its angles have the same measure
(since isometries preserve both lengths and angles).

In the Euclidean plane, we know that regular polygons of all side numbers ≥ 3 ex-
ist (these are how Archimedes approximated the circle, after all!), but their angles are
strictly determined by their number of sides. We proved in a previous homework that
the angle sum of an 𝑛-gon is (𝑛 − 2)𝜋 , and if all the angles of a regular 𝑛 gon are equal,
each angle must measure 𝜃𝑛 = 𝑛−2

𝑛 𝜋 .
This puts a strong restriction on which regular polygons can be used to tile the plane.
To tile the plane, a necessary (but not sufficient) condition is that we need to be able to
fit 𝑘 copies of each polygon around a vertex, without any gaps or overalps. This tells us
that the angles of a polygon that can tile must be 𝜃 = 2𝜋

𝑘 .

Figure 27.19.: Angles need to be an integer divisor of 2𝜋 to fit evenly around a point
without gaps or overlap.
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Thus, to figure out which polygons even have a chance of tiling the Euclidean plane, we
want to know for which 𝑛 (the number of sides) there the angle 𝜃𝑛 is actually 2𝜋 over
an integer. We can start listing:

𝜃3 = 3 − 2
3 𝜋 = 𝜋

3 = 2𝜋
6

𝜃4 = 4 − 2
4 𝜋 = 𝜋

2 = 2𝜋
4

𝜃5 = 5 − 2
5 𝜋 = 3𝜋

5
𝜃6 = 6 − 2

6 𝜋 = 2𝜋
3

𝜃7 = 7 − 2
7 𝜋 = 5𝜋

7
Thus, we see that its possible to fit six triangles around a vertex, four squares around
a vertex and three hexagons around a vertex, but as the angles 𝜃5 and 𝜃7 aren’t even
divisions of 2𝜋 , there’s no nice way to fit pentagons or 7-gons around a vertex, and thus
no hope of using them to tile the plane.

This is the start to the classification of regular tilings of the plane, where by what we see
from the angle measures, its possible for triangles, squares and hexagons, but impossible
for all other shapes!

Figure 27.20.: The three regular polygons that tile the Euclidean plane.

Our goal here is to investigate what changes on the sphere.

Exercise 27.58 (Spherical Pentagons).

• Find a relationship between the area 𝐴 of a spherical regular pentagon and its
angle measure 𝛼 . Hint: divide the spherical pentagon into five triangles
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• Show that there exists a spherical pentagon whose angle evenly divides 2𝜋 : how
many of these spherical pentagons fit around a single vertex?

• What is the area of such a spherical pentagon? How many of these pentagons
does it take to cover the entire sphere?

For the pentagon, there was only one possibility, as the restriction that the angle at a
vertex be 2𝜋/𝑘 is so restrictive. Howver, for triangles, there are three possibilites!

Exercise 27.59 (Spherical Triangles). There are three different equilateral triangles that
can be used to tile the sphere. Find them! For each triangle:

• How many fit around each vertex?
• How many are needed to cover the sphere?
• What platonic solid does this correspond to?

The Pythagorean Theorem

The fundamental formula in Euclidean trigonometry is the Pythagorean theorem which
allows us to measure the length of the hypotenuse of a right triangle in terms of the
other side lengths.

The goal of this exercise is to derive the spherical counterpart to this:

Theorem 27.8 (Spherical Pythagorean Theorem). Given a right triangle on 2 with side
lengths 𝑎, 𝑏 and hypotenuse 𝑐, these three lengths satisfy the equation

cos(𝑐) = cos(𝑎) cos(𝑏)

Exercise 27.60 (Deriving The Pythagorean Theorem). Prove that the formula given
above really does hold for the legs and hypotenuse of a right triangle on 2, using the
distance formula that we’ve already calculated:

cos dist(𝑝, 𝑞) = 𝑝 ⋅ 𝑞

Hint: move your triangle so the right angle is at the north pole, and the legs are along the
great circles on the 𝑥𝑧 and 𝑦𝑧 plane. Now you can write down exactly what the other two
vertices are since you know they are distance 𝑎 and 𝑏 along these geodesics from 𝑁 , and
these geodesics are unit circles in the 𝑥𝑧 and 𝑦𝑧 planes!*
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Figure 27.21.: A spherical right triangle.

On a sphere of radius 𝑅, a similar formula exists: here to be able to use arguments in-
volving angles we need to divide all the distances by the sphere’s radius, but afterwards
an argument analogous to the above exercise yields

cos ( 𝑐𝑅) = cos ( 𝑎𝑅) cos (
𝑏
𝑅)

Its often more useful to rewrite this result in terms of the curvature 𝜅 = 1/𝑅2

Theorem 27.9 (Pythagorean Theroem of Curvature 𝜅). On the sphere of curvature 𝜅,
the two legs 𝑎, 𝑏 and the hypotenuse 𝑐 of a right triangle satisfy

cos (𝑐√𝜅) = cos (𝑎√𝜅) cos (𝑏√𝜅)

As a sphere gets larger and larger in radius, it better approximates the Euclidean plane.
We might even want to say something like in the limit 𝑅 → ∞ (so, 𝜅 → 0) the spherical
geometry becomes euclidean. But how could we make such a statement precise? One
way is to study what happens to the theorems of spherical geometry as 𝜅 → 0; and
show that they become their Euclidean counterparts. The exercise below is our first
encounter with this big idea:

Exercise 27.61 (Euclidean Geometry as the Limit of Shrinking Curvature). Consider
a triangle with side lengths 𝑎, 𝑏, 𝑐 in spherical geometry of curvature 𝜅. As 𝜅 → 0, the
arguments of the cosines in the Pythagorean theorem become very small numbers, so
it makes sense to approximate approximate these with the first terms of their Taylor
series.
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Compute the Taylor series of both sides of

cos (𝑐√𝜅) = cos (𝑎√𝜅) cos (𝑏√𝜅)

in the limit 𝜅 → 0, we can ignore all but the first nontrivial terms. Show here that only
keeping up to the quadratic terms on each side recovers the Euclidean Pythagorean
theroem, 𝑐2 = 𝑎2 + 𝑏2.

Trigonometry

Following the derivation of the spherical pythagorean theorem, we might next hope
to discover relationships between the sides of a spherical right triangle and its angle
measures. And, indeed we can!

Figure 27.22.: A right triangle with angles 𝛼, 𝛽 and opposite sides 𝑎, 𝑏.

The corresponding laws of spherical trigonometry are as follows:

Theorem 27.10 (Spherical Trigonometric Relations). For a right triangle with angles
𝛼, 𝛽 , corresponding opposite sides 𝑎, 𝑏 and hypotenuse 𝑐 the following relations hold:

sin 𝛼 = sin 𝑎
sin 𝑐 sin 𝛽 = sin 𝑏

sin 𝑐

cos 𝛼 = tan 𝑏
tan 𝑐 cos 𝛽 = tan 𝑎

tan 𝑐
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Youwill not be responsible for the derivation of these formulas, nor for remem-
bering them: if you ever need them they will be given to you!

One of the most biggest differences between spherical trigonometry and its Euclidean
counterpart is that its possible to derive formulas for the length of a triangles’ sides in
terms of only the angle information! This is impossible in Euclidean space because of
the existence of similarities: there are plenty of pairs of triangles that have all the same
angles but wildly different side lengths! No so in the geometry of the sphere.

Exercise 27.62. Using the trigonometric identities in Theorem 27.10 together with the
spherical pythagorean theorem Theorem 27.8, show that the side length 𝑎 of a right
triangle can be computed knowing only the opposite angle 𝛼 and the adjacent angle 𝛽
as

cos 𝑎 = cos 𝛼
sin 𝛽

Hint: start with the formula for cos 𝛼 . Write out the tangents in terms of sines and cosines,
then apply the pythagorean theorem to expand a term. Finally, use the definition of sin 𝛽
to regroup some terms.

Formulas such as this are incredibly useful for calculating the side lengths of polygons,
by dividing them into triangles and using facts that are known about their angles.

Exercise 27.63 (Spherical Trigonometry). Use spherical trigonometry to figure out the
side lengths of the pentagon you discovered in the first exercise.

Hint: can you further divide the five triangles you used before, into ten right triangles inside
the pentagon?

Solutions

Platonic Solids

Spherical Pentagons

Given a regular spherical pentagon with all angles equal to 𝛼 , we may divide the pen-
tagon into five triangles by placing a point in the center and connecting it to all five
vertices. The resulting triangles have a pair of angles of measure 𝛼/2 on the outside,
and a single angle at the interior vertex of 2𝜋/5.
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PICTURE

Thus, the area of such a triangle is (2𝜋/5 + 𝛼/2 + 𝛼/2) − 𝑝𝑖 = 𝛼 − 3𝜋
5 , and the area of

the entire pentagon is five times this:

$area = 5𝛼 − 3𝜋
Because we want 𝑛 pentagons to fit around a vertex to make a tiling (where 𝑛 ≥ 3, as we
cant have just one or two polygons meeting at a single point), we can set 𝛼 = 2𝜋/𝑛 and
then we wish to figure our for which values of 𝑛 such a pentagon exists. For a pentagon
to exist it must have positive area, so we can use the formula above to help us out: we
want

52𝜋𝑛 − 3𝜋 > 0

Getting a common denominator this imples (10𝜋 − 3𝜋𝑛)/𝑛 > 0 which is equivalent to
10 > 3𝑛. From here, we see directly that ony 𝑛 = 3 works, as if 𝑛 ≥ 4 then 3𝑛/𝑔𝑒𝑞12 is
certainly not less than 10. In the working case 𝑛 = 3, the area of the pentagon is

52𝜋3 − 3𝜋 = 𝜋
3

And since the total area of the unit sphere is 4𝜋 , this means we can fit 12 such pentagons
on the sphere. This is the dodecahedron: twelve pentagons meeting three to a vertex!

Triangle Tilings

The solution to this problem is very analgous to the above, but instead of working with
pentagons we are looking directly at triangles. We find there are three solutions, one
with four triangles (the tetrahedron) one with eight triangles (the octahedron) and one
with twenty triangles (the icosahedron).

Pythagorean Theorem

Derivation

Let 𝑇 be a right triangle on the sphere with legs of length 𝑎, 𝑏 and a hypotenuse of length
𝑐. By homogenity of the sphere, we can use an isometry to move the vertex of 𝑇 where
the legs meet to the north pole 𝑁 . Then, by isotropy of the sphere we can rotate the
sphere around 𝑁 so that the first leg lies on the great circle in the 𝑥𝑧 plane. Becuase
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the triangle is a right triangle, the other leg must then lie on the great circle in the 𝑦𝑧
plane.

PICTURE

Now, we can write down in coordiantes the location of these other two vertices. Since
the first lies at distace 𝑎 along the great circle in the 𝑥𝑧 plane, its coordinates must be

𝑝 = (sin 𝑎, 0, cos 𝑎)

Similarly, since the second lies at distance 𝑏 from𝑁 along the great circle in the 𝑦𝑧 plane,
its coordinates must be

𝑞 = (0, sin 𝑏, cos 𝑏)

We derived in class that the distance function between two points 𝑝, 𝑞 on the sphere
satisfies cos(dist) = 𝑝 ⋅ 𝑞. Applying that here, since we know the distance is 𝑐 (its the
hypotenuse), we have

cos 𝑐 = (sin 𝑎, 0, cos 𝑎) ⋅ (0, sin 𝑏, cos 𝑏) = cos 𝑎 cos 𝑏

The Limit

Here our goal is to Taylor expand the pythagorean theorem in curvature 𝜅, and then
simplify so that we can take the limit as 𝜅 → 0. We will use the function cos(𝑥√𝜅)
multiple times, so we record its series expansion here:

cos(𝑥√𝜅) = 1 − 𝑘𝑥2
2 + 𝑘2𝑥4

4! − ⋯

Thus, the pythagorean theorem expands to

1 − 𝑘𝑐2
2 + 𝑘2𝑐4

4! − ⋯ = (1 − 𝑘𝑎2
2 + 𝑘2𝑎4

4! − ⋯) (1 − 𝑘𝑏2
2 + 𝑘2𝑏4

4! − ⋯)

= 1 − 𝑘𝑎2
2 − 𝑘𝑏2

2 + 𝑘2𝑎2𝑏2
2 ⋅ 2 + 𝑘2𝑎4

4! + 𝑘2𝑏4
4! − ⋯

We can simplify this a bit by seeing each side has a 1, so we can subtract it; and then
multiply everything by −1 to make the beginning terms positive (just to be easier to
work with).
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𝑘𝑐2
2 − 𝑘2𝑐4

4! + ⋯ = 𝑘𝑎2
2 + 𝑘𝑏2

2 − 𝑘2𝑎2𝑏2
2 ⋅ 2 − 𝑘2𝑎4

4! − 𝑘2𝑏4
4! + ⋯

Now, all these terms have at least one factor of 𝑘 in them, so we can cancel this from
both sides:

𝑐2
2 − 𝑘𝑐4

4! + ⋯ = 𝑎2
2 + 𝑏2

2 − 𝑘𝑎2𝑏2
2 ⋅ 2 − 𝑘𝑎4

4! − 𝑘𝑏4
4! + ⋯

Now we may take the limit as k→0$ without any issue. This just makes all the terms
with a 𝑘 in them disappear, leaving us with

𝑐2
2 = 𝑎2 + 𝑏2

2
Multiplying by 2 yeilds what we expect, the Euclidean pythagorean theorem

𝑐2 = 𝑎2 + 𝑏2

Trigonometry

Lengths in Terms of Angles

We know that cos 𝛼 = tan 𝑏
tan 𝑐 , and expanding these tangents gives

cos 𝛼 = sin 𝑏/ cos 𝑏
sin 𝑐/ cos 𝑐 = sin 𝑏 cos 𝑐

cos 𝑏 sin 𝑐
Using the pythagorean theorem cos 𝑐 = cos 𝑎 cos 𝑏 lets us re-express this as

cos 𝛼 = sin 𝑏 cos 𝑎 cos 𝑏
cos 𝑏 sin 𝑐 = sin 𝑏 cos 𝑎

sin 𝑐
Then recalling that in spherical trigonometry we have sin 𝛽 = sin 𝑏/ sin 𝑐 this simplifies
to what we wanted:

cos 𝛼 = sin 𝛽 cos 𝑎 ⟹ cos 𝑎 = cos 𝛼
sin 𝛽

This is a rather striking formula, that has no analog in Euclidean geometry: it tells us
that its poasible to determine the side lengths of a triangle if all we know is the angles!
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The Side Length of a Pentagon

We can use this newfound formula to determine the side lengths of the pentagons mak-
ing up our spherical dodecahedron. Before we divided each pentagon into five triangles,
but these were isoceles not right triangles. To use trigonometry we need right triangles,
so we further subdivide each of these in two, giving ten right triangles.

PICTURE

If the side length of the pentagon is 𝐿, then the outer side of each of these triangles has
length 𝐿/2. The two important angles here are 𝜋/5 (the inside angle) and 𝜋/3 (the outer
angle that is not right). Thus, we see

cos 𝐿2 =
cos 𝜋

5
sin 𝜋

3

At this point it is totally reasonable to just calculate numerically via a calculator, and
find that 𝐿/2 = 0.364 so 𝐿 = 0.729…. However: we simplify further if we like, to see
a relationship of the dodecahedron to the golden ratio! We know that sin 𝜋/3 = √3/2
from the unit circle, but we also have

cos 𝜋5 = 1 + √5
4 = 𝜙

2
Where 𝜙 is the golden ratio. Thus, putting it all together

cos 𝐿2 = 𝜙/2
√3/2

= 𝜙
√3

and

𝐿 = 2 arccos ( 𝜙
√3

)
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Study Guide 2

Before the first midterm, write a study guide focusing on the portions of the class that
you need the most help with.

• Go through the book and copy down all relevant definitions and theorems.
• Come up with simple examples and non-examples of each definiition
• Make sure you understand howwe use the tools we are developing; by re-reading
proofs in the book.

• Do the extra exercies scattered throughout the book that weren’t assigned as
homework, if you haven’t been already.

You will be able to turn in your study guide after the exam for “completion points”
towards the “hold-me-accountable” portion of the grade (if you choose that grading
scheme).

In addition, as you review you may choose one problem from each of Home-
work Assignments 6,7, and 8 to re-do (even if the answer is posted; read it, then put
them aside, and re-write the problem in your own words for practice) and earn back
half of the points you missed on that problem back by doing this
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Project

The project in this class is an opportunity to both dive deeper into a topic you have
enjoyed so far, and to be creative with it - presenting your work in a means that is
fun for you (not just a writeup of six proofs on a homework assignment). The goal of
this is to be an enjoyable way to do some independent research - so if you can think
of something that would make this even more fun for you (that isn’t listed below) just
ask!

Expectations & Logistics

The goal of this project is to give you the ability to independently explore a topic that
interests you, read through some history, and work out some mathematics. Thus each
project should include at least one of each of the following:

• A preceise, mathematical definition or an example.
• A mathematical proof or argument.
• A discussion of some relevant history.

These categories do not need to be weighted equally: as long as all are touched on, the
emphasis of the project is up to you! For example, you could be very mathematical,
and give multiple proofs or examples of spherical trigonometry, while only briefly men-
tioning some of its historical roots….or you could do your entire project on the history
of navigation (where spherical trigonometry arose) doing a deep dive into the inven-
tors and use cases while only giving a small or straightforward example/proof of some
fact.

Finally, some logistics:

• The projects will be due at the end of the course (nominally the last day of class
Dec 6, but I’ll grant any extensions asked for until the day of the final exam, as I
know the last week can be crazy with other deadlines.)

• You can either work alone, or team up with one other person. But you must let
me know which you are doing when you submit your plan next Tuesday.

• You can ask me for help with anything: this is not an exam!
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Topic Choice

Below are a list of interesting topics branching off of what we have covered in the course
so far. If you have another idea, you are welcome to propose it to me!

• The History of The Parallel Postulate: We talked about how Euclid tried to
avoid using postulate 5 for as long as possible, and that many mathematicians
tried to prove it from the other four over the years. But the actual history here is
fascinating! In this project youwould research the history of some of the attempts
to prove Postulate 5, and explain at least one of them and why it failed.

• Archimedes’ Calculations We’ve re-proven several of archimedes results this
term using modern methods, but even this doesn’t really give the right picture
of just how ahead of his time Archimedes was. In this project, you would have
the opportunity to learn how archimedes actually did his work by focusing on one
result, and really learning his original argument. You could choose either The
Measurement of the Circle (where he approximates 𝜋 by 𝑛-gons) or Quadrature of
the Parabola (where he relates the area of a triangle to a parabolic segment).

• High Dimensional Euclidean Geometry We took a brief look at high dimen-
sional spheres, but there’s so much more to say! In this project you would per-
form several computations to try and understand better basic shapes (cubes and
spheres) in high dimensional space. Some of the interesting things to study are
(1) what percentage of a cube does the sphere that fits inside of it take up and (2)
how far away are the corners of a high dimensional cube? (If you want to do this
one come talk to me and I’ll make the questions more precise.)

• Spherical Trigonometry We only went as far as proving the spherical
pythagorean thereom, but there are many more trigonometric relations between
triangles on the sphere. In this project you can investigate this further by either
(1) proving several of the trigonometric formulae, following resources I can
provide, or (2) learning the historical use cases of spherical trigonometry, and
why these formulas were needed.

• Maps Learn the history and do the mathematical development of the Mercator
map. Work out in detail its chart and parameterization, and explore its use in nav-
igation via rhumb lines. Alternatively - choose any other map you’re interested
in (besides Archimedes’ and Stereographic), and compute all the map-quantities:
learn how to find map-lengths, map-disks, and the history of why this map was
invented: what advantages does it have?

• Hyperbolic Geometry
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Presentation Modality

Presentation Modality

After learning some history and doing some mathematics,

• A research paper: The default way to explain things you learned in a college
class! Write a paper on your topic of choice.

• Creative Writing If you enjoy other types of writing than the typical research
paper format, you are both welcome and encouraged to indulge your inner cre-
ative spirit! Here are just a few suggestions, but follow your heart.

– A fiction story: Tell a story where the characters have to deal with some
of the mathematics of geometry: maybe its about some ants growing up on
an orange, or some flat earther’s trying to prove themselves right, or a child
trying to imagine high dimensional spheres, etc.

– A diary of some historical figure: write about the discovery of a topic
from the perpsective of a (real, or imagined) historical character struggling
to work it out for the first time. What were archimedes successes and fail-
ures when thinking about the parabola? What was Mercator up to while
working out his map (and why did he give himself a fake name? hah)

– An Epic Poem: Feel like explaining a math proof in pages of verse, the way
the ancients told stories? Give it a shot!

• Art:

– A comic book: Illustrate a mathematical argument as a comic book, with
captions explaining the steps.

– A painting / sketchbook Create a sketchbook, painting, collage, or series
of small artworks depicting your chosen topic. Write a paragraph about
each explaining the content to your viewers.

– A physical model: Build a phyiscal model of something (several countries
in “Mercator” and “Actual” sizes, or a crochetted hyperbolic plane / crochet-
ted piece of the sphere, etc) and write an explanation of the mathematics
your creation is exhibiting.

– A computer program: If you liked your CS classes andwant to put them to
use, write a program to either (1) compute something or (2) visualize some-
thing. Potential ideas include: a spherical trigonometry calculator (you in-
put side-angle-side, or angle-angle-angle etc, and it computes all the missing
quantites you did not give), a high-dimensional-sphere calculator (compute
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volumes by doing the Riemann sums for the appropriate integral), a map
visualizer (implement a map projection starting with an equirectangular im-
age of the earth, reproject it according to your favorite map). Then write a
short description of what your program is doing.

• Performance:

– A mini-lecture make a slide deck for a powerpoint lecture, and present it
(to me, and any of your friend who would like to come).

– A video: Record a youtube or long-form tiktok style vide explaining one of
these topics.
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Exam Correction

For points on the hold-me-accountable scale (where I weight your exams less by giving
you grades for other things like attendance, study guides, and exam corrections), you
can earn points by doing exam corrections. This means, for each question that you
missed more than one point on on the exam (you can skip problems where you missed
a single point if you like, as these erros are pretty minor), you should

• Explain what went wrong on your original solution
• Give a brief discussion of any topic that tripped you up while working on the
problem (remember, these kind of assignments are here to help you - so writing
about what was hard will help it sink in better!)

• Give a full, complete, and correct solution.
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Problems

Optional: Orthographic Map

You do not have to turn this problem in if you do not want to, but I recommend it because
it gives a good concrete example of the kind of computations you have to do to relate
the angle you see when looking at a map to the map-angle-the true angle between the
vectors on the earth that are being depicted.

Exercise 27.64. Can you find the coordinates (𝑥, 𝑦) of a point on the map where the
vectors ⟨1, 0⟩ and ⟨0, 1⟩ only make a 45-degree angle with one another?

Hint: can you make the problem easier for yourself by restricting 𝑥 and 𝑦 to lie on some
line, so the problem ends up having one variable instead of two?

You can see how this would make such a map difficult to use for navigation: it would
look like the map is telling you to turn 90 degrees but in reality you should only turn
half that!

Because having to do computations like these constantly when working with a map is a
huge technical headache, mathematicians much prefer conformal maps, where the angle
you see in the Euclidean plane accurately represents the map-angle, and all of this is
unnecessary. (This is why the main map employed by mathematicians, Stereographic
Projection, is conformal).

Optional: Archimedes Map

You do not have to turn this problem in if you do not want to, but I recommend it because
it is both an interesting example of a map, and it provides the final step in Archimedes’
argument relating the area of a sphere to the area of its bounding cylinder.
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Exercise 27.65. Read the section of the textbook on Archimedes Map (in the Examples
chapter). Give a proof that this mao is infinitesimal area preserving following the outline
below:

• Show that at each point 𝑝 ∈ 𝑀 the vectors ⟨1, 0⟩ and ⟨0, 1⟩ are sent by 𝜓 to
orthogonal vectors on the sphere.

• Find their lengths on the sphere (ie the map-lengths), and use this data to find the
area of the infinitesimal rectanlge they form.

• Observe that everything beautifully cancels and the area is still one, even though
the square was stretched into a rectangle!

Since the infinitesimal area is unchanged by the map at each point, we can finish
Archimedes proof via integration (which I do below, using your exercise)

Theorem 27.11. The surface area of the unit sphere is the same as that of its Archimedes
map: that is, the same as the area of its bounding cylinder.

Proof. Archimedes map captures every point of the sphere except the north and south
poles. Since points have zero area, this omission has no effect on our actual question so
we can proceed to calculate with the map 𝑀 .

area(2) = ∬2
𝑑𝐴2 = ∬𝜓(𝑀)

𝑑𝐴2 = ∬𝑀
𝑑𝐴map

But now we know that 𝑑𝐴map = 𝑑𝐴𝔼2 , that’s what you’ve proved in the exercise above!
So we can sub this out, and then realize the resulting integral is just the definition of the
Euclidean area of 𝑀 in the plane:

= ∬𝑀
𝑑𝐴𝔼2 = area(𝑀)

562



Problems

Stereographic Projection:

Read the stereographic projection section first (we will cover the necessary bits
in class as well)

The stereographic projection map has many uses in mathematics beyond just repre-
senting points of the sphere on the plane. Because it is conformal (angle preserving), its
often used as a tool to help build more interesting conformal maps between regions of
the plane, following this general recipe:

• Start with a region on the plane.
• Use 𝜓 to map it to the sphere.
• Do something to the sphere, moving the region around
• Use 𝜙 to put it back on the plane.

The overall composition is a map between two regions on the plane, that was created
by going to the sphere and back! In these exercises, we will deal with a fundamental
example of this, and construct a map from the unit disk onto half of the entire plane!

The strategy above is summarized for this case in the following three figures:

Figure 27.23.: Mapping the unit disk to the
lower hemisphere of 2 via the
parameterization 𝜓 .

Figure 27.24.: Rotating the sphere about the
𝑥 axis by a quarter turn takes
the lower hemisphere to the
hemisphere of positive 𝑦 .

Exercise 27.66 (Disk and Half Plane: Construction). Let𝔻 be the unit disk𝔻 = {(𝑥, 𝑦) ∣
𝑥2 + 𝑦2 < 1} and let 𝕌 be the upper half plane 𝕌 = {(𝑥, 𝑦) ∣ 𝑦 > 0}. Let 𝑇 ∶ 𝔻 → 𝕌 be
the map described above. Prove that $T can be expressed as
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Figure 27.25.: Projecting the hemisphere of positive 𝑦 to the plane with 𝜙 gives the half
plane with positive 𝑦 .

𝑇 (𝑥, 𝑦) = ( 2𝑥
1 + 𝑥2 + 𝑦2 − 2𝑦 ,

1 − 𝑥2 − 𝑦2
1 + 𝑥2 + 𝑦2 − 2𝑦 )

By building it step by step:

• Start with (𝑥, 𝑦) in the unit disk.
• Apply 𝜓 to get the disk onto the sphere.
• Rotate the sphere about the 𝑥 axis in the appropriate way so that the south pole
goes to (0, 1, 0).

• Apply 𝜙 to return to the plane.

This map is conformal - meaning that it preserves all angles! And even more than that,
it takes generalized circles to generalized circles.

Exercise 27.67 (Disk and Half Plane: Understanding). Prove that these claims are in
fact true: that our new function is conformal, and sends generalized circles to general-
ized circles. Hint: what kinds of maps is it built out of? What do each of these maps to do
angles, or to generalized circles (on the plane) / circles (on the sphere)?

Use this to “transfer” this picture of polar coordinates in the unit disk onto the plane,
via our new map.

Spheres of Radius 𝑅:
The chapter on stereographic projection deals with the unit sphere. It is not too hard to
generalize what we have done to spheres of other radii, andwhile thismay not sound
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Figure 27.26.: What do these generalized circles look like when mapped to the half
plane?

super exciting at first, it actually turns out to be absoltuely fundamental to how
we are going to discover hyperbolic space! So, it is a rather important exercise to
work this all out for yourself.

The good news is you have this entire chapter as a guide, where I’ve worked out many
of the details for the case of the unit sphere. The formulas will be quite similar, but
there’ll be 𝑅’s inserted in various places: so the second piece of good news is that I’ll
give you the formulas that you need to derive! That way, you can check your work.

Definition 27.6. Let 2
𝑅 be the sphere of radius 𝑅 in 𝔼3. Then the chart 𝜙 for stere-

ographic projection of this sphere is defined geometrically exactly as in the original
version: given a point 𝑝 ∈ 2

𝑅, 𝜙(𝑝) is where the line connecting 𝑝 to the north pole
𝑁 = (0, 0, 𝑅) intersects the 𝑥𝑦 plane.

Exercise 27.68. Show that the formulas for both the chart and the parameterization of
stereographic projection here are as follows:

𝜙(𝑥, 𝑦 , 𝑧) = (𝑋 , 𝑌 ) = ( 𝑅𝑥
𝑅 − 𝑧 ,

𝑅𝑦
𝑅 − 𝑧 )

𝜓(𝑋 , 𝑌 ) = (𝑥, 𝑦 , 𝑧) = ( 2𝑅2𝑋
𝑋 2 + 𝑌 2 + 𝑅2 ,

2𝑅2𝑌
𝑋 2 + 𝑌 2 + 𝑅2 , 𝑅

𝑋 2 + 𝑌 2 − 𝑅2
𝑋 2 + 𝑌 2 + 𝑅2 )

(It might help to look back at Proposition 23.1, and attempt Exercise 23.1).

Running through the same arguments as in the chapter above (which you don’t have to
write down), its straightforward to check that this newmap is a conformal map between
2
𝑅 minus 𝑁 , and the plane. This means its parameterization 𝜓 both preserves angles and
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stretches all vectors by a uniform length: we can use this fact to compute the dot product
for this map.

Exercise 27.69. At a point 𝑝 = (𝑋 , 𝑌 ) on the plane, what is the factor by which a vector
𝑣 ∈ 𝑇𝑝𝔼2 is stretched when mapped onto 2

𝑅 by the parameterization of stereographic
projection? Hint: we know the factor is the same for all vectors: so pick an easy vector to
calculate with and find its length!

Once you know this, follow the argument style of Theorem 23.3 to compute the map-dot
product on the plane, and show that it is equal to

(𝑣 ⋅ 𝑤)map = 4𝑅4
(𝑅2 + 𝑋 2 + 𝑌 2)2 (𝑣 ⋅ 𝑤)
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Problems

Getting Used to Hyperbolic Space

Exercise 27.70 (Hyperbolic Circle Area). In this exercise you will go through the
transition-style arguments we use to turn formulas on the sphere into thier analogs in
hyperbolic geometry, much like we did in class.

The starting point is the formula for the area of a circle of radius 𝑟 on the sphere of
radius 𝑅:

𝐴(𝑟) = ∫
𝑟

0
𝐶(𝑟)𝑑𝑟 = ∫

𝑟

0
2𝜋 sin ( 𝑟𝑅) 𝑑𝑟 = 2𝜋𝑅2 (1 − cos 𝑟

𝑅)

• Re-express this in terms of curvature
• Convert to the Taylor series
• Plug in 𝜅 = −1
• Convert back to hyperbolic trigonometric functions

What is the correct hyperbolic formula? (We wrote it down without doing the full
derivation in class, so you can confirm)

Exercise 27.71 (Hyperbolic Pizza). Oneway to try and develop intuition for the strange
behavior of circles is to think about the type of circles we see in daily life: pizzas! One
major factor determining how good a pizza is is its crust percentage which we will define
as

CrustPercent = area(Crust)
area(Pizza)

In this probelm we will consider pizzas which have 1 inch crusts: meaning a 10 inch
(radius) pizza has a 9inch radius center of toppings, surrounded by a 1 inch thick circle
of crust.
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• Show the CrustPercent for Euclidean pizza is

2
𝑟 − 1

𝑟2 .

From this we see that as 𝑟 → ∞ the crust percent drops to zero: this makes sense,
if you imagine an extremely large pizza with only a 1inch thick crust, it’s totally
reasonable that most of the pizza is not crust!

• What is the CrustPercent for a hyperbolic pizza of radius 𝑟? Show that when 𝑟 is
large, this limits to the constant

CrustPercent → 1 − 1
𝑒 ≈ 63%

Thus crust is an inevitable part of life in hyperbolic space: no matter what size
pizza you make it will always be well over half crust!

Exercise 27.72 (Hyperbolic Pizza II). In this problem, we will imagine our unit to be
inches (so, the radius appearing in formulas for space of curvature −1 is measured in
inches).

You are at a pizzaria and are trying to decide if the 5 inch radius pizza they sell is large
enough for you and your friends. They also sell a six inch (radius) pizza, but it costs
twice as much. At first, you think this sounds crazy! But is this actually a good deal, or
not?

Your friend is feeling very hungry, and jokingly asks the pizzamaker how large of a
pizza he would need to order so that its areas is the same as an american football field
(100 × 50 yards). The pizzamaker says “I think I have room for that in my oven, coming
right up!” How big of a pizza is he going to make?

Hint: invert the formula for area in terms of radius, to get radius in terms of area, then
plug into a calculator!

Working with the Models

Exercise 27.73 (Hyperbolic space is homogeneous). We proved in class that the hori-
zontal translations 𝑇 (𝑥, 𝑦) = (𝑥 + 𝑡, 𝑦) are isometries of the Half Plane model, and we
also proved that the similarities 𝑆(𝑥, 𝑦) = (𝑠𝑥, 𝑠𝑦) are also isometries.

Combining these two, prove that ℍ2 is homogeneous: that is, that for any two points
𝑝, 𝑞 ∈ ℍ2, there exists an isometry that takes 𝑝 to 𝑞.
Hint: can you first show that you can build an isometry that takes (0, 1) to any point in
the plane? Then combine two of these to get what you want?
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Exercise 27.74 (The Circumference of Circles). In the Disk Model, if 𝑎 < 1 the Eu-
clidean circle 𝑥2 + 𝑦2 = 𝑎2 centered at 𝑂 is also a hyperbolic circle. In the text, we
compute that its hyperbolic circumference is

𝐶 = 4𝜋𝑎
1 − 𝑎2

and that its hyperbolic radius is

𝑟 = 2arctanh(𝑎)

Using these two, prove that 𝐶(𝑟) = 2𝜋 sinh(𝑟). Hint: solve for 𝑎 in terms of 𝑟 and plug
into circumference. Then use hyperbolic trigonometric identites to simplify!

Together these two arguments prove that the geometry modeled by the Half Plane and
the Disk has the circumference function 𝐶(𝑟) = 2𝜋 sinh(𝑟) for circles based at any point
(the second problem establishes this for circles at a special point, and hte first problem
establishes that space is homogeneous, so its the same at all points). Thus, this space
truly is hyperbolic geometry, and has curvature −1 (we proved in class, any space with
this circumference function has constant curvature −1).
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Extra Credit

These problems come from mathematics educator Catriona Agg, who is an expert at
coming up with Euclidean geometry puzzles that seem to not have enough information
to be solvable, but actually are, with enough work!

These problems are extra credit meaning that only clear, well written, well-illustrated
and correct solutions will recieve credit. I will not even attempt to read a solution that
looks like scratch work or a first draft. You are welcome to talk together, but must write
up your final solution fully on your own.

In solving these puzzles, its helpful to keep in mind the following:

• Angle Propositions: opposite angles, alternating angles, corresponding angles,
angle sum of a triangle, angle sum of quadrilaterals…

• Congruence Propositions: Side-Side-Side, Side-Angle-Side (or Side-Side-Angle),
and Angle-Side-Angle.

• Similarity: Angle-Angle-Angle is not a congruence in Euclidean geometry! Two
different sized triangles can have the same three angles! However, when they do,
they are similar - the side lengths of one are a fixed multiple of the side lengths
of the other.

A warning: do not assume anything that is not in the drawing! If two lines intersect
eachother at some randompoint that looks approximately halfway across - do not assume
its exactly half way!

Finally, I hope you have fun with these! Working on puzzles is a great way to improve
your geometric reasoning skills!

Problem I: A Balancing Square

All shapes below are squares, some of them labeled with their areas. What is the area
of the blue square?
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Problem II: The Leaning Tower of Squares

All the shapes in this picture are squares. What is the shaded area?

Problem III: The Volume of the 6-Sphere:

Use the result you calculated in Homework 7, that the volume of the sphere in 5 dimen-
sions is given by

8𝜋2
15 𝑅5

to calculate the volume of the unit sphere in six dimensions by slicing. Thiswill require a
trigonometric substitutionwhichwill lead to an integral of cos6(𝑥) that you can simplify
with the double-angle identities.
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Problem II: The Leaning Tower of Squares

Figure 27.27.: What can we even learn from this picture?!
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